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In this note we review the concept of using continuous-time dynamical systems (described
by ordinary differential equations) to solve computational problems.

Many scientific computing problems (such as weather prediction, structural analysis, elec-
trical networks analysis) strongly rely on matrix computation algorithms (linear system solv-
ing, eigenvalue decomposition, singular value decomposition, matrix nearness problems, bal-
ancing of linear systems, joint diagonalization of matrices...). These algorithms often assume
the form of successive iteration,

x(k + 1) = G(x(k)), (1)

which can be viewed as a dynamical system, where the state x depends on the “time” k that
takes integer values. Equation (1) is thus a discrete-time (DT) system. A sequence of points
{x(k)}∞

k=−∞
satisfying (1) is called the orbit of G based at x(0). A simple example of DT

dynamical system is the power method,

x(k + 1) = Ax(k), (2)

which computes the dominant eigenvector of the matrix A, i.e., the orbit x(k) converges to
an eigendirection of A as k goes to infinity. This and other iterations for matrix computation
problems can be found in [GV96].

Interestingly, there exist “natural” physical systems the analysis of which leads directly to
a DT dynamical system like (1). An example is the Bouncing Ball described in [GH83, §2.4],
where a ball repeatedly impacts a sinusoidally vibrating table. This yields a two-dimensional
system (because the state of the ball can be determined by the impact time and the velocity
at impact) exhibiting rich dynamics (stable and unstable points of period one and higher,
bifurcations, chaotic behaviour). However, most physical dynamical systems are continuous-
time (CT) systems, which can be described by ordinary differential equations (ODEs) or
partial differential equations (PDEs). Here we will only consider ODEs, which assume the
form

ẋ(t) = f(x(t)) (3)

where ẋ denotes the derivative of x with repect to time. One of the simplest systems that
can be described by (3) is the pendulum; see e.g. [Kha96, §1.1] for this and other examples.

CT and DT systems have crucial differences. The question of existence and uniqueness
of solutions is an important issue for CT systems (see [HS74, Ch. 8]), not for DT systems.
In spite of this, CT systems are arguably easier to analyse than DT systems. A fundamental
reason is that the orbits of (classical) CT systems are continuous curves in the state space,
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while the orbits of DT systems are sequences of points, which are more difficult to “track
down”. This distinction has important topological consequences [GH83]. For example, while
a CT system needs at least three state variables to exhibit chaotic behaviour, DT systems of
only one variable can be chaotic (see e.g. the logistic map x(k+1) = ax(k)(1−x(k)) [May76]).

This partly explains a long-standing interest in the numerical analysis community for CT
versions of iterative processes. The ideal case is when the orbit of the CT system iterpolates
the orbit of the DT system. A simple example is the power flow

ẋ = Bx (4)

whose orbits are given by x(t) = exp(Bt)x(0). It is easy to see that if xD(k) is an orbit
of the power method (2) and xC(t) is an orbit of the power flow (4) with xD(0) = xC(0)
and A = exp(B), then xC(k) = xD(k) for all integer k. The result that ignited interest in
such flows was when iterates of the unshifted QR-algorithm (which is closely related to the
power method; see [Wat82]) were shown to be unit time samples of a particular Lax-pair
equation [Fla74, Sym82, DNT83, Nan85].

Oftentimes, however, this interpolation property does not hold and the CT counterpart is
simply “related” to the DT system. The relation may be that the DT system is the iteration
obtained by applying a numerical integration scheme to the CT system. For example, the
Newton iteration x(k + 1) = x(k) − (f ′(x(k)))−1f(x(k)), for finding a zero of the function f ,
may be regarded as one explicit Euler step with unit steplength applied to the CT system
ẋ = −(f ′(x))−1f(x) [Chu88]. The CT flow may turn out to have interesting properties,
quite different from the DT counterpart. For example, in [MA03], a CT flow related to the
Rayleigh quotient iteration was shown to visit all eigenvectors of the given matrix in finite
time. Such CT flows may also be used to study the asymptotic behaviour of their discrete
counterpart, refering to the theory of Ljung [Lju77] and Kushner and Clark [KC78]; see for
example [OK85].

Several CT systems with computational properties have also been proposed that do not
stem directly from a DT version. A celebrated example is the double bracket flow [Bro91]

Ȧ = [A, [A, N ]] (5)

where [A, B] = AB − BA denotes the commutator. For suitably chosen N , the orbit A(t)
converges to a diagonal matrix whose diagonal elements are the eigenvalues of A(0). The same
equation (5) can be used to sort lists and solve linear programming problems [Bro91]. Other
examples can be found in [WE88, Chu88, CD90, HM94, GM97, Prz03, AS04] and references
therein.

Reciprocally to the above-mentioned trend to consider CT counterparts to DT systems,
much effort is geared towards deriving iterative methods that efficiently approximate the
orbits of CT systems (see [HM94, Ise02, Cas04]) with a view towards implementing these
iterations on digital computers. An emerging alternative, however, is to make use of non-
classical computer technologies which operate in CT, such as VLSI devices implementing
neural networks [HKP91].

2



References

[AS04] P.-A. Absil and R. Sepulchre, Continuous dynamical systems that realize discrete optimization on

the hypercube, Systems Control Lett. 52 (2004), no. 3-4, 297–304.

[Bro91] R. W. Brockett, Dynamical systems that sort lists, diagonalize matrices, and solve linear program-

ming problems, Linear algebra appl. 146 (1991), 79–91.

[Cas04] Fernando Casas, Numerical integration methods for the double-bracket flow, J. Comput. Appl.
Math. 166 (2004), no. 2, 477–495.

[CD90] M. T. Chu and K. R. Driessel, The projected gradient method for least squares matrix approxima-

tions with spectral constraints, SIAM Journal Numerical Analysis 27 (1990), no. 4, 1050–1060.

[Chu88] M. T. Chu, On the continuous realization of iterative processes, SIAM Review 30 (1988), no. 3,
375–387.

[DNT83] P. Deift, T. Nanda, and C. Tomei, Ordinary differential equations for the symmetric eigenvalue

problem, SIAM Journal Numerical Analysis 20 (1983), no. 1, 1–22.

[Fla74] H. Flashka, The Toda latice, II. Existence of integrals, Physical Review B 9 (1974), no. 4, 1924–
1925.

[GH83] John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations

of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983.

[GM97] Neil H. Getz and Jerrold E. Marsden, Dynamical methods for polar decomposition and inversion

of matrices, Linear Algebra Appl. 258 (1997), 311–343.

[GV96] G. H. Golub and C. F. Van Loan, Matrix computations, third edition, Johns Hopkins Studies in
the Mathematical Sciences, Johns Hopkins University Press, 1996.

[HKP91] John Hertz, Anders Krogh, and Richard G. Palmer, Introduction to the theory of neural computa-

tion, Santa Fe Institute Studies in the Sciences of Complexity. Lecture Notes, I, Addison-Wesley
Publishing Company Advanced Book Program, Redwood City, CA, 1991, With forewords by Jack
Cowan and Christof Koch.

[HM94] U. Helmke and J. B. Moore, Optimization and dynamical systems, Springer, 1994.

[HS74] M. W. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra, Academic
Press, 1974.

[Ise02] Arieh Iserles, On the discretization of double-bracket flows, Found. Comput. Math. 2 (2002), no. 3,
305–329.

[KC78] H. J. Kushner and D. S. Clark, Stochastic approximation methods for constrained and unconstrained

systems, Applied Mathematical Sciences, vol. 26, Springer-Verlag, 1978.

[Kha96] H. K. Khalil, Nonlinear systems, second edition, Prentice Hall, 1996.

[Lju77] L. Ljung, Analysis of recursive stochastic algorithms, IEEE Trans. Automatic Control 22 (1977),
no. 4, 551–575.

[MA03] R. Mahony and P.-A. Absil, The continuous-time Rayleigh quotient flow on the sphere, Linear
Algebra Appl. 368C (2003), 343–357.

[May76] R. H. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459–
467.

[Nan85] T. Nanda, Differential equations and the QR algorithm, SIAM Journal Numerical Analysis 22

(1985), no. 2, 310–321.

[OK85] E. Oja and J. Karhunen, On stochastic approximation of the eigenvectors and eigenvalues of the

expectation of a random matrix, J. Math. Anal. Appl. 106 (1985), no. 1, 69–84.

[Prz03] M. Przybylska, Isospectral-like flows and eigenvalue problem, Future Generation Computer Systems
19 (2003), no. 7, 1165–1175.

[Sym82] W. W. Symes, The QR algorithm and scattering for the finite nonperiodic Toda lattice, Physica D
4 (1982), no. 2, 275–280.

[Wat82] D. S. Watkins, Understanding the QR algorithm, SIAM Review 24 (1982), no. 4, 427–440.

[WE88] D. S. Watkins and L. Elsner, Self-similar flows, Linear algebra and its applications 110 (1988),
213–242.

3


