Challenging the Program Counter

W. Banzhaf!

Department of Computer Science, Memorial University of Newfoundland, St. John’s
NL A1B 3X5, CANADA

Is it possible to achieve reliable results by running a machine with unreliable
elements? This was a question that already John von Neumann was pondering
when thinking about the brain and its performance[6]. Computers had, for many
years, a problem of the same type. Elements of computing machinery would
break, sometimes without being noticed by the programmer or operator, and
only the results of a computation would have indicated that something strange
had happened.

Computer engineers have, through various draconic measures, succeeded in
clamping down on indeterminism in computing machinery, for instance through
binary coding of all information held in physical devices, or through introduc-
tion of error-correcting codes for transmission of information. These and other
measures, however, come at a cost in efficiency. In order to make sure that a
deterministic order of programs is followed, for example, a program counter re-
quests execution of one instruction at a time. Time is clocked, and movement
of data is heavily constricted. Sometimes two or more cycles are needed just to
move information around, energy needs to be spent to readjust electrical volt-
ages to binary levels, and more data need to be transmitted in order to secure
error correction.

In recent years, however, the specter of unreliability has come back: Neural
networks have demonstrated that non-binary (if nonlinear) elements are useful in
computing for certain functions like, e.g. pattern recognition. Quantum comput-
ing devices have been invented that work with probability bits, called qu-bits,
instead of deterministic bits as traditional. Parallel computers have achieved
such processor density that unreliability in elements becomes a major concern
again. IBM’s BlueGene project, for instance, has so many processors that at
least once a day, a cosmic radiation event will succeed in flipping a bit. Where
and when this happens is unknown, that it happens is a statistical exercise to
calculate.

Notably the community in parallel and distributed computing has gone to
great length in securing that parallel and distributed computers provide some
sort, of synchronicity between processes.

Here we argue that a particular sort of radical indeterminism can be injected
into a computing machine without prohibiting it from computing useful quan-
tities. We speak of the enforced deterministic sequentiality of computer code
that might be dissolved this way. When von Neumann et al. put forward their
proposal for a stored program computer, the invention contained actually two
important pieces, one being to store programs as data. This development opened
the way for a much more efficient method of programming than was used before,



and - at the same time - allowed for self-modifying code. The second aspect of the
invention, however, frequently underestimated in its impact, was the program
counter which would control execution of code residing in memory by providing
the address of the next instruction in memory.

It is the behavior of the program counter that we want to challenge here,
bringing it more in line in its behavior with execution of processes in the natural
world. There, synchronicity is the effect of a highly intricate and complex con-
struction, whereas at the lowest level of processes, things happen asynchronously.
Is possible to have a system without deterministic execution control? In the
framework of artificial chemistries [3], an area recently sprung up to study algo-
rithms that model and simulate chemical reaction systems for various purposes,
the answer is yes.

A program counter might randomly select from a multi-set of instructions,
where a repetition of instructions is allowed to appear in memory locations.
Computing would be understood as the transformation from input to output.
This would be different from executing a prescribed sequence of computational
steps. Instead, instructions from the multi-set I = {I3, I, I5, I, I3, I1, ...} would
be drawn in random order to produce a transformation result. In this way the
sequential order usually associated with the notion of an algorithm would be
dissolved. How can such an arrangement be able to produce useful results? Un-
der the reign of a programming method that banks on its stochastic character,
Genetic Programming [2], it turns out that results can still be useful.

A program in this sense is thus not a sequence of instructions but rather an
assemblage of instructions that can be executed in arbitrary order. By randomly
choosing one instruction at a time, the program proceeds through its transforma-
tions until a predetermined number of instructions has been executed. Different
multi-sets can be considered different programs, whereas different passes through
a multi-set can be considered different behavioral variants of a single program.

Because instructions are drawn randomly in the execution of the program, it
is really the concentration of instructions that matters most. It is thus expected
that “programming” of such a system requires the proper choice of concentra-
tions of instructions, similar to what is required from the functioning of living
cells, where at each given time many reactions happen simultaneously but with-
out a need to synchronicity.

Systems of this kind substitute the rigidity of sequentiality with the flexi-
blity of pattern-based processing. In our particular example, the patterns are
provided by input and output addresses of register/memory locations used to
fetch and store results from the execution of instructions. This way, instructions
are connected by data flow, not by sequence, and sequentiality is only introduced
if appropriate patterns have been set up in the ”programming” phase.

There are a number of advantages of systems like this.

1. They are nature analogues;

2. There is no need for synchronicity;

3. There is scalable accuracy, more computation results in more accurate re-
sults;



4. Due to the statistical nature of results, they are fault-tolerant;

5. Programs are modular, i.e. different programs can be developed and later
put together to achieve an overall function;

6. Easily parallelizable.

Further details can be found in recent publications [1,5,4].

Acknowledgement

This work is supported by an NSERC discovery grant under RGPIN 283304-04.

References

1. BANZHAF, W., AND LASARCZYK, C. W. G. Genetic programming of an algorithmic
chemistry. In Genetic Programming Theory and Practice II, U.-M. O’Reilly, T. Yu,
R. Riolo, and B. Worzel, Eds., vol. 8 of Genetic Programming. Kluwer/Springer,
Boston MA, 2005, pp. 175-190.

2. BanzHAF, W., NORDIN, P., KELLER, R., AND FRANCONE, F. Genetic Programming
- An Introduction. Morgan Kaufmann, San Francisco, CA, 1998.

3. DITTRICH, P., ZIEGLER, J., AND BANZHAF, W. Artificial Chemistries - A Review.
Artificial Life 7 (2001), 225-275.

4. LAsArRCzZYK, C. W. G., AND BANZHAF, W. Simulating infinite execution time on
algorithmic chemistries. In Proc. GECCO 05, Washington, DC, June 2005, ACM
Press. in press.

5. LASARCzZYK, C. W. G., AND BANZHAF, W. An algorithmic chemistry for genetic
programming. In Proc. 8th Europ. Conference on Genetic Programming, Lausanne,
Switzerland, April 2005 (Berlin, 2005), Springer, LNCS 3447, pp. 1 — 12.

6. VON NEUMANN, J. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In Automata Studies (Princeton, NJ, 1956), C. Shannon
and J. McCarthy, Eds., Princeton Univ.Press.



