Session Notes, Grand Challenges Workshop,
18-19 April 2005, York

Fiona Polack

Caveat

This report is written from notes taken during the Grand Challenges Workshop;
it is not a verbatim transcript, and thus may not always be a faithful record of
what was actually said.

1 Conference Introduction: Stephen Emmott

Microsoft sponsored the event, not because it wants to build a quantum version
of Office next year. Instead, the company is looking to learn something. For
example, quantum computing is new to Microsoft and Microsoft Research; there
is a very new quantum group in Microsoft in the US.

Microsoft wants to make a scientific contribution, especially in Europe, and
to raise the profile of these computational approaches with policy makers, fun-
ders and industry. There is an opportunity to create new building blocks for
the next century. The new Microsoft Research Science Initiative is lead by
Cambridge in Europe, and is starting and seeking long-term partnerships.

2 Session 1: Non-classical substrates

2.1 Invited Speaker: Sam Braunstein, Quantum Compu-
tation

There is an imminent and clear challenge in computing to build better, faster
computers to counter the classical computing crisis. Moore’s Law predicts
atomic scale computers in 10 years time; his prediction is 40 years old this
month!

Quantum computation would complement classical computer science, not
replace it. Information is represented ultimately by physical systems. Moore’s
Law breaks down when the capacitor is so small that it only accommodates
one electron. Technology to allow us to manipulate matter at atomic scale is
imminent; can we harness quantum mechanics for information processing? We



are not just looking for microscopic computer science; we need to discover how
to harness the new technology to produce computation — new paradigms, new
hardware, new algorithms; new design approaches and performance metrics;
new forms of noise and error correction; new complexity classes from scratch.
The biggest challenge is building the machines — many approaches are being
explored.

The first serious thoughts on quantum computation are from Richard Feyn-
man in the 1980s; the first breakthrough was not until 1993, with Shor’s factor-
ing algorithm. This generated excitement but also scepticism. Over 10 years on,
many difficulties have been encountered, but enough has been solved to know
that quantum computation will eventually happen.

The power of substituting bits with qubits is illustrated using the physics
beam splitter experiment.

The potential of existing algorithms does not only rely on speed-up; the new
computation provides new approaches to secret hiding etc. The non-cloning
theorem determines that measurement cannot allow all information held to be
revealed; it is a general property of quantum information that quantum states
cannot be copied, Heisenberg Uncertainty Principle. Generalisations include
the absence of a universal NOT gate, since NOT produces a state orthogonal to
the input state, and the no-deleting theorem. No universal constructor can be
designed or built, no self-replicating automata are possible. These properties
are not bugs but features!

Quantum error correction was initially a big block to development of quan-
tum computation. All systems have noise; the conventional approach to noise
eradication required copying and measurement. However, a work-around has
been developed, using multiple qubits — one qubit of information with error
correction requires five qubits of storage. A full fault-tolerant theory is now in
place, defining a threshold below which gate infidelity can be corrected, even
under random errors. Below the threshold, we could compute indefinitely on
arbitrary large numbers of qubits. However, each version of the noise model is
system-specific.

Teleportation describes passing quantum info over classical channels such as
telephone lines. In general, the no-copying theorem says that this is not possible,
because the classical medium could copy the information. This can, however, be
worked around with an extra resource, namely shared quantum entangled states.
This allows specific principals to be picked out, between which the quantum state
can be safely teleported through a classical channel; eavesdroppers are excluded
because they can not access the entangled states.

The first successful teleportation experiments were in 1998; a particle was
teleported over one metre. Since then, atomic states have been sent over short
distances, and light over tens of metres.

Quantum mechanics is easy to illustrate with light. Quantum computation
is less easy to implement, and there have been many different attempts [sum-
marised in the talk]. The key problem is to recognise the fundamental tension
between the internal tight coupling among qubits required to perform logical,
conditional operations, and the weak coupling required between computational



qubits and rest of world.

Some implementations are handicapped by scale limitations eg high temper-
ature NMR. Also, semiconductor schemes rely on atomic scale manipulation of
matter, the technology for which is not up to speed yet. However, lots of lessons
are being learnt about what is necessary and possible; diversity of implementa-
tion approach experiments is still important.

2.2 Questions

Andy Tyrrell: quantum computation presentations all focus on factoring algo-
rithms. Is quantum computation specific to just a few applications?

Security agencies such as GCHQ and NSA can justify their quantum compu-
tation investment on that alone; secrecy and teleportation have provable benefits
over classical approaches. However, we do not actually know how hard the fac-
toring problem is; we might be able to make similar improvements in classical
sieves, for example.

For Grover’s algorithm, the achieved speed-up treats the algorithm as a black
box, but if we could open the black box and examine it, we might be able to
make further speed-ups; we don’t yet know.

Simulation of QC is a second best. We need maturity in understanding to
build more sophisticated algorithms. It might be another 10 years before we
realise that we can generalise algorithm development approaches.

John A. Clark: Grover search is fast, but are there other problems expressible
in less than 100 bits to which quantum computing could be applied?

Inevitably, cryptographic problems; brute force search on the square-root of
the number of possibilities is a big improvement.

Aaron Sloman: In the talk, totally secure communication was defined as
detecting when an intruder could read a communication; is this adequate?

The talk did not tell the whole story; omitted issues included quantum pri-
vacy amplification, entanglement purification, measurement from the eavesdrop-
per by entangling with one principal. In practice, an eavesdropper on an en-
tanglement introduces more noise; it is possible to take correlations and use the
results to amplify the principals’ entanglement and minimise anyone else’s; this
relies on well-understood theory.

Julian Miller: When will it be possible to teach quantum computing to first-
year undergraduates, in the way that classical computing is now taught; would
first years be able to write quantum algorithms?

We are currently teaching quantum computing to third-year computer sci-
ence students. It is easy to simulate quantum algorithms on classical computers,
but the real point is to access the speed-up; for this we need to understand how
to harness the power of exponentially-large numbers of simultaneous logical
states. At present, there are not many known design tricks; when these exist, it
would be possible. The blocks in designing complex algorithms are in turning
general calculations into subroutines, taking account of the quantum restrictions
that require all subroutines to take the same amount of time (parallelism). We
need abstraction paradigms.



Cris Calude: Randomness was mentioned on the talk slides — Quantum
randomness is not understood, and complete randomisation is not yet possible?

One company selling quantum cryptography (Geneva-based) has built a one-
qubit processor that produces random bit streams.

Cris Calude: They claim that speed of generation is sufficient for security
applications, not that quantum randomness is algorithmic or true randomness

Physicists believe that these quantum bit streams do display true random-
ness. However, now that it is cheap to acquire the generator, we will be able to
actually test the properties of the randomness, for example in Masters projects.
It may, for instance, be that quantum mechanics could be shown to be wrong in
believing that the Hilbert space vectors are pure probabilities; that would affect
quantum randomness, and that would be a big finding for science.

Tom Addis: a characteristic of quantum algorithms is that multiple states
are dealt with almost simultaneously, and an algorithm reveals just one answer;
if a process produced a probability distribution of answers, would the probability
distribution be as expected if all the states were carried out?

Yes; this is what happens in the Shor algorithm; it is run multiple times,
to learn about the internal lattice space; some observations are found not to be
relevant. The algorithm is probabilistic; it can be simulated for a small number
of qubits, and shown to be within expected tolerances.

Tom Addis: if this is so, then a quantum computer would be ideal for game
theoretic calculations with enormous states and decisions made on probabilities?

Even small games, such as a business dilemma game with strategies and
strategy algorithms, have a rapid build-up in strategies as rounds cumulate, so
this might be a potentially a useful application. Quantum games exist that take
variations on game theory, but I don’t know any applications to game search
spaces, stable spaces.

Aaron Sloman: evolution has produced more sophisticated varieties of info
processing than we can understand; Penrose suggests that evolution is way ahead
on quantum algorithms; can we learn from nature?

Some people are exploring this, but I do not think they’ll get anything.
Penrose is wrong in his argument; we can do non-algorithmic things but we can
get things wrong [comments re older physicists of potentially libellous nature].
The real problem in knowing how to build complex algorithms; this may be
impossible to do in the ways that we traditionally deal with complexity, perhaps
because complexity might be an emergent property of classicality.

Rob E Smith: There seems to be a hysteria over the Quantum Fourier Trans-
form that identifies the period in the Shor algorithm, a hysteria based on one
problem that everyone thinks is hard. In fact, if a problem has an underlying
signal with high complexity, Shor sampling may be so hard that it never produces
a solution.

The number of components is exponential anyway, so if one is trying to learn
about more components than can be handled, one wont get there, but in such a
case there would also be a problem just writing down the answers. The problem
comes down to the difficulty of storing quantum answers and reuse.



Shor is a very narrow application; there’s a lot of non-obvious structure
within it which makes it very hard to generalise, despite many attempts. All
the known variants are very close to the original. It is a showpiece; it is popular;
but it is tiny.

2.3 First Panel, chair Andy Adamatsky

Panel: Julian Miller, Jonathan Mills, Klaus-Peter Zauner
The panel was structured as a series of short presentations with questions
after each, and, at the end, a more general discussion of the topics covered.

2.3.1 Andy Adamatsky

Emergence is bullshit with no results; quantum computing is fun because it chal-
lenges the mind; by contrast, chemical and polymer computing are challenges
and real.

A quick introduction to reaction-diffusion computers proceeded to an expla-
nation of chemical-controlled robot navigation, based on the response of a chem-
ical medium to stimuli and collision based logics, based on chemical diffusion
wave interaction. Voronoi diagrams were derived, and robot hands controlled
by shading BZ; photo-sensors convey the control outcomes as states to robot.

Julian Miller: what timescales?

Very slow. The Voronoi diagram takes about 30min; the robots move about
lem per 2-3 minutes.

Julian Miller: what are the applications?

Embedded applications. For example, a chemical gel within a robot doing
logical, navigational and decision operations.

Julian Miller: The illustrated systems seem to use a lot of conventional hard-
ware?

Yes.

Kester Clegg: Would smaller systems be faster, because the diffusion effects
would be faster relative to scale?

Up to a point; and speed-up would be limited by wavelengths; semiconductor
electron diffusion would be faster.

Martyn Amos: : What about scale factors? What is the largest possible
system

These systems can go big; room-sized wave generation would be possible.

Martyn Amos: What are the energy implications?

A room-sized application would require a lot of energy, but a reaction-
diffusion computer could integrate in “gelbot” that hosted photo-electric gener-
ation.

Leo Caves: To what extent does the nature of medium here restrict the time
and scale, is BZ oscillation the only possible medium?

Any excitable medium could be used, including PNP devices, semiconductor
sheets, and excitable tissue. It is easier to experiment with chemicals such as
BZ.



Susan Stepney: The experiments described can be summarised as analogue
implementation of digital computations; why?

These experiments are selected because most old-school computer scientists
challenge the possibility of chemical computing. By replicating known digital
computations, we can show computer scientists that reaction-diffusion systems
can do what they recognise; indeed can do anything.

2.3.2 Klaus-Peter Zauner, Computing with macromolecules

Computing started from a need for number tables. These were calculated origi-
nally by people, following precise instructions. Turing sought to generalise these
manual approaches as if there were infinite paper and time, and thus unlimited
computation. It is often assumed that if we have more speed and more space
then anything computable is in reach with classical computers. We still have
computers that are good to compute tables, but do these computers also repre-
sent the right approach for any information processing problem; is it the right
paradigm for the substrate?

The characteristics that make classical substrates good include tolerance to
parameter variation and aging; resilient to noise; good properties of restoration
(high gain); the ability to interconnect. Faster substrates have been less im-
portant than these properties; slower components gave bonuses in these other
areas.

A computer is anything from which we can interpret the final state; there
are lots. I work between inanimate and animate. Synthetic biology can produce
simple cells and circuits, and can also build up from the underlying chemistry.
Self-assembly molecules can be created, but have poor scaling because of diffu-
sion speed. Protein computation reads conformational changes using enzymes
or spectroscopy, and is already used in image processing.

One implementation is a robot with light censors which exchanges chemical
signals with a dehydrogenase enzyme; this keeps the robot within light ranges.
We are working on miniaturisation (lab-on-chip technology).

Slime mould can be used to provide single cells that grow circuits under light
stimuli. The cell oscillations have been used to drive robot legs. There is a lot
of setting up to run it, but a chip is being developed that incorporates the slime,
interfaced electronically; the slime is confined to hollows in the silicon.

Jonathan Mills: what is the control?

Cell walls.

Jan Kim: You are using the laws of nature to arrive at a solution, but
the solution requires interpretation of states. You could claim that anything
represents an arbitrary problem and read out any arbitrary solution?

Anything can compute itself; if you throw an object, it computes its tra-
jectory. There is a trade-off between universal codings and efficient one-off
computation. We need to move from overall universality to some degree of spe-
cialisation, but must avoid encoding the problem in terms of its solution; the
key is to find right balance.



[ed: also, if the interpretation requires even more computation then it is not
helpful.]

Richard Overill: why slime mould?

Biologists have extensively studied slime mould, and its habit of sporing un-
der stress. Also, the slime mould has a useful facility for co-ordination under
chemical signalling, and the researchers could see how to interface with it chem-
ically. It additionally has optical and electrical responses, but for this work we
only use plasmoidal single cells.

Andy Tyrrell: How do you get the slime mould into the initial structure on
the chip?

It grows in to it. The mould likes some surfaces, and will stay within these
unless it gets very hungry. The chip can run for 6 days, but eventually the
mould will try to run away to find food; no food is provided on the chip.

Martyn Amos: What happens in the black bits? [This referred to black areas
in a graphic of the slime-mould chip.] They are holes; the mould oscillates by the
thickness of its layer; this is detected by a high-frequency bridge across it. An
alternative form has light at a wavelength that does not affect the mould shone
through, and this reveals the oscillations to a detector. Information processing
is all at the molecular level.

Kester Clegg: how does the mould control robot legs? What about error
correcting, smoothing etc

There are six sensors; each part of the cell connects to one of the legs; if the
sensor detects light, it sends it to the cell bridge.

Kester Clegg: How does light influence the cell phase?

This uses a regular anti-phase; the chaos phase changes the robot direction.
The system is not stable for a long time, but light input influences change of
state.

2.3.3 Julian Miller: Evolution in materio

Simon Harding and I are using computer controlled evolution to change the
properties of a physical substrate, and thinking about methods for programming
the materials of computational substrates. This raises questions about how
to get non-quantum domain matter to perform computation at the molecular
level. The laws of physics do computation for us, but how can we use it for
general purpose computation? How can we emulate what natural evolution has
achieved?

We define computation in a similar way to the earlier speakers. We can
supply data input via physical signals to a piece of material; controlled physical
signals can alter properties of material to get outputs that can be used, via
molecular interaction. We use computer controlled evolution, details in pro-
ceedings.

Liquid crystal is used, because we can manipulate its properties as required,
and wipe it clean between runs. In searching for a solution, millions of con-
figurations are tried, so it is essential to be able to clean the substrate easily
and impose new configuration; this limits what materials could be used. Liquid



crystal is good for experimentation, but is not necessarily a solution to molec-
ular computation; we could use these techniques to manipulate suspensions of
nano-particles etc.

So far, we can apply two square wave signals to an electrode on the liquid
crystal display and evolve configurations of voltages that output high for one
frequency and low for the other; these signals are used to control a simulated
robot in real time.

The motivation comes from Adrian Thompson’s FPGA evolution. We wanted
to see if we could evolve circuits in liquid crystal; in fact, the evolution is easier
in liquid crystal (ie it takes fewer evolutionary steps that Thompson’s FPGA
evolution).

In the robot control simulation, one PC controls the frequencies; another
simulates the robot movement according to the responses, It is fairly fast to
evolve the controller, and some controllers generalise, controlling the robot nav-
igation through more than one maze.

We can also implement boolean logic, to convince doubters that conventional
computation is possible, but it is clear that this is not the best way to tackle
digital computation.

A recording of four simulated robot runs was used to show the evolutionary
stages of the controller.

Despite some very good solutions, sometimes the controller displays some
apparently dumb behaviour; this arises where the context limits the signals
that are detected.

How does the liquid crystal remember the strategy being evolved?

A PC provides the voltages to the liquid crystal; these represent the program
that controls the robot; we then mutate the voltage configurations — so the the
memory is on the external PC not in the liquid crystal.

Martyn Amos: What properties make liquid crystal better than and FPGA?

Many, but we don’t yet know the key ones for computation. We want to
find a way to systematically discover what computation is possible in unusual
materials, to short-circuit inspiration-based research.

Richard Overill: liquid crystal remembers shapes?

Yes, but we’re not using that property; molecules do the same thing under
same inputs.

Andy Wuensche: If you do same simulation twice, does the robot take an
alternative path?

If we keep reapplying evolved voltages, there is a tail-off in the ability to
complete the task. However, it is easy to evolve a new solution; this takes less
than a minute.

Andy Wuensche: Is it susceptible to tiny changes in starting conditions?

No. There’s a lot of noise in there already, so solutions are often general;
even the absolute voltages vary within parameters.

Chris Haragan: how is the navigation achieved?

There is a map that simulates chemical diffusion; this determines how hard
it is to reach locations on map. This give a fitness function and the required



control.

Tim Clarke: what happens if you change the crystal?

Fach solution is specific to a particular crystal, but could easily evolve an-
other solution on another crystal. Similarly, having trained a crystal, if you
then apply lots of other programs, the original program of voltages no longer
works, but the crystal can be retrained quickly.

2.3.4 Jonathan Mills: extended analogue computers (EACs)

In 1993, Roubel came up with the extended analogue computer (then died).
There had been doubt that an EAC could be built; in fact, like a Turing Machine,
the full generality is not implementable, but we can build a bit of it. The EAC
still looks similar to early models (1995): conductive plastic with integrated
circuit connections. Computation can alternatively use gelatin, cultured tissue,
or other conductive or semi-conductive material. Our EAC can be run over the
Internet from Indiana.

We are working on proof of machine logic, a Lukasiewicz logic that allows
proof of all the elements (not conventional maths proof).

Our stating point was morphogenesis. Analogue computers don’t reproduce
accurately, perhaps this is nature’s own non-cloning theory? The EAC can put
things together, illustrated by student experiments finding letters in butterfly
wings and vice versa.

The EAC has a universal sheet. The fastest is a silicon lattice — we don’t
know how it computes, but we know how to perform input and output. This
EAC can solve partial differential equations in sub-nanosecond time. The plas-
tic sheet does it in microseconds, and gelatin in milliseconds. These are two-
dimensional partial differential equations; we could do n-dimensional partial
differential equations with connected machines. Roubel’s original paper foresaw
unlimited dimensionality (including non-integer dimensions). In this way we
can compute image diffusion. Essentially, we are computing with physics.

We are working on the shape of smell (for US homeland security). The
research uses a scent characterisation model from perfumery and aromatherapy,
and derives a classifier for each smell. Reusable chemical processors can be used
to react to smell and record its shape. We are now working on sensors. This is
a cheap technology; we could embed it in walls, giving intelligent walls that can
smell.

The EAC on which some of the student work is conducted was illustrated as
a bucket containing Jell-o and salt, containing a three-dimensional lattice of 27
connections; this solves three-dimensional partial differential equations. Possi-
ble applications include data mining through Jell-o to match three-dimensional
shapes.

Every digital computer has an analogue one within it trying to get out, and
vice versa.

EACs can be used for image rendering, using multiple sheets with recurrent
connection. The functions are configured manually or digitally, using evolve and
replace, but configurations are potentially programmable. We can do absorption



and reflection, and are now working on diffusion. When finished, this EAC could
compute arbitrarily large renderings.

Julian Miller: How is the EAC programmed to allow solution of partial dif-
ferential equation?

A vector of bits is programmed to be active or not. There is a correlation
between each problem and the system to solve it; this means that GAs can
find solutions quickly. However, the correspondence required by GA approaches
breaks down on multiple sheets, due to feedback. Their programming is an open
question.

Sam Braunstein: Is the medium passive, or is it actively changing its prop-
erties?

The medium doesn’t change, but the functions and feedback change. Power
is micro-amperes for silicon, and milli-amperes for other media.

Aaron Sloman: The EAC website limits what can be done?

The website has been configured so that you do something interesting, from
our perspective not yours, the visitor. We want people to try anything, and
when we detect something of interest, we will work with you to take it further.
The website is on Bryce Himebaugh’s area, http://www.cs.indiana.edu/cgi-
pub/~bhimebau/eac.cgi.

2.4 Panel discussion

Andy Adamatsky: Could the invited speaker comment on the panel presenta-
tions?

Sam Braunstein: a lot of the schemes do analogue-like computation; this
is powerful in some circumstances. Naively, this approach might be good for
approximate calculation, but noise accumulation causes problems. It is thus
perhaps best for niche applications requiring low precision — you would not use
them for completing tax returns.

Paul Marrow: how do these approaches fare in terms of durability and porta-
bility?

Julian Miller: They give us time. These paradigms are no more outlandish
than transputers when they were first introduced, and the initial perception is
similar.

Aaron Sloman: for many of these devices, you could grow or evolve some-
thing, but not copy and distribute it. However, if the evolution uses a GP, one
could copy the program.

Jonathan Mills: you can’t clone device when computation embedded in de-
vice; can’t clone computation itself.

Julian Miller: It is not usually a problem that the devices are not identical;
every device does approximately the same thing.

Andy Adamatsky: molecules are very stable over millions of years.

Aaron Sloman: ...but humans are made in a very precise way

Andy Adamatsky: Life uses non-linear functions that we can’t reproduce or
mass produce; proteins use non-linear effects on thousands of atoms.

10



Sam Braunstein: It is clear that these types of schemata wont replace desk-
top computers for their niche stuff. However, ubiquitous computing will have
computation with everything in an infrastructure that could well exploit these
for smart objects.

Jonathan Mills: IBM and others are interested in wet stuff because of speed
— physics-based simulation and rendering in games is a key potential use of fast
partial differential equation solution. It is interesting to ask Microsoft what it
would be able to do, for example, if it had a partial differential equation solver
like this.

Rob E Smith: Cinematographic animations and special effects, in films such
as Troy, employ physicists and finite element analysis etc to try to stop the effects
looking unreal. Cinema needs to look right; it needs this sort of imprecision to
make it look real. Inherent variation or randomness is definitely a feature not a
bug in this domain.

Jerzy Gorecki: is the randomness of the same form as nature’s?

Jonathan Mills: it is not algorithmic randomness; it passes spectral tests,
but this is still an open question. Analysis of the partial differential equation
solver predicts the same types of correlations as nature; this would be easy to
test. In fact, it would be interesting to see if one gets the same results on all
these approaches; statistical analyses would be easy to do.

Geoffrey Canright : Does the fact that there are no subroutines in quan-
tum computations mean that there can be no modularisation? This might also
apply in the other analogue form — modules have precise interfaces, which is
important for constructivity.

Sam Braunstein: In quantum computations, some limited gluing is possible;
this may be a big problem for the design of more complex algorithms, but we
don’t yet know if it’s fundamental. We can use other languages for thinking
about computation, such as fixed points. The more significant problem for
analogue design is noise accumulation over iterations.

Jonathan Mills: with students, the modularity issue constantly arises; sub-
routines are primarily ordered by time, but students must organise spatial sub-
routines to find an answer. Computer scientists are thinking about it wrong.

Geoffrey Canright : classical divide and conquer, analysis testing all break
down without modularisation

Sam Braunstein: we can simulate quantum computation, but that does not
give the speed-up; we don’t want to just repeat what already been achieved.

Rob E. Smith: engineering divide and conquer is an illusion; all sorts of
couplings are hidden. We don’t need crisp boundaries.

Jonathan Mills: divide and conquer spatially is applicable to CAs.

Chris Haragan: Quantum computation focuses on the quantum effects of
particles in a system; analogue focuses on behaviour in a not-quite-constrained
fashion; both have the random/continuous property, so can we have a focus
change between the two and quantum precise results?

Sam Braunstein: continuous quantum variables have been a success in quan-
tum protocols. All current quantum computation problems are inherently dig-
ital at the moment. Alternatively, we could use qubit store and continuous

11



variables to perform communications — lots of hybrids are possible.

Jan Kim: Regarding non-clonability, is imprecision a way forward, and can
it be formalised beyond “it looks right”?

Jonathan Mills: answers exist related to domain of generation. You can
measure using a Lipschitz metric where small perturbations propagate to small
changes; this is implicitly related to the physical basis of computation.

John A Clark: There is a sense in which modularity is always an illusion
— we believe we see modules when we understand a structure. Quantum com-
putation offers way points, though we don’t yet understand these; they could
form modules if we understood them, and then we could evolve a suitable un-
derstanding of modularity.

Irene d’Amico: in relation to quantum decoherence, there is a theoretical
partial solution under error correction. In analogue computation, is there a
theoretical equivalent solution for noise accumulation?

Jonathan Mills: There are different approaches to noise tolerance; the model
“decoherence” can be plotted on a binary tree, with noise tolerance greatest at
the root. What we know about analogue systems is that they are robust —
you can blow holes in a system and it still computes. Although we don’t know
the relationship between physical computation and the domain of generation, it
still works.

GianLuca Tempesti: In modern digital circuits, a lot of the redundancy has
been removed; in these analogue systems, a lot of redundancy exists, and this
s causing problems of scalability; redundancy implies that the systems can’t
scale down very far, and the absolute limit would be where the analogue unit of
computation becomes a single electron.

Jonathan Mills: Because of the redundancy in small particles, failures are
very small; results can be interpolated. EACs do not scale easily, but reaction-
diffusion machines can be very large.

Klaus-Peter Zauner: noise at a molecular scale can be used to drive things,
but need to predict what happens at any instruction, because programming re-
quires determinable responses. Chemicals have many side effects so prediction is
hard; humans try to impose precise logics giving inefficient machines. Reusable
structures and reusable evolutions are useful.

Geoffrey Canright: we need a different way to think about modules

Julian Miller: divide and conquer doesn’t break down, it just varies.

Klaus-Peter Zauner: evolution does divide and conquer.

3 Session 2: From Classical to Non-classical

3.1 Invited Speaker: Luca Cardelli: Abstract machines of
system biology

An introduction to systems biology, focusing on the information processing as-
pect.

12



A cell uses energy and materials to produce more cells, copies of itself. Infor-
mation processing is important to survival, so what are underlying programming
paradigms? A cell has a lot of structure, but we need to understand the func-
tional architecture.

A toolkit view of cell components reveals regular composition to complex
systems such as DNA, which is constructed from nucleotides; all proteins are
built from about 20 building blocks.

We can identify a gene machine, a protein machine, and a membrane machine
(there are also sugars; but they are not covered here). For each, biologists
have notations to describe their understanding. Each bio-chemical machine has
computational power under its own principles, but all the machines interact
with each other. We need to understand multiple computational paradigms and
interactions.

Protein machine:

Biologists use cartoons to explain the shape-matching of proteins and en-
zymes. These model the flipping of boolean switches at the surface that allows
configurations to evolve. A cartoon summarises a lot of chemical interactions
in a very abstract way.

Networks of proteins are very complicated. Proteins are very precise struc-
tures built from amino-acid sequences; they form the basic units of the machine.

Kohn introduced molecular Interaction maps, notations to show how pro-
teins interlock and how the switches go on and off. Kohn maps are used to
construct circuit diagrams for protein interactions (for instance, the p53 pro-
tein). One major diagram summarises hundreds of pages of research, and is a
good abstraction of complex system.

The protein machine instruction set comprises on-off switches and attach-
ment points. Changing either the switches or the attachment points changes
the operations that are available.

What is the software to run on this instruction set/hardware? Kohn maps
are too static for true behaviour models. Various formal or dynamic descriptions
are used. Examples include diagram summaries followed by solution of partial
differential equations or process calculus; here the formalism just captures the
diagram contents. We can simulate the protein machine to see its behaviour.
(MAPK), observing, for example, digital switching behaviour emerging from
the smooth behaviour of the components — the MAPK cascade happens across
molecules; it is a molecular switching process. In effect, we have synchronised
bio-interaction.

Gene machine:

The gene machine presents asynchronous bio-interaction.

In this machine, we consider DNA, messenger RNA and proteins. Analogue
proteins arise from digital DNA; the known mappings are one way only.

The gene machine instruction set comprises the gene, a long string of DNA;
DNA has an output region with protein to bind to other genes; input is achieved
by the inverse process. The instructions include stimulators and inhibitors. In
scale, E.coli has 1Mbit of genetic code; yeast (which has nuclear cells like ours)
has 3Mbit. Humans have gigabits.

13



Biologists’ notations show linkages among genes. Again these form circuit
diagrams, showing genes as gates; there is a lot of feedback in these models.
Biologists use a different notation for the gene machine, and a different pro-
gramming model based on message sending.

The gene machine programming model is not like conventional computation
— there is a fixed output, which is not a true function of the inputs; there is
inhibition, so it is not a petri net; it is not communicating sequential processes,
because the machine has feedback to avoid self-deadlock; it is not message-
passing because the messages have behaviour; it is not data flow, because the
loops that emerge would deadlock a data-flow model. A better characterisa-
tion is of stochastic broadcast (spam) with stochastic degradation. Could we
program in this model?

The biologists again have lots of notations, including gene gates and circuits;
simulation captures alternating signal patterns.

Membrane machine:

The membrane machine is a Turing complete model of computation. This is
illustrated by an animated model of the sequence of dynamic entry and secretion
of proteins.

Again biologists have their notations, using arrows, static representation of
a dynamic process (like state charts), fusion and fission of membranes.

The membrane instruction set captures the ways in which membranes change
state. These are defined using the terms mate/mita, drip, bud, exo/endo, pina,
phaga. Membranes wrap around, divide, merge etc., to transport proteins as
required. It is fairly easy to formalise the instruction set in two dimensions, but
rather more interesting in three dimensions.

Local molecular machinery in the membrane does the operations.

The algebra is nice; it is compositional. These composites are observed in
reality.

For the membrane machine, biologists have fewer notations; one possible
approach is Cardelli’s bio-ambients.

Membranes can run algorithms. For example, cholesterol exists outside cells;
inside the cell there is a vesicle that can degrade cholesterol, but cholesterol is too
big to pass through the membrane. Instead, proteins bind to the cholesterol and
trigger proteins on the membrane. This triggers the instruction that split off a
bubble, for transport into the cell. The receptor protein is detached by merging
with a vesicle that splits off receptors; the remaining clean vesicle can merge
with the degrader vesicle. This program includes concepts similar to stacks,
iterations, loops etc, and specific goal. The operation uses millions of atoms
and looks wasteful. Many other operations exist, including viral reproduction,
protein production and secretion etc.

So, from an information processing viewpoint, we are looking at many com-
putational abstractions, each with its own models, of different size and speed.
The protein machine operations are very fast, gene operations take minutes
or hours; membranes compute in minutes or less — for instance, neurons fire
through membrane merges.

14



Stochastic behaviour happens because nature is stochastic. A biological sys-
tem can be simulated by deterministic or non-deterministic differential equations
— stochastic equations cause the system to fluctuate, deterministic ones case
it to stabilise. Both have a fixed point, but the deterministic one stays there,
whereas the stochastic one may be bounced off the point, when it will follow a
trajectory back on to it again.

A lot of experimental data is being generated, but biologists lack ways to
describe what they are finding. There are languages that can be adapted, for
example, 7 calculus and process calculi, but perhaps there can be an underlying
integrator or integrators to represent all aspects.

3.2 Questions

Wolfgang Banzhaf: what is the role of transport in abstract machines?

Membranes transport material; vesicles are cargo transporters; proteins sig-
nal to the outside environment or bring things to cell surfaces. A protein is
decorated with sugars, iteratively in different configurations — the result is
structurally significant. Transport is an assembly line accumulating with pro-
teins.

Jerzy Gorecki: There are big differences between deterministic and nondeter-
ministic systems, as in, for example, non-linear chemistry. Biological systems
are made of small number of types; we need to consider the mass action dynam-
ics of chemical reactions — these need a lot of types of molecules, but only a
few types are in each sort of cell; the chemical equations are for average concen-
trations, so the results obtained for chemistry with a small number of molecules
diverge from the standard results..

Classical computing has hit similar problems. Here, the algorithms are used
for stochastic small-scale behaviour, smooth behaviour.

Jerzy Gorecki: Even for model parameters typical of biology and a few hun-
dred molecules, there may be phase transitions, bistables etc seen for larger num-
bers?

Many recent papers in physics and chemistry emphasise the importance of
stochastic processes at a molecular scale, sometimes with noise to amplify sig-
nals.

Christopher Alexander: In the models, objects and operations are different in
scale. Can you build a simple model with all these things going on as envisaged
and run it?

There is a trade; it depends on abstraction levels. For example, take viral
infection of cell with membrane and molecular operations. You could model this
atomically, but it would be hopeless. However, at a molecular level, you have
a program that could be run. So, you need to pick the abstraction level that
is suitable. Differential equations were said to be not useful because we cannot
handle the required large numbers of them, but conventional software handles
lots more code, so there must be ways of representing systems that would work
computationally.

15



Christopher Alexander: [a question relating to Shapiro and finding other
notations]

This is illustrated comparing an example of the normal chemical formulae
for reactions and one of the new notations — Na + Cl in chemical formulae
focuses on reaction. In a dynamic formalism such as petri net, the focus is on
transitions. The chemical view explodes as the network of interactions grows;
it is not compositional. Instead we want to represent a system in a dynamic
style that shows what the chemicals can do under different stimuli etc. This
can also show where synchronisation is needed, and identify common transitions,
divergences and convergences. The diagrams translate to a text process calculus.
All three are the same model, but represented in different ways.

Aaron Sloman: The impression is that biological structure is crucially im-
portant at all levels; by contrast, bio-inspired programs operate on wvectors of
numbers, not changing structures. Again, biological structures are inherently
three-dimensional but the diags shown are two-dimensional, which constrains
the operations modellable etc. Are there crucial three-dimensional aspects that
the models lose?

Yes, we do need to capture these things. For example, the nuclear membrane
is structured as two spheres connected by holes; it is a highly complex structure
that can’t be represented in two-dimensions. Every time a cell splits, the division
must replicate the complex membrane structure — how do we represent that?
We still need new notations.

Julian Miller: Could you make predictions that biologists can validate?

We need to validate out models; prediction is one way, but is rare. Biologists
use post-diction (predicting the past), but this is also hard. There have been
some small successes but no breakthroughs. We need to watch the biologists’
ways of recording things then compare these with out formalisations by running
through the process; if we then encode what biologists know, we can iteratively
validate our models. Predictions will come eventually.

Colin Johnson: With regard to biological structures, are there tools for doing
process calculi? will they answer biological questions?

There are many useful things — simulation works; program analysis is useful,
looking at reachable states, and who can encode whom. Model- checking for
hardware and software can be used to ask interesting questions about necessary
step points between states.

Colin Johnson: model-checking questions about temporal properties is likely
to be useful for biologists.

This sort of research is now appearing in conferences; stochastic model check-
ing would be even more useful.

Richard Overill: spaghetti vs modular programs.

Jan Kim: NaCl comprises independent ions, but HoO interaction is harder
to model and analyse, because the components are not independent.

We need the process calculi as well as the process automata; we can’t rep-
resent all the steps graphically in very dynamic behaviour.

Jean-Louis Giavitto: Does the asymmetry in descriptions cause problems?
It’s in the calculus not the chemistry. Proteins are complementary shapes. A

16



model of binary interaction is an amazing accident.

4 Panel, chair Cristian Calude

Panel: Samson Abramsky, John Clark, Peter Welch

4.1 Samson Abramsky: Conversations in NSC

Non-classical computation is starting to work with other scientific disciplines;
information flows in both directions, with unpredictable outcomes. For example,
the interface with physics is promising things that cause us to rethink basic ideas
of computer science such as processes, information, and time-ordering. These
have been talked about in concurrency, but now we need to relate them to
physically realised systems. Luca’s talk was doing the same sorts of things re
computer science and biology. We could consider concurrency theory as discrete
physics — Petri and Lamport both have papers that are explicit in this area. In
the analogue computation discussion, we are still using computation to process
output from input, but with the Internet we have a wider idea of what we can
use computers for — the Internet is not computing a function; process calculi
express more general computations than mapping inputs to outputs.

Information is physical but physics is logical.

In relation to modularity, which is closely related to compositionality, we
have compositional descriptions; can we make chemistry (Luca) and physics
compositional? Because quantum computing is re-examining quantum mechan-
ics from a computer scientist’s viewpoint, we can see how computing tools can be
used to make structured and compositional quantum models — entanglement
and Bell states — to encode correlations among spatially separated systems.
This opens a way to compositional tools of computer science, through, for ex-
ample, teleportation with classical communication — two classical bits performs
communication of much more quantum information. The models exploit corre-
lation by measuring the particle at one end of the system causing the “collapse
of the state” of the system in the target; the measurement outcome is then
passed to the collapsed end to restore the state. The literature is impressive —
matrices and calculations — but it is not clear what is going on. Questions used
in computer science would be useful — what are the abstraction principles, the
high level languages? How can we build descriptions of protocols? etc.

Looking at bringing in types in an appropriate way to structure descrip-
tions of physical systems can provide compound structures, different possible
outcomes, and even parallel worlds! In a consistent way, we talk about the key
feature that uses the outcome of a measure to influence a subsequent computa-
tion — measurement-based computing to address fault tolerant computation.

Category theory provides a logic of calculus for the quantum work. Some
forms of functional abstraction fall out; some notion of modularity or subroutine
becomes apparent, but it is not clear if this helps us to build more complex

17



quantum algorithms. Richer notations rather than just circuits may help. No-
cloning puts us in a linear or resource limited context.

There is a nice algebra for the quantum information flow from entanglement,
and a nice visualisation. This is an algebra of compositionality, which works
something like straightening piece of string. The algebra can be thought of
logically.

(unidentified questioner): How are these notations different from those of
Louis H. Kauffman?

They are similar to the diagram notation for tensor categories, but not con-
cerned with knots and overlaps; there is a different purpose but similar struc-
tures. Another point of doing the work is to look at the different sorts of
structures that emerge, in the same way as Luca Cardelli described. We are dis-
covering natural relationships. This leads us to observe that apparently different
phenomena now seen to display similar structures. Compare this to the ana-
logue paradigm — we build up systems by parallel composition and feedback;
the same holds here, but we add polarities and reversibility, the extra structure
of complex numbers and conjugation and reversal in time. These are character-
istic of the complexity of quantum computation, but influence a compositional
treatment of analogue too.

Sam Braunstein: what about multipartite systems?

The primitives need defining. Systems with many parts and complex wiring
can be studied; there may be primitive general behaviour that can’t be ex-
pressed, but we have not found a good example of what can not be done in the
language.

Cris Calude: You said that the formalism may not lead to new algorithms. By
implicit analogy, you must expect understanding from using such an approach.
A journey is like a challenge to understand the world of info processing, and not
simply the goal of designing new computer; this will be a side effect only.

Yes.

John A. Clark: protocol analysis in a logic language can be used to analyse,
but another form of proof is to write a program in a suitable programming
language; the same is true here.

Jean-Louis Giavitto: In quantum computation, simulation can be done on
a classical machine, so code that would run in polynomial time on a quantum
computer is no longer polynomial. Where is the fundamental complexity that
removes polynomial time characterisation?

Sam Braunstein: This was Feynman’s first focus, and was taken on by David
Deutsch. It involves a path integral of Schroedinger equation, a huge amount
of calculation. When there is evolution in time, there is exponential growth in
calculation over time. Feynman reasoned that there was no reasonable hope of
a classical simulation of a really complex quantum systems, but a system based
on quantum mechanics could simulated efficiently.

18



4.2 John A. Clark: trajectories and other side channels.

Cryptography entails trying to find what others know, not finding new things.
Smart cards, for instance, perform encryption functions. The maths take on
cryptography is as a black box and a key; this has been the traditional view for
at least a century [libellous statements about group theory mathematicians].
However, external relations exist; if we compute a function, the computation
does work and consumes resources. This led to spectacular attacks in the 1990s
from looking at the physics as well as the computation outputs, for example
Kocher’s timing attacks, Bellcore’s differential power analysis, and various forms
of physical fault injection.

Ideal implementation don’t have faults, but computational dynamics, or the
way that you do it, leaks information; the leakage channels are known as side
channels.

Search (as used to factorise or crack keys), for example, can be done by
simulated annealing. If you treat the system as a black box, then the search is
only guided by results; it is a waste of resources. If you open the box, and, for a
problem p, try to minimise cost function, you can watch the search trajectories.
One run may not help much, but if you look at set of trajectories from repeated
searches, then a lot more information is available. So, we need a less half-hearted
approach to search heuristics. For an annealing algorithm, you can watch as
much as you care to instrument.

Turning to fault injection, evolutionary computing tries to solve a problem.
We could perturb the problem; try to solve different problems and then solve
mutants. By watching the trajectories we might be able to discover things
about the family of solution that relates to the original problem. We can do
some big mutations and look at the solution distribution to construct a solution
to original problem.

The Perceptron problem is NP-complete. Algorithmic complexity analysis
cares only about the worst case, but we consider the current case. Essentially,
the problem has a public matrix, and we must find a secret vector that produces
a given solution histogram. We run simulated annealing and watch it happen-
ing. A timing attack reveals that some bits stick early, and that these are
fundamental to solving the problem — the ones that stick early have a reason-
able probability of sticking at the correct value. However, some that stick early
are wrong, so we can perturb the problem and look at the average properties
of proposed solutions. No direct attack has yet been evolved for these crypto
systems, but indirect attacks such as this do work. Commonality is probably
correct. The technique works best on mutants not on the original version of the
problem! The solutions counteract biases in one problem. Note that an attack
that solves 60% of the bits makes rest easy to crack.

Lessons: patterns emerge in repeated runs; move from black box analysis to
white box observation to get information on the search trajectory; look at the
statistics of results; look at related problems. Cryptographers spend thousands
of years and countless MIPS factorising a number by mathematical approaches,
but are not yet prepared to put any effort into heuristics. Profiling can generate

19



countless examples at will, to learn features of a search process and of the
information being sought.

Susan Stepney: In relation to bio-inspired techniques, real systems use much
larger number than we do?

We use numbers — a billion runs of an annealing simulation might be used
to crack a key; vast power should or could be used. A problem engineered
against algebraic criteria can be attacked by seeking structure in things that
were engineered to reveal none to a different form of attack.

Jan Kim: molecular level investigation of biological systems also find it hard
to conclude what’s going on from a few measurements. In real biology, we may
have to destroy the system to analyse behaviour. What criteria are needed for
side channel attacks, and can bio-systems have side channel attacks?

We rely on engineered infeasibility. If a system is provably secure, it probably
is not secure.

Richard Overill: How does this relate to the work of Bond et al at Cambridge,
looking at hardware engineering?

This is logical; they do hardware tracking as well as fault injection, hardware
timing attacks. Clearly, this is related but they do it in hardware.

Jonathan Mills: observed bit patterns change dramatically between answers
that are close to correct and those that are far from the right answer — have
you any observations on intermediate forms?

That’s why these problems are hard. A small change in cypher code may
take you far away from the solution. But every cost function achieves something;
bizarre cost functions or even arbitrary ones. If you work out a correlation with
the secret, it’ll reveal something even if you don’t know why.

4.3 Peter Welch. Barriers, mobiles, semantics and platelets

Very tiny, very fast, very many. Concurrency helps and is fun. Systems of
networks of communicating processes feel right... Luca Cardelli’s last question
and answer go this way; the example of Na and Cl is nice; there is something
there that we ought to get a grip on.

We need simplicity; concurrent systems should simplify things for us. Cur-
rent practice views concurrency as making things more complex, something that
is only used for performance reasons. We need to get out of this mind block.
We want rich structures of dynamic communicating processes responding to the
environment and their own agendas.

Over ten years, we have developed libraries, toolkits and languages to cap-
ture ideas from process algebra — processes, communications, mobility, location
awareness and computation that takes place only among local interacting pro-
cesses. occam comes from the old transputer world; very fast computation but
very static. We add 7 calculus semantics to occam, with the aim of develop-
ing new process algebrae amenable to every-day use by engineers. We can give
this to first-year undergraduates, who can use the language without training,
programming Lego Mindstorms in a very natural way.

20



We want to build complex systems without complicated programs, things
like multi-level simulations at the level that Luca Cardelli is looking at; occam-
7 offers a possible alternative to his approach.

[To illustrate, a system with occam-7 synchronisation on barriers was de-
scribed.] The barrier equates to a multiway CSP event; we include higher-level
patterns such as barrier resignation. Note that barriers are taken from classi-
cal approaches, but we introduce mobile processes with parallel registration on
barriers; if processes are not parallel, there is a interleaving semantics. Barriers
are used to synchronise the phases of a parallel computation.

Using occam-7, we can run millions of parallel processes [on a single PC]. The
language preserves the safety rules of classical occam and adds new concepts.
The barriers are safe and automatically managed by the way a program must
be written; if the programmer writes it wrong, it does not compile.

[The mobile processes were illustrated for busy and lazy platelet models.]
In the busy model, a CA models the platelets; barriers are used to synchronise
update and display phases. In the lazy model, mobile processes are used, and
only cells with platelets undertake computation in any phase. The barrier acts
as a control on cells’ access to processes, and the barrier can fire new mobiles
via a generator.

This is like Luca Cardelli’s account of biological animations; bumping, merg-
ing, dying are represented simply, with no shared memory race hazards, through
the barrier semantics.

Going up to two dimensions, the platelets have neighbourhood awareness.
In theory, the matrix topology can be n-dimensional and could be dynamically
generated; it could contain wormholes and other features; topology cells may
even have their own agenda. Consider just a plane. Each cell has a two-way
service channel; the neighbourhood is just seeing client ends of neighbours’
channels. Once this topology is connected, it just sits there. Agents are mobiles
that attach to arbitrary points in space. Tail channels for mobile communication
are registered in the cell that the mobile is linked to, so can have multiple mobile
agents on each cell. Mobiles see their neighbours and can grab their channels;
visibility is mutual. If mobiles on neighbours are compatible, then the mobiles
can link and do business.

This is a design pattern; it may or may not be useful, but it is interesting
to look at. The work involves Susan Stepney, Fiona Polack and Heather Turner
and others, and is part of the TUNA feasibility study.

Andy Tyrrell: Twenty years ago, people were trying to move occam into
hardware — what now?

That was one side of occam; here, we are looking at generating processes
on the fly. This is not so easy in hardware. If we stick to static processes, we
can do that in hardware — for example, a group at the University of Surrey is
compiling occamon to FPGAs. Handel-C is like original occam for hardware.
We are looking at dynamic aspects that allow us to do things that were not in
original philosophy. occam is still a good hardware description tool.

21



4.4 Cristian Calude: randomness

Randomness has been touched on by many presentations. Not all the notions
are clear. There are three types:

e pseudo — mimicking randomness in software
e algorithmic — using a notion from algorithmic information theory

e quantum

Imagine a hybrid computer, a PC plus a quantum random processor from
idQ in Geneva — what problems are raised? does the computer pass the Turing
barrier? Many quantum processes do, but they are not interesting here. What is
interesting is whether the hybrid computer can solve a problem that is provably
insoluble on a universal Turing machine. The answer is yes. Feynman’s 1982
paper demonstrates that we can’t reproduce quantum randomness on a Turing
machine.

A more difficult question is, given such a computer, which is more powerful
than the classical theory, what can you do with it? Little is known about what
is possible.

Testing randomness is also part of this sort of conversation between computer
science and physics. The Geneva physicists have applied all possible tests to
their quantum randomness, and get the expected results, but the tests are finite
— what about the infinite situation? We need mathematical tools to examine
this. For example, assume a black box that, for every positive integer, returns
a string of length n that is algorithmically random. A Monte Carlo simulation
gives deterministic result overall, a simple test applied k times — if a composite
result arises, the number is composite; similarly there is a k-times probability
for prime identification. This is based on randomness encoding.

Computing with algorithmic randomness is powerful; does quantum random-
ness have similar properties? So far we only know that it can pass the Turing
barrier. Now, we need to consider the results for other forms of randomness in
a quantum random context.

Do we believe that in ten years we would meet again and be using quantum
computers? The field does not evolve to universality in the way we understand
for Turing machines. Silicon machines are very fast in executing small computa-
tions; quantum computers would be fast in other ways. The PC plus quantum
random generator exists and might represent the future — silicon computers
with add-ons that enhance and speed up appropriate forms of computation.

Sam Braunstein: orthodox quantum theory is that quantum randomness ap-
prozimates algorithmic randomness on average.

Quantum mechanics does not need the probabilities of alternatives. We
believe that there are many hidden properties in other forms of randomness.

John A. Clark: The physical difficulty of calibrating instruments for random-
ness raises issues of how to set up instruments, and the precision of calibration.

Quantum randomness is not new; the important news from Geneva is the
engineering achievement — they produce quantum random streams using light,

22



at matchbox scale. Reliable, mathematical tools help precise measurement. The
von Neumann procedure can be used to sort out slight biases based on looking
at pairs of bits, and filters improve the outcomes of measurement.

4.5 General Discussion

Susan Stepney: several speakers use pictures — as systems get more complicated,
we draw pictures, but we then throw the pictures away and write code. Is there
a way to keep the pictures?

Sampson Abramsky: people are moving into two-dimensional programming
with graphs etc.

Peter Welch: We'’ve never gone beyond two-dimensional pictures; there were
graphical debuggers for some transputers that had three-dimensional fly-through
ability. The maths is important; we must be able to write it down at the end,
but the pictures help understanding. We really need a Linux illustrator. [An
argument ensued about Powerpoint and Open Office.]

Jerzy Gorecki: In relation to the sorts of random numbers, any finite se-
quence can be simulated on a Turing machine; infinite sequences cannot, because
they do not terminate.

Cris Calude: A Turing machine can’t generate an infinite sequence, let alone
recognise one; this needs it to recognise infinitely many random strings.

Jerzy Gorecki: A Turing machine makes one finite random string.

John A. Clark: quantum cryptography is on massive space; projections [on
to lower dimensional spaces| are important; we have limited technology for ex-
tracting projections from large spaces.

[Humorous chat about the ethics of training babies and slime mould.]

5 Session 3: Bio-inspired computation

5.1 Invited Speaker: Przemyslaw Prusinkiewicz: Languages
of Morphogenesis. Modelling and development and
development computing

A historical perspective on science and nature shows logic with nature’s inspi-
ration. New problems generate applications one way and inspirations the other
way. For example, Newton’s calculus generated applications in mechanics and
gravity, drawing inspiration from physics and more.

If biology is the area (cf mechanics), what are the equivalents of Newton’s
calculus logic and physics problems? Is there a need for a maths of biology?
Brenner (1999) says this is the central problem.

23



Phenomenon Computing metaphor note
self-reproduction CAs the first application
neural systems artificial neural networks | also in 1950s
evolution GAs

DNA manipulation | splicing systems Hank and Rosenberg
cell operation membrane systems

Turing stated that equations are too complicated for analytical solution with-
out computers.
Key questions:

1. what computational methods are needed to model the growth and devel-
opment of multi-cellular organisms?

2. Can these techniques inspire new approaches to non-biological problems?

Perhaps we can use traditional methods such as calculus? The standard
methods are not directly usable, because there is a new quality of problems; dy-
namic systems with a dynamic structure (Giavitto and Michel 2001) [illustrated
by an animation of bell mustard growth] — the set of equations for growth
grows over time; the number of variables increases — we also need automatic
interconnection as the model grows.

A key problem is module identification. In a developing system, it is no
longer convenient to use co-ordinates to model system components, because
components move.

Richards and Riley (1937) devised a deforming co-ordinate system. However,
this is not much better for components, because the deformations have to be
mapped to real system co-ordinates.

If we use indices, that is indexed cells, what happens when a cell divides?
For instance, the index sequence 8-9-10 might become 8-9-42-10, which means
that we can’t find neighbours, or could become 8-9-10-11, but then the indices
of cells above 9 have changed, so we cannot use the indices as identifiers.

Weyl referred to the introduction of numerical co-ordinates as “an act of
violence”; here the same applies to indices.

Lindenmayer (1968) proposed a solution: L-Systems are co-ordinate free and
index-free. They are strictly limited to branching structures, but the spirit of
L-Systems can be extended to volumes etc. Essentially, they form a class of lan-
guages in topological spaces for modelling development and other applications.

L-Systems are based on formal language theory. A string of symbols rep-
resent filaments then branching structures; at each update, the predecessor is
replaced by the successor. For example, a natural language string such as ...
this_is_a_car might have a rule to replace is with was. Replacement is by con-
tent not locations, so this gives, thwas_was_a_car. However, we can improve
the grammar by using context, requiring, in the above example, that is has a _
either side. This would have resulted in a correct substitution, this_was_a_car.
Each component is characterised by its content or state and the context of its
neighbourhood. There is also a notion of the space in which operations per-
formed.

24



Parametric L-Systems have parameters that are numerical attributes as-
sociated with letters. The grammar takes the form < leftcontext > <
strictpredecessor > < rightcontext > < successor > [a sample deriva-
tion example was illustrated]

From here, we are able to solve reconfigurable partial differential equations,
including a numerical solutions to the decay and diffusion equation [see the ac-
companying paper]. This allows simulation of diffusion, with relevant boundary
conditions at extremes. The expression of the solution is very compact. We
have not yet included growth, but we can simulate this with a threshold model
(Lindenmayer, 1974, Wolk, 1975). For example, when a cell reaches a threshold
for a particular chemical, it divides. This gives a nice model of continuous divi-
sion, with peaks of high concentration then curves of decreasing concentration.
The model can be used to solve partial differential equations in a growing struc-
ture, but also models a real filament organism, the cell bacterium, Anabaena.
Anabaena has been fully sequenced and much studied, for example, Haselkorn,
1998.

An activator-inhibitor model has also been devised (Wilcox et al 1973,
Prusinkiewicz et al 1996). This uses a mechanism with two substances in cell
and a mathematical model of two differential equations for the two substances.
Simulation shows a growing chain of cells with an activator-inhibitor system in
each and communication by diffusion [nice pictures|; as in real biology, the sim-
ulation shows that some cells almost activate but then revert. The simulation
uses deterministic differential equations, but we could have coupled stochastic
differential equations etc to model more complex cell models with communi-
cations. Note that there is continuous diffusion but the cells have discretised
reactions. The simulation predates the discovery of the gene models in real sys-
tems (Anabaena); this model predicted the since-observed biological variations.

This takes you from genes to phenotypes. A gene network and growing
organism are in a continuous loop, with developments on the arcs.

L-System extensions include realistic biological plant examples. Transport-
ing and signalling (communications) approaches are important for modelling
higher plants, and as we move from cell level to plant module level. In the
familiar L-System plant models we can model signal propagation in higher or-
ganisms (Lindenmayer) — a segment of branch structure signals on a condition
(for instance, if segment x is green, segment x — 1 becomes white), and the
signal propagates through. This is illustrated by a simulation of a plant that
reacts to touch — simulated folding from point of contact.

Many plant signals are hormones. Lindenmayer had a model that showed
how flowering zones move down a plant. I have also working on the mechanisms
for this in real biological systems, with Ottoline Leyser. In the abstract model,
the apex produces laterals; an upward signal propagates to top where it changes
the top segment to a segment in the flowering state. Then a second signal
propagates down, producing more laterals, where subsequently more flowers
appear; as the program iterates, flowering moves down the plant and branching
increases. All the mechanisms are from the program, but we can also use this
to simulate complex interactions between a plant and its environment. For

25



example, we can create pruning to a shape by bounding the space in which
growth is allowed to occur. This forces more lateral growth, which eventually
fills the bounded volume. The results are realistic, as shown by comparison with
the Levens Hall topiary.

Plants are sensitive to light, within the plant mass as well as without. L-
Systems have been used to simulate clover growing under trees. The base is
a light-intensity model described across space, with parameter effects. A seed
germinates in a light area; the rules prevent permanent spread to shade and
cause a change in the form of the plants (long runners, few leaves) in penumbra.
Run as a simulation, the clover performs a periodic invasion of less-lit areas;
permanent coverage occurs only in the lightest areas. Similar approaches are
used to model the response of trees to light in branch-shading, crown shape
etc. These models are combined to simulate a forest, and can be used to plan
planting in forestry, to get ideal forms for industry.

A model of the propagation of sugars in trees is used to predict how the
number of fruit (peaches) affects size.

Bio-mechanics uses non-linear differential equations. L-Systems simulation
is illustrated with a model of a hanging-basket plant, where gravity and tropism
interact to produce a variable balance of downward and upward growth influ-
ences or forces.

L-Systems are a mathematical and computational tool that is still non-
standard; they have many unique features and applications. Some of the other
problem applications are as follows.

Examples from graphics include shape modelling — the dynamic subdivision
of curves, and surfaces. Dynamically-changing structures cannot be computed
by traditional methods. In an affine combination of points, a point is specified
as a linear combination of the weights of other points, as if end points have
attractional masses and the free point moves accordingly. This gives a co-
ordinate free point system like that of turtle graphics... Chaikin’s algorithm
is just one (simple) algorithm for specifying curves from points. It relies on
subdivision: the points are joined to a square, and the edges subdivided to
form an octagon; iteration results in a smooth curve by cutting off all the
corners at each update. Context sensitive L-Systems describe this succinctly,
where the attributes are the positions of points relative to others. A complete
specification in the language for L-Systems (written in C++) is about 10 lines
long; within this, the production rule is represented more or less as normally
written. Another such algorithm, the Dyn-Levin-Gregory construction, uses a
dimension-two context; the interpolation maintains the original points as well as
doing the subdivision. In the L-System language, it is the same length program
as Chaikin’s algorithm.

For surfaces, L-Systems can be used to model cell division and other prob-
lems, including the specification of smooth surface generation.

L-Systems work because they gather information about neighbourhood, pro-
ducing a succinct summary, they then replace old parts by new, using connec-
tions within and between old and new, state and context. The extension to
surfaces requires addressing context on a surface. This uses a mesh traversal

26



on a vertex-vertex data structure with unique vertex labels. Rotation graphs (J
Edmonds, 1960) are used to specify neighbours ordered around each vertex, so
that the definitions of next and previous are systematic. This allows chains of
succession and predecessors to be identified, and allows the extension to surfaces
via paths to neighbours — if we insert a vertex, then we specify new neighbours
and changes to existing neighbours. In this way, a triangular surface can be sub-
divided by three insertions and linkage rules. Repeated application smoothes
the surfaces, and can be used, for example to shade shapes for development of
perspective in three-dimensional graphics.

Spatial L-Systems work can simulate crack propagation by subdivision. A
finite elements method is used for distribution of forces and deformations. Nor-
mally, fractures are hard to simulate, because the tip actions are critical and
require a locally-fine mesh, but to provide a sufficiently fine mesh everywhere is
not computationally viable. In the model, dynamic subdivision takes place as a
crack spreads. The model assumes two linked surfaces, or layers in tension (un-
der drying), so that cracks appear as one layer contracts relative to the other.
Areas of high stress relate to areas of finer mesh, to model in finer detail at
the crack ends. This has applications for modelling mud-cracks, bark patterns,
and any other surfaces where the superstrate expands at a different rate to its
substrate.

The L-System work adds to the table of phenomena and computing metaphors:

Phenomenon | Computing metaphor
development | L-systems and beyond

5.2 Questions

Gianluca Tempesti: In applications of L-Systems, we sometimes know the final
system and want to find the rules that generate it. This can’t usually be done
by systematic derivation?

The problem of automatic inference of systems was identified early on; it is
a problem of wishful thinking. To create a model, you need good understanding
of the hypotheses of the system and a convenient expression. L-Systems allow a
convenient expression and tests, but you can’t automatically get to best solution.
To find any underlying system is a complicated problem in biology — Nature
journal would publish even partial results in this area — so it is unrealistic to
expect any automatic mechanism. L-Systems also give a way to capture the
results of biological exploration and to combine the various bits of biological
understanding into systems. For example, we are currently looking at spiral
organisation in plants, using a new study of molecular basis. We need to know
if the theory produces the structures that are predicted, and to fill in any gaps
using simulation.

Kester Clegg: L-Systems are limited to branching systems, but are there any
other limitations?

The open challenges for research is more interesting. Luca Cardelli, yester-
day, showed how existing tools were great for bits of biology, but not the whole.

27



When L-Systems were devised, we did not envisage the computational resources
available in the future, but now we see that L-Systems fit in well, and chal-
lenges include extensions to new structures, including three-dimensional biolog-
ical structures, and to larger systems expressing physiology and bio-mechanics.
Separate models of each part of such systems exist, but it is not clear yet how to
combine them. Yesterday’s discussion of the division of systems into modules is
relevant. Perhaps an elegant solution is to use aspect programming — instead
of dividing by elements, divide by aspects such as bio-mechanics, transport of
sugars etc. We need to work out how to program these independently and then
put together at the end.

5.3 Panel, chair Andy Tyrrell

Panel: Jon Timmis, Martyn Amos, Wolfgang Banzhaf
The panel was run in the form of four short talks and then questions relating
to the whole of the third session.

5.3.1 Andy Tyrrell: Bio-inspired architectures: hardware

[The ability of some natural systems to self-repair was illustrated with an ani-
mation of a gecko losing and re-growing a leg.|

It would be nice to have self-repair in hardware. We work on intrinsic evolv-
able hardware, where the evolution is all run in hardware rather than simulation
runs being downloaded; the intrinsic evolution is on FPGAs, allowing for on-the-
fly changes. The selection, mutation, and fitness evaluation use about 50% of
the FPGA. A PC is involved in initialisation only. We can evolve simple digital
circuits, image processing, and robot controllers, but all are pretty simple; what
are the possible future effects? In digital computation, we cannot compete —
consider Intel chip complexity. But analogue hardware is much less mature, and
might be open to new ideas. In general, it is not clear that evolvable hardware
is worthwhile, except when things go wrong. For example, in a continuously
evolving fitness, if a fault is injected then the fitness plummets, but it then
evolves back up to a normal level. This also applies if faults are injected during
evolution.

We have developed a Cellular Array model, with Julian Miller. This com-
prises control and execution units in each element, and a chemical diffuser unit.
We evolve the functionality of each unit, such that each array element is the
same at the end of an evolution. We then grow it into the structure, and the
chemical gradient diffuses to differentiate cells. One application is a two-bit mul-
tiplier. In evolution then development with chemicals, we can induce transient
faults into states of system; with no external instruction, the results become
strange but then recover, motivated by the chemical diffusion.

An EU project worked on evolutionary computation hardware, like an FPGA
but with a “molecular” array and router unit. The routers had a distributed
hard-coded algorithm for dynamic routing in real time; there was also reconfig-
uration control. The project developed a chip with an organic subsystem of 144

28



molecules, one router to 4 molecules.

On basis of this work, we can say that evolutionary hardware probably will
not change the future, but it raises interesting questions, especially in analogue
area (NASA). Continuous evolution is interesting — keeping evolution running
to cope with environmental change and provide fault tolerance. We need a
holistic view for real bio-inspired applications such as artificial immune systems.

5.3.2 Jon Timmis, Artificial Immune Systems (AIS)

Immune systems may also not be the solution to the problems. Traditionally,
we have seen the immune system naively as the protector; it is this aspect that
has been taken up as a basis for security systems. In reality, the immune system
is a maintenance process that is continually interacting with systems, preparing,
spotting erroneous states. The computational uses represent a typical computer
scientist’s extraction of bits from biology.

AISs look at immune system ideas and theory (Santa Fe work etc), identify-
ing algorithms to apply to various problems: security, virus detection, data min-
ing, optimisation, robotics — just like the other computer science approaches!
However, the discipline development started in theoretical immunology research
of the 1980s. This identified an interesting system with computation aspects,
and saw the computer scientists and immunologists working together to produce
grounded work on intrusion detection, immune nets and self assertion theory.
From there, the ideas have trickled into many areas.

AIS is now far removed from immunological reality. This is also true of
other bio-inspired paradigms. One way forward is to get out of this reasoning
by metaphor and over-simplification.

Security — which here means intrusion detection — has developed tech-
niques that look quite cool, but don’t really work because they are based on neg-
ative selection, a hypothetical process to prevent T cells from reacting against
self. These very abstract models are used as a basis for defining normal be-
haviour and detecting divergences. It does not work too well, does not scale,
and there is a serious lack of theoretical work. We have now done some theo-
retical work that shows why these systems would not be successful.

Immune networks, clonal selection, clustering and learning algorithms are
all plundered, but all the algorithms are very simplistic.

What should we do to develop these things? What is the embodiment of
biology in context? The fact that an approach “kind-of” works may or may not
be a problem. In reality, the immune system interacts with the hormonal and
neural systems, so is there mileage in looking at these contexts? Should we go
for true interdiscipliniarity, that is, two-way conversation not just stealing.

We need to think about why the immune system is an appropriate compu-
tational metaphor, think about the theory, think about the applications, rather
than just benchmarking against genetic algorithm optimisations. Is there a killer
application? How close to biology should we go? How much richness should we
have? Should we look at cellular computation?

29



5.4 Martyn Amos: Cellular computing, microbes, molecules,
other asynchronous hardware.

The work is done with Alan Gibbons and Dave Hodgson as collaborators.

Computer science piracy on biological notions — John just made the point
that we should not try to unnaturally force biology into the Turing machine
mentality; we should learn and take inspiration from biology in situ. Original
work on bio-inspiration was on molecular systems. Micro-scale storage devices
with bio-operations like sorting strands etc. As in Richard Powers’ novel, The
Gold Bug Variations, it was realised, with the biologists, that there are compu-
tational components as well as enzymes in biology. DNA is not just a minimal
storage medium, as used in DNA computing. DNA carries meaning in its nat-
ural environment; we can harness this, as well as just its alternative-to-silicon
aspect. Can we use natural systems instead of just modelling them, for human-
defined computations?

Early work looked at DNA as the computational substrate, but now we see
cells as a better substrate. The work addresses both this GC7 and the in vivo-in
silico Grand Challenge, harnessing the intricate nano-scale internal machinery
and extraordinary sensing, communications, and delivery capabilities of cells.

In nanotechnology, we want devices that are the size of a bacterium, that
move and take energy from environment, that sense environment and talk to
other devices. We have natural examples of these in bacteria and cells, but we
need to harness them.

In cellular computation, one neuron on its own is no use; billions give in-
teresting and useful behaviour. We can treat a cell as a black box — although
there is a lot of good work on putting human-defined logics into bacteria DNA
by genetic modification, here we just use collective behaviour to do computation.

Cells react to others and to chemical signals. For example, for slime mould,
food scarcity causes panic signalling, spawning, and a long shift by a small part
of the population. Berg observed salmonella in petri dishes forming regular pat-
terns based on their sensing of other cells; this seems to function to allow colony
to search environment efficiently; other patterns give protection by limiting the
number of members exposed to toxins. Further patterns arise though small
changes in chemicals in the medium. We can view these as emergent results of
cellular responses to environmental queues.

Can we simulate the processes that give rise to these patterns, so that we can
generate biological patterns? If we know a pattern (eg Olympic rings) can we
then generate it, perhaps using simulations with GAs to manipulate parameters
in forward runs? We might have in silico experiments to find models that work
which can be abstracted for optimised bacterial heuristics — perhaps we could
derive optimised ant models or whatever. Some research using individual cells
has already been done (eg aircraft wing design), but we want the complexity
that arises from numbers of bacteria.

How much of complexity comes from elements and how much from interac-
tion with environment?

Can we model, can we use models to optimise biological systems, can we

30



scale up from bacteria to ants to humans etc?

Bacterial models as clumps have been studied, as in Ben-Jacob’s multi-
agent co-operation systems based on resource availability and chemical commu-
nication. A three-dimensional model was proposed, exploring how a substrate
structure such as agar affects bacterial pattern formation, including nutrient
spectrum and distribution, response to toxins, and genetic components.

The pay-offs are potentially huge in terms of applications and insights —
microscale scaffolding and deposition substrates for surfaces etc; possible new
paradigm like GAs, ants etc; bio-complexity insights and abstractions.

5.4.1 Wolfgang Banzhaf: getting rid of the program counter.

Work with Chrisian Lasarczyk starts from the recognition that the classical
computer is rigidly organised in space and time. Parts have specific locations
and the program execution depends on these locations. The program and data
are held in the same storage, and the program counter takes instructions in a
defined order, so order essential.

Organic paradigms require a more realistic approach to space and time.
Molecules and noise are not fixed. Molecules meet and interact by being moved
around; it is hard to predict where and when they’ll interact, and the sequences
of instruction execution are not easy to determine.

Nature’s co-ordination is by patterns, key-lock, and recognition leading to
coordination.

In our view, we should see Brownian motion as a positive source of energy
and creativity. We need to find new ways of doing co-ordination based on
nature, to have adaptivity built in at lowest level. We need to accept errors and
creativity and to have new ways to find functions. GP uses fitness functions; we
could apply these to artificial chemistries, then abstract away nature’s features
and get arbitrary objects that can interact. These could then be observed, large
systems of such artificial molecules interacting.

GP is the tool to produce functions based on desired fitness. To eradicate the
program counter, run GP on artificial chemistry — multi-sets of instructions,
and reaction as the execution of instructions. Such systems don’t determine
order, as in real molecular events. This could be implemented in RAM. Simple
breeding of programs moves through linear instruction to artificial chemistry’s
random instruction access; comparison reveals emergent sequences and inher-
itance of frequencies, without the usual GP bloat. The output of artificial
chemistry is related to the frequency of instructions applied (ie chemical con-
centration analogies); key-locks emerge, and parent programs that have random
order crossover.

Evolution of artificial chemistry systems produces similar work to regula-
tory key systems — elaborate data flow paths evolve, connectivity not order is
important.

Discussion points: Is the classical machine paradigm really necessary? In
millions of processes, you can’t do it. Synchronisation is a higher order phe-
nomenon and should be approached as such. Is parallelism more fundamental

31



than serial processing? Are approximate solutions with scalable resolution bet-
ter for human systems? In artificial chemistry, concentrations increase results;
scalability is easy; is hardware evolution the real goal?

5.5 Panel discussion

Geoffrey Canright: Amongst all this self doubt, guilt about stealing from biology,
work on an EU project stealing from biology, one concept is clearly the search
for “nice properties” for engineered systems that they don’t traditionally have.
When we build steel structures, cracks don’t heal, and there is significant ex-
pense in detecting and healing them. So, don’t steal the mechanisms but do take
properties.

Andy Tyrrell: there was a certain planned negativity in the panel. Borrowing
from biology is clearly important, but we do need to keep remembering that the
stuff is borrowed, and to keep going back to the biologists.

Geoffrey Canright: Software systems are traditionally more like steel —
fragile and unable to fix themselves. Unnecessary, intuitively will become thing
of past if we focus on the desirable property of self healing.

Wolfgang Banzhaf: Can we get the features without binding to the mecha-
nisms and materials? This discussion also happens in AI — forget the material
implementation and go for intelligence at the level of symbolic representation.
This is also not a successful approach, because the materials have important
fundamental features. Natural systems are open systems, where as steel is sort-
of closed. Cells continuously reconstruct, structures are dynamic. This is what
makes self-repair possible, these are the low level things produce these high level
properties.

Jan Kim: from a biological background, it also appears the main motiva-
tion is that biological systems have nice properties, and we want to transfer the
mechanisms in the naive expectation of also importing some of the nice prop-
erties by accident. The approach is not guaranteed. The nice properties are
not really understood by any group, but one basic notion of their underlying
concept is that a system would have a model within itself of what it should be.
Could we teach a bridge to know that it should not have a crack and to repair
itself? Biological system self-organise in some ways. If we do a meta-shift, as
the panelists pointed out, importing aims can cause confusion. This is because
things on the formal level can turn out to be very much the same — a neural
network is simply a linear classifier. Other fields find it hard to get in to biology
simply through metaphors.

Marian Gheorghe: We need two-way inspiration; we need to consider deeply.
There is, perhaps, more progress being made in systems biology (via differential
equations etc), but now computing is starting to develop. Luca Cardelli’s work,
L-Systems, biological swarm intelligence experiments. However, if we look at
ant maze navigation optimisation we can see the mistakes. The computational
model is wrong because it forces “ants” to do turns at unnatural angles [90°,
rather than 60°]. For ant navigation, we need a reversible algorithms — nest-
food; food-nest — so we need to look at the biology to guide sensible algorithms.

32



Martyn Amos: the pay-backs are not just one way; not pillaging biology.
The pay-backs to biology come from work such as that of Grzegorz Rozenberg
on applying standard computational models to cilia genome decryption — this
treats the task like a extraction of a file from a tarred zip file, and unpacked the
working genome. The simple computational model is sufficiently complete to
account for all the observed real biological decodings, and represented a positive
contribution to the biologists, who could not work out how the process worked.
They now have a possible explanatory mechanism. Also, Luca Cardelli’s talk
shows some of the things that we’re contributing to biology.

Ottoline Leyser: from a biologist’s perspective, it also feel that it is a one-
way steal, but from computer science. However, the present situation seems
to be at a point where genuine symbiosis is happening among the disciplines...
complicated biological data sets require computational input; computer science
is interested in the data sets for other reasons. A problem is the concern of
mistaken impression of computer scientists that biological systems should be
optimal — they are not and never could be. Biologists want to understand
their non-optimality, but I'm not sure if it is sensible to try to import the non-
optimality into computing and engineering...

Wolfgang Banzhaf: engineers don’t take biology raw.

Rob E Smith: any problem that can be optimised is uninteresting. Steal-
ing is not the problem; the problem is believing our own bullshit. We have
to sell proposals; the marketing veneer is currently “bio-inspired”. The popu-
lar science press [libellous statements about popular science magazines| guides
funders. However, we want real models, principles and theories, and real feed-
back, not dependency on metaphors. I don’t hack cool robots with no useful
generalisations. This is a funding-inspired problem.

Jon Timmis: yes: there is an AIS EPSRC network with various subgroups;
only one is looking at generating good design principles for AIS, rooted in a
mathematical framework. We need mathematicians as well in the interdisci-
plinary pool, and engineers etc...

Colin Johnson: on the space notion from Wolfgang Banzhaf’s talk: we have
ignored physical space in conventional computing, focusing on logical space
and logical organisation of information. We could look at physical models of
information organisation, as in cells.

Martyn Amos: yes. There is some work on social memory in two-dimensional
space — if you line up bacteria, you can’t get anything useful, but if they can
talk to each other in two dimensions, then you do get something.

Przemyslaw Prusinkiewicz: as soon as we have a space-related problem,
conventional computing breaks down. For example, it is hard to model a piece
of paper on a table with differential equations; nature has no problem with
this, but simulation is very hard. Computer graphics has made some recent
breakthroughs. Note that computing space has properties, but empty space
has interesting properties too. Real space properties are hard to reproduce in
computing devices, when space is changing as in a growing leaf for instance,
or when trying to perform computing in non-equivalent space. These are very
interesting things.

33



Aaron Sloman: this point is lost in AI, and especially in vision work. These
areas have lost sight of the fact that vision is about spatial structure and
EMPTY space, how we see empty space. Instead of just looking at object
recognition and general-purpose recognition, vision should look for structure as
well. Affordance — what you see is not just the geometry, but what it is possible
or impossible for the viewer to do in the observed space.

Przemyslaw Prusinkiewicz: we can do very different things with space than
computers. For example, perspective is easy in a computer but hard for humans
(art), but once understood people can do it by hand. However, you don’t have
to teach people how not to draw things that are hidden, whereas it is hard to get
a computer to miss out hidden objects from a representation. mutual problems!

Andy Adamatzky: a huge amount of brain evolution is to do with vision
processing.

John A.Clark: observe that we are here discussing slime mould, not the
other way around. We might ask what is role of human agency? We need to
learn and adapt — the knock-on effect of a tree falling in Switzerland took out
power in three countries.

Klaus Peter Zauner: we currently try to make very formal models; we need
to add in physics to program these systems, like flight simulators that model
flight parameters. We can’t get all the complexity in, so we will still need human
guidance.

6 Session 4: Engineering the future

[Susan Stepney introduced the invited speaker] Christopher Alexander is an
architect with a large influence on software engineering: his Pattern Languages
book on architecture (of buildings) — which is also deliciously socially subversive
— led to the 1995 “Gang of Four” book on Design Patterns. The patterns work
disproved the idea that the only object-oriented concept that we need is class;
we also need higher level structures. However, to date we have only a few
pattern vocabularies; we have not got to languages. More recently, Christopher
has published four volumes on the Nature of Order.

6.1 Invited Speaker: Christopher Alexander, Harmony
seeking computations

I have put a lot of thought in to what architects have done wrong, in messing up
the earth over the last 50 years — how to do it better, and what I can contribute
that’s useful. I have spent 25 years experimenting with a form of computation,
and my intent is to describe where I've been and what I've been trying to solve.

My computation is different to computation in general. It all takes place
in space, in it and transforming it. The computations have a decisive moral
component — they can make things well or badly. To strive after making it well
is paramount. Even biology is less morally relevant.

34



Nature of Order describes experiments and underlying theory, practice and
results; it has taken 27 years to write!

The key idea is that of structure preserving or enhancing transformations.
This is coupled with wholeness, as a structural feature of a configuration.
Wholeness is vital and very hard to describe, but real. I want to show you
that the wholeness is a real feature. All transformations attempt to take one
wholeness forward to another wholeness, growing naturally out of one another.

There have been many comments so far of the form, “how can we describe
X then get an intelligent swarm to build it”. This is ridiculous; we can not
arbitrarily pick a goal and then figure out how to get there. [Libellous statements
about 20th century architects in general.] We need a non-obnoxious way to
introduce goodness into computation; we should always have a positive effect
on people and the planet, using computations that are not neutral.

Harvard Centre for Cognition Studies work looks at the wholeness of objec-
tive structure. An experiment carried out on students takes 35 strips of black
and white areas, laid out on a plain grey background. The students are asked to
arrange these by similarity. There are two types of response. 85% did a sort of
digital-read classification; the other 15% grouped the strips by some perceived
morphological similarity. The second sorting is less obvious and appeared to be
more interesting, so I tried to “train” people so that they would be more likely
to do the second sort of classification. I tried random creative play, which had
no effect, memory and cognitive task experiments etc. The only activity that
had an effect was to show one strip, then to closely-pack the scrambled array of
all the strips and flash the result on a screen for half a second. Then I offered a
nickel anyone who could matched the shown strip. After a period playing this,
the students who produced the second form of classification increased to about
50% of the group. This illustrates that the subject of wholeness is removed
in some sense from our civilisation — these students are of high intelligence,
and good analytical powers. I also did this experiment with mentally-retarded
people and with children, both of whom displayed more of the second form of
classification.

One reason why cities are a mess is that normal thinking is of a building as
an object, whereas in all great and humane architecture, the dominant thing in
the space; the architecture creates, harmonises, and makes space beautiful; the
building is seen as a servant to space; we need to understand wholeness.

Structure-preserving transformation occur in nature. Images show, by a se-
ries of obvious moves over time, a mouse foot forming over three days. Similarly,
a willow-tree bench is created, starting with observation of the trunk of tree —
the latent structure is in the ring at bole of the tree, which is amplified by
adding short stakes around the tree, then weaving to form the seat structure,
and finally putting moss on top. The structure is preserved throughout.

The historical growth of Amsterdam over several hundred years, as revealed
in old maps, is centred on the Amstel River, with successive walls and canals
added in a clear organic growth.

Contrast two images: hayricks in a field in Romania, and wind turbines in
a field in Denmark. As two structures in a field, the hayricks have wholeness

35



of structure. They are kind to the view of the land, they enhance it. Their
presence is non-destructive but bring a new character to field. The wind tur-
bines are destructive, because they break the patterns in the landscape, and
have no relation to the existing structure; they cut across and do not grow out
harmoniously.

One experience of wholeness concerns work on acetabularia (a green algae).
It has been hard to pin down the pertinent characteristics; Brian Goodwin has
done important work on it. As the algae develops, the stalk differentiates, and
a whorl forms. Goodwin observed this and recorded it in a series of diagrams;
these show a hump moving to an inverted umbrella, but there is one flat-topped
phase in the middle. When I saw the diagrams, I questioned whether this could
be how it happened. Goodwin was working on differential equations of calcium
concentration etc; I noted that one of the (diagram) transformations was not
a natural structure-preserving transformation; you can see this with no biolog-
ical background; and I proposed an alternative based on a structure preserv-
ing transformation that I had observed: outside Oxford there is a pre-historic
mound with a ring ditch; this is a more natural model for the change from a
dome to a whorl than Goodwin’s flattening out at the top. Goodwin looked
again and agreed that this was what happened. When I was preparing this
paper, I decided that I should check the structure inside the whorl, and mag-
nified photographs on the Web reveal that there is indeed the bump preserved
in the middle, as inside the ring-ditch — structure-preserving transformations
can help, even without academic insight in the domain.

Consider a certain Tokyo apartment building in Y between streets. The
initial plan just sat the building on the site; this was revised to take account of
the configuration of the streets, giving congruity to an otherwise-uninteresting
building.

Students do experiments on structure preservation. We generally find that
people agree on what does and does not preserve structure. For instance, if we
ask for a sketch of wholeness but give no guidelines, everyone draws something
different, but they all then agree on what does and does not preserve that
structure of wholeness.

Starting from a line of dots, I get students to draw structure preserving
transformations. These can arrive at “beautiful thing”. If we follow this process
in architecture, we get beautiful towns etc; if ugliness arises, it is not that
process. In the paper, I give an account of the construction of Upham House
— every detail is structure preserving.

Consider St Mark’s Square in Venice through its entire 1100-year history.
We can see latency — in the wholeness there is something that the transforma-
tion can operate on. Latency not strongly embodied — the Acetabularia has
the latent possibility of forming a ring from its dome. In St Mark’s Square,
because of the arrangement of structures early on, two latent centres emerged.
The latent centre was embodied by construction of a building, a church, be-
tween them. This changed the latency and started a new cycle on a new latent
structure; buildings make the wholeness concrete (not on the latent centre,
but focusing it). In third cycle, the Campanile was built, focusing another

36



latency. Existing buildings, entrances and routes influence where the latent
centres are. In Venice, the result is a famously lovely place. All the building
follows structure-preserving moves. Twentieth-century architecture could not
or would not exploit this sort of long-term consistency leading to beauty.

So latent centres are part of wholeness and transformation tries to make the
latent structure stronger; coherence is achieved without a master plan. Paying
attention to latent centres and wholeness will produce a coherent structure —
this is not same as emergence.

Look at natural phenomena to check the relevance of this approach. When
people do it, it is a computation; when nature does it it is not an intentional
computation as such. I want to have the approach well-defined so that people
can “just do it”, perhaps using mathematically-assisted intuition. We want a
realisable computation, on any sort of computational substrate, so that people
can do it better. Perhaps it cannot be embodied on a digital processor, but I
think it can be described if one is very smart. I have published enough to share
in the task, but we are still at the start. We need to find how to calculate and
run structure preserving transformations.

I looked at Reynolds’ boids and the characteristic V formation. The flocking
literature is ingenious; there are three rules that turn random birds into a co-
herent flock that stays together, with temporary disturbances. But emergence
doesn’t fit my mind-set, even though I gave early lecture on the growth of order
from small acts... in traditional societies, beautiful structure came from small
events, an early view, architect’s analogue to emergence. So, where does the V
actually come from? Simulations don’t create the V; they give the idea but not
the whole structure. Behind a bird there are vortices; this means that there is
an area with no pull, which is not a comfortable place to fly; so the physics of
vortices says that the V arise to stay out of these vortices. Even a single line of
birds will be diagonal for this reason. This does a lot to the V production.

The V relates to positive space — an artist looking at the V sees that V
birds form beautiful space and straight line ones do not. Can a mathematician
see this?

[Andy Wuensche: is it not a field of vision effect as well; in the V, all birds
can see ahead and can see the bird ahead; it is comfortable space? Yes.]

Trying to make space positive is one of the 15 structure-preserving trans-
formations that I have identified. Take clouds. Fluffy drawings aren’t positive
space; sky itself almost always has blue stuff as positive space. There are ex-
planations to do with vortices and convection physics.

The Somerville housing scheme, for 200 houses on a 5-acre site (Massachusetts)
was a situation where high-density had to be achieved. The site plan plots all
the connections, and latent structures emerge. To achieve high density with-
out being obnoxious, we devised a configuration focused on gardens edged by
buildings.

More examples showing how the reality is created according to the theory.

37



6.2 Questions

Julian Miller (and others): please design our next campus...

Seth Bullock: only one photograph had people in it, though a lot had echoes,
such as access points.

Structures are all achieved with the people who live and work there. This is
crucial. The photos of Eishin Campus in Tokyo show how people move within
the space. Planning had people moving around in the space.

Andy Wuensche: The Denmark towers — is there a way to build wind tur-
bines that does preserve wholeness?

This is a serious problem. I enraged the Schumacher Society over this exam-
ple. It is a novel experiment that is failing from the perspective of preserving
the land. The experiment is important, but there would be a better way to do
it. In principle it can be solved.

Leo Caves: St Mark’s Square — you were describing the development of
static forms, with the implicit dynamics of people flowing through the space and
in and out of the buildings. Could you capture positive space by mapping fluxes
of people?

Yes. To use a drawing as the basis of a building design is nonsense; the
space changes at every step, and you have to be in control, or costs escalate etc.
Design is a dynamic process, as in other talks at workshop. I’'m hoping to help
in the project to rebuild Soweto, working with the people who live there.

John A. Clark: Do you know of any cases where a structure-breaking trans-
formation has been successful?

Are you a post modernist? There are are lots of ways of doing it, but it’s like
planting a daffodil and making it do something funny when the shoots appear.

John A. Clark: Mondrian paintings are constructed on balance; what he tried
to do was important. However, some have a different aim, and that hits you in
face — it could jar but often does not. Is there architecture that breaks the rules
but works?

No, but takes a long time to achieve balance.

6.3 Panel, chair Susan Stepney

Panel: Tom Addis, Rob E Smith, Andy Wuensche
The panel was run in the form of four short talks and then questions relating
to the whole of the third session.

6.3.1 Tom Addis: Socially sensitive computing: a non classical way
forward.

Our group’s work does not take inspiration from biology or quantum mechan-
ics, despite backgrounds in these areas. Instead, it is motivated by a terminal
frustration from a period doing AI when it was still known as cybernetics. I
am puzzled that, after 60 years and very fast machines, we still can not address
basic functions of the human brain, a thing that looks like porridge and works
slowly. And we use the excuse of “if only we had more power”.

38



Because we’re not making progress, I return to early ideas. Wittgenstein’s
Tractatus is a theory of language, sought in same way as principles of mechanics,
mathematics etc. After he wrote it, he became a gardener, thinking that he had
solved it all. Looking at plants, he realised that he’d made a mistake, and the
Philosophical Investigations were created. I have taken the ideas and applied
them to computing.

Denotational semantics is the basis of all formal languages used to define
all the machines. It concerns objects with peculiar properties — independence,
allowing free combination; atomicity, in all possible worlds; immateriality, in-
destructibility and self-governance. These are not the generic objects of object-
oriented programming; few things really have these characteristics.

Wittgenstein worked on family resemblance, taking a philosophical investi-
gation (“irrational”) from the tractatus (“rational”) start. The “rational” has
finite rules that unambiguously include all members of a set, and exclude all non
members. For the “irrational”, no such finite set of rules can be constructed.

Everything is not potentially describable unambiguously. Sets depend on
dynamic rules of everyday use. Wittgenstein looked at chairs and games etc.
Breaking down the chair specification (to be sat on, stands on own, has 4 legs
and back, sitter’s feet touch floor), what if each element is not met? Is it still a
chair? Yes. We could successively take out all the criteria from the specification
and still have a chair — it is not solely a rational definition.

Software programs are never finished, because of irrational sets. These have
functional properties and accidental properties (such as naming). The world is
not detectable unless it can be distinguished, so there’s another semantics, that
of the world for which the program is written. Feedback is needed from the
problem domain; that is socially sensitive.

Dynamic ontology can define sets that are moving. We want a rational
machine to have a rational view of a dynamic system, so that we can make
inferences by deduction.

If a computer is also uncertain, as in quantum and bio-inspired paradigm,
the two informal semantics can survive by walking step by step together. It will
be possible to argue with a computer! We want machine-independent programs.

In real life, you can win any argument by using a logic set up to achieve one
goal alone. It is not just a question of logic.

6.3.2 Susan Stepney: Engineering emergence.

We can (ultimately) position molecules to make artefacts. We want a universal
assembler that can make anything from steak to space ships. Such a univer-
sal assembler needs resources and instructions — what are the right assembly
instructions? It is not enough to simply be able to build the nanite machines;
there are at least two stages, namely a bootstrap phase that will be slow because
of the need to grow assemblers exponentially to do something interesting, then
self-assembly or construction from raw materials.

The problem is well-known — “grey goo” disassembly by replicating nanites,
known scientifically as “global ecophagy”. These systems are safety critical.

39



There is an engineering challenge, because the desired product is the emer-
gent property of the actions of many nanites. We want to reverse-engineer the
emergence, from steak to nanites. This is a long way off. What do we need to
be able to design these sorts of systems?

We are dealing with open systems; there are constant flows of energy and
resources through the system, and structures exist at multiple scales. The sys-
tems form stable structures that persist over time — stable not static. These
patterns in space and time are the emergent properties.

There are bullshit definitions of emergence, but the real definition captures
the difference between the parts of the system and sum of parts. The systems
are not simple aggregations of properties of their parts. A key recognition point
is when you need a new language or new concepts, as in describing gliders that
emerge on CAs — CA cells are static with no movement; the emergent property
is the patterns seen over space and time.

In these systems, the phenotype emerges from the structure and dynamics
of growth rules etc. Computation emerges from a trajectory through a compu-
tational space. There is continual dynamic computation, interacting with the
environment, and governed by the structure of the phase space and attractors.
The key is to think of computation in terms of these. Phase spaces that are dy-
namic are particularly interesting, having changing parameters etc. Can we say
things about the underlying dynamic phase spaces? Hierarchies of emergence
become natural in this paradigm; each level has its own length and time scales,
its own phase spaces and trajectories. Perhaps the required emergent property
is the name of the trajectory.

We can’t expect precision in nanite construction. The hierarchical growth of
ever-larger structures would be like growing organisms. Most work only looks
at one level; we need lots. We need to predefine emergent phase spaces, which
will be hard.

If we look at how we might engineer emergent properties of embodied com-
putational agent systems, we find that correctness proofs and conventional re-
finement etc not applicable. We need non-classical techniques, involving proba-
bilistic and soft reasoning. Patterns of structure and dynamics will be essential.

6.3.3 Rob E Smith: Quantitative models for this stuff

In evolutionary computation, we note that there is misunderstanding of what
quantitative means. Some models are crap but useful. Much of what computer
science and mathematics deals with is interactions among clean devices, com-
puter interactions. Things such as gears, wings and headlights also exist, and
are assumed to have different interactions; people also get into the systems.

Machines may have built in safety factors. However, subjectivity and irra-
tionality are important when interacting with people. For this need to get into
engineering and philosophy.

Consider the bicycle. Bicycles are crap — they are not stable in the stan-
dard operating position. However, this instability is the key to their success.
This is also true of aeroplanes — the Wright Brothers succeeded because they

40



abandoned idea of a stable aerodynamic structure, putting in a person as an
active controller. We need this design principle.

Looking at safety factors in engineered machines, the fundamental engi-
neering theories are nonsensical. For instance, an engineer’s model of bending
assumes that plane sections remain plane. Some plane sections move a little,
some move a lot. This violates conservation of momentum, matter etc; but it is
a model that is the foundation for a huge body of work.

The GA schema theorem is true in the engineering sense even though proven
false. The proof observes that a finite population can’t grow exponentially etc.
The schema theorem is the basis for a lot of insight, even though not precisely
right; it is a useful source of engineering guidance.

Turning to the Logistic theorem, Crutchfield analysed logistic equation se-
quences, devising complexity measures such as the entropy of a sequence. Some
have a linear relation, some have a bounded relation, but at the boundary,
the Feigenbaum number, complexity increases without bound. Kauffman plus
Crutchfield consider increasing randomness and measuring inference; there is a
monotonic increase except at Kauffman’s edge of chaos. If you put more ran-
domness in, you get less information out. These are dimensionless numbers from
a wide range of systems; the system independence makes this a useful model.

A journey need not be a random walk. Maps can be useful.

6.3.4 Andy Wuensche: CAs

For an interest in emergence of complex patterns, CAs are a nice system because
they are so simple. There is the underlying physics, interactions at another level,
and various levels of description that are a nice way to describe complex systems.

In one dimension, you can detect patterns; in two dimensions, there is the
Game of Life (GoL), which are of more interest because there is more scope
for interacting. It is surprising that GoL is the only really interesting two-
dimensional, two-state rule set; to derive general principles, we need a wide
variety of examples.

Using three colours (black, white, red), we can search for kinds of CA where
the kind of next state depends on the proportions of colours in each neighbour-
hood, illustrated with a three-dimensional glider gun shooting in four directions.
If we add random look-up rules, then we get a mess, as usual.

Two-dimensional CA rules and patterns are easier to see. For instance, with
six neighbours on a hexagonal grid, the same rule as the three-dimensional glider
and the same initial state also produces glider guns and collisions (dependent
on initial state).

Chance is the commonest way to find rules. Systematic discovery depends on
an entropy measure, perhaps as in Rob’s talk — block entropy might consider
how often each rule is used; if the distribution of rule use it is even, then
there is high entropy; if the distribution is skewed, then entropy is low. If the
variance of entropy is low on either, then the CA stabilises in that entropy
level. Complex interacting structures have the signature of varying entropy
because when particles emerge, it skews the look-up frequency; when particles

41



collide, we get a period of chaos and higher entropy. We could refine the entropy
characterisation into a GA — throw in all the rules and measure the entropy
(or its standard deviation). Most rules are located on a high mean; rules with a
lower mean are ordered rules that reach an attractor and become boring. The
rest are potentially rich in interesting behaviour.

In the two-dimensional hexagonal grid, other rules produce honey-combs,
which have been discovered independently. Mutations of the rules using bit-
flips also produce interesting patterns usually. For example, Andy Adamatzky
found a six-glider gun by chance.

Basins of attraction in discrete dynamical system are large but finite. They
are deterministic, so we must find a repeat state on an attractor; there may
have several.

A random boolean network is a generalised CA, and can be considered sim-
ilarly. We can compute precise structures of attractors without running the
system to its end. There are lots of visualisations of the same model (from
DDL). Basin of attraction can be characterised by the number of nodes etc.

Small changes to the architecture of the network do not make much difference
unless the change hits something sensitive in the connectivity or the logic in
rules. We observe that mutations to the logic make less difference than moving
connections.

The DDL website also covers particle-based computation (with Andy Adamatzky),
self organisation etc.

There is a link between the dynamics seen in space-time patterns and at-
tractors, trees focused on the attractor. The more ordered the system, the more
bushy the trees, ie the more prior states for each state. In chaotic dynamics,
there is sparse branching with many unreachable states.

Consider content-addressable memory. A finite network in discrete synchro-
nised update will have a basin of attraction field. The initial state will fall to
one known basin via a tree; every tree root is a sub-category. This is the basis
for content addressable memory — given a categorisation that you would like,
can you find a subtree for it.

6.4 Panel discussion

Jan Kim: In the context of engineering without conservation of mass, there are
always minor deviation from reality. The earth is not a sphere.

Rob E. Smith: The point is that models should either provide insight or
feedback. We need more purposeful models.

James Neill: What is the relationship between irrational sets and emergence?

Tom Addis: emergence in cybernetics has a long history; you could put any
junk together and get interesting behaviour. We are struggling with determining
where one is simply looking for images in the fire and seeing what one wants
to see, and where there is something significant being done. Principle-based
engineering can be used to dictate design not by algorithmic processes but by
conformance to required principles that generate behaviour. For example, bio-
systems inspired work such as someone’s tortoise; observe the principles and look

42



for these in a system. Others such as Chomsky have looked at principle-based
language (in place of Chomsky grammars). Irrational sets were not discovering
anything new; the problem is widely known; we simply name a concept that
ties together a wide range of related problems. There are entropic elements, but
these are not same.

Rob E. Smith: The two axes are the entropy relative to system structure,
and inference from a picture of the same measure. Is what we call emergence
a psychosocial phenomenon? Is the inference aspect there because emergence
and inference are both about perception?

Christopher Alexander: there is a lot of sloppy language about emergence.
There are meaningless but interesting observed patterns. In the book, I have
something interesting that happens, the simplest emergent form is elements
and aggregates. In the interesting cases there is a third level, the bigger thing
[environment]. This then helps a yet larger thing that is itself creating a context
for the lower levels. Each has different behaviour.

Andy Wuensche: [lecture on origins of life in universal context] we only have
one example of life. With different rules, we would not get life. In CAs, we
can try any artificial universe; mostly we produce a mess but sometimes we
produce interesting structures and interactions. We don’t know the underlying
physics of that universe but we can make observations and write rules that
govern the perceived behaviour. If this supports a high-level description that
may unfold without limit then we get interactions among particles to compounds
to unbounded complexity. Artificial life is interested in this.

Aaron Sloman: Susan Stepney mentioned three aspects of emergence, which
are all needed if it is not just shallow: pattern (dots to columns etc); extension
of ontology (can’t define result in the concepts of the original, such as a chess
game on computer); but the third is key — dynamics. Causal relationships are
essential, that are expressible in the extra ontology, that you can’t translate
into or derive from lowest level physics. Counterfactual condition statements
hold — if this structure weren’t thus, other things would happen. This defines
important emergence. Tom’s things would come out of any complex reality that
allows new concepts. It is poor philosophy to require all the context to be known
first, because as contexts are created, they’ll have Tom’s sorts of contexts —
functional, aesthetic etc.

Susan Stepney: impoverished contexts are used because we can’t use the re-
action of things with everything out there; instead, for example, we are evolving
robots for impoverished mazes. The task is hard (even for us) because there is
not enough contextual information. The boundary of ourselves is hard to define;
for instance, I now consider my brain to be extended by Google. We need to
take in a lot more than we do.

Geoffrey Canright: A lot of nonsense has been said with some has real bones
in it. A sceptic would reject the nanite story; it has no facts — “read this and
all this will emerge”. Can we back this up? Patterns make me nervous; they
are either trivially mathematical or based on human psychology. This is wrong
and subjective. Patterns are what we notice.

Rob E. Smith: ultimately the endeavour is about creating artefacts

43



Geoffrey Canright: we call things patterns where we find them, but there
are lots of others.

Tom Addis: purpose is missing from the argument. A pattern is a pattern
because it has use, this allows us to discard arbitrary proposals.

Christopher Alexander: this is close to Mendeleyev who observed a pattern
that eventually led to other elements being discovered.

Tom Addis: the purpose was understanding; it is not just a mental thing.

Viv Kendon: what makes you think that it is easier to make a steak than a
spaceship? The latter is a more precise functional definition; steak is harder to
characterise but is constructed by cows.

Susan Stepney: cows do it by nanite assembly, so we know that it would be
possible. For the spaceship, we know that nanites can build people, and that
people can build spaceships, but not how to get nanites to build spaceships more
directly.

Viv Kendon: the level of definition of an object that we are trying to con-
struct is important.

Susan Stepney: we need to take into account the route as well as the goal.

Jan Kim: taking it further, we have a proof of existence of what’s wrong
with nanites — the earth. A spaceship going somewhere interesting at will
might be like the earth around sun. [This point was not clear to the note taker].
Subjectivity is not a wrong point of departure, but must quickly get to objective
and formalised description of the goal.

Susan Stepney: I have a subjective desire for a spaceship.

Rob E. Smith: spacecraft design deals with artefacts without precision; we
make it usable through safety factors and over-design. Applications such as
Google deal with humans; they are revolutionising thinking because the common
man now sees that computers are not just about predictability, accuracy and
speed. The computer now works with us; subjectivity is a real practical thing
now.

7 Session 5: The way forward, chair, Stephen
Emmott

Panel: Seth Bullock, Aaron Sloman, Susan Stepney, Andy Tyrrell, Andy
Adamatzky, Cristian Calude
First, the new panelists made statements of their positions.

7.1 Aaron Sloman: Altrical self-organising information
processing systems

I am working with Jackie Chappell, the researcher responsible for Betty the

hook-making crow, which worked out the properties of wire and how to make

a hook. The results have now been repeated for a new crow with absolutely no
possible training. Betty does it in many different ways.

44



In addition to physical growth, bio-organisms grow their own information
processing architectures, some of which are virtual machines. How does it hap-
pen? How much is genetic, from the environment, individual or cultural?

People pick up simple ideas and run with them as if they were the whole
answer, and assume that if design is too hard then emergence will do it.

Structure and structural change pervade biology at all levels. External be-
haviours are also structured, social structures. Evolutionary change produces
structures — virtual, physical, chemical. Most are highly parallel. We need a
different way to think about it. Hardware bugs may require dealing with or
working round. There are many components, sensing, acting, information pro-
cessing. Adaptation and discontinuous changes are necessary. As we listen, we
build a semantic representation of a new and unique sentence. We need to un-
derstand systems that can take in and interpret complex structures. We don’t
yet know how.

A lot of this is very precise structure. There is also a lot of noise. We need
precision. People don’t come out with the wrong number of limbs etc (!). There
are levels of virtual machines and emergence.

We can observe many physical etc processes, but it is hard to observe vir-
tual machines. We need deep speculative theory construction, tested against
hard constraints etc. Many people don’t understand or don’t notice even the
questions to be asked. For example, the vision people summarise image charac-
teristics etc, but not the optical flow calculations needed to miss the walls when
walking.

Seeing affordances is about not just seeing what’s there, but what isn’t
or what might not be. Betty is not using modal logic, but how else so we
characterise what she does. Can we learn from babies? Can we replicate this in
robots? — No!

We need to find out about natural information processing. Observation is
that some animals are precocial with rich cognitive abilities from birth, those
that stand or feed from birth etc. Others are helpless at birth, for instance crows,
eagles and humans. How intelligent and varied the skills of adult life are, how
brain grows as skills develop is different in these groups. The precocious animals
don’t learn so much. There must be hidden skills relating to architecture etc
building.

Josh, an 11-month child was filmed and analysed. Here is a baby experi-
menting with a whole series of yoghurt-related activities.

Humans etc have a complex information processing architecture implemented
in all sorts of things, chemistry as well as neural activity. They have many differ-
ent kinds of virtual machine — reactive, perhaps with some adaptation ability;
a deliberative virtual machine; representing what does not exist. Betty had
the latter but baby Josh appears not to. Betty can create new representation
and use compositional semantics to extend and manipulate representations. A
rare virtual machine is the ability to represent processes that are themselves
processes with semantic content, and to reflect and capitalise on them. Baby
Josh has ideas about experiments to do for this; Betty could already do this as
well.

45



These processes together give a possible cognitive architecture with motor
and perceptive elements.

Altricial beings have architectures that grow themselves. This should be
relevant to robots, operating systems and HCI etc. The primitives might arrive
in 20 years. It is not a valid argument to say that this cannot be run on current
hardware.

7.2 Seth Bullock

“Nicheversal” research content suffers from political organisational attitudes in
the face of hard problems. Bio-inspired computing’s heart has deep problems of
complexity etc and these are not new problems; communities have been strug-
gling with it at least since the early cybernetics pioneers. Why should we believe
that we can make progress?

Fast computers are not useful. Industry and government want something to
happen. There are real problems that governments believe bio-inspired com-
puting can address. We need to take the opportunities.

Communities were disparate, with separate work in sociology, biology, etc.
Now the people who are looking at amorphous computing etc are next door.
EPSRC funds this work, and interdiscipliniarity is encouraged.

So how can we realise a way forward? Perspective are long. We need to think
where the careers of current PhD students will go, and what their students will
do. There are exciting subfields, but the progenitors in most of these are no
longer impressed with progress. How do we keep addressing the cutting edge,
not just, for example, making GAs more efficient?

Computer science is young; it does not find it natural to look at historical
precedents, but it must, via PhD students. We must get the thinking right;
don’t just work from existing research, and take opportunities to collaborate.
Go and talk to the biologists. It is our responsibility to train the next generation
and make the opportunities to work in an established, integrated community.

We need to help the EPSRC, and especially the BBSRC, which is less re-
ceptive to the new ideas. We can use future electoral college elections. Panels
need to have reasonable people on them, because we put a lot of work into grant
proposals; we need to work on giving them a chance. We also need to work on
mechanisms that encourage the BBSRC to support this work too.

7.3 Provocative statements by panel chairs

Stephen Emmott asked the panel chairs for provocative statement, one that can
point the way or identify the way points: how do we resource the future to
address real problems and make real progress?

Susan Stepney: If you can’t say if in maths, then you do not understand it.
There have been lots calls for quantification and maths. This is necessary, but
do we have the right sort of maths? Perhaps we should co-construct the new
mathematical methods with the new models as we build them.

46



Andy Adamatzky: we need more — more problems, more experimental
scientists in computing, more experiments to get real devices, more substrates.
Don’t be afraid of anything that can compute. More purity is needed. Artificial
life is now out of fashion, just a junk yard for second rate papers. We must keep
it “cool”.

Andy Tyrrell: a lot is good and potentially cool but we need better math-
ematical models of biology to understand and exploit, and remember that ex-
ploitation is not necessarily digital.

Cristian Calude: we're on a journey with no destination. There are dangers
in overstating the current tools. We should not be afraid of limitations caused
by inconsistency and stability; there is a maths of instability.

7.4 Final panel discussion

Kester Clegg: we want to see a move towards people producing generalisations
rather than more tiny problems with no application beyond

Tom Addis: to do that, we need a science structure — hypotheses worked
on by groups. Asimov’s comment is that “that’s funny” is more important than
“Eureka” in real science. Engineering and computer science people are not scien-
tifically trained and don’t know what an experiment means in a computational
paradigm.

Stephen Emmott and Susan Stepney: we need hypothesis-driven research.

Seth Bullock: we must publish more negative results with explanation, not
just reported improvements.

Susan Stepney: we should agree that if we are asked to referee a paper that
just tweaks an existing model, we should reject it.

John A. Clark: Perhaps the web site could include a position paper on how
to write a paper worth reading. Such a paper needs to explain why the work
is as it is, and who can make use of what you do. We could have principles
or a checklist of what a paper must do. A lot of evolutionary papers are just
program-parameter tweaking. We need ties into scientific experiment, statistical
experiment, exploratory and confirmatory statistics etc.

Susan Stepney: we are tasking people to put positions forward for a journal
paper; it would seem that John just volunteered one.

Mathieu Capcarrere: a page limit of ten pages is not enough to represent
experiments in ways that are repeatable. We need a repository of software that
is available for the repetition of results etc. In write-ups, the details are often
missing, so the experiments cannot be repeated.

Seth Bullock: there is a double-edge sword. We don’t replicate results, but
we do not just want your software run on someone else’s machine.

Aaron Sloman: most people don’t package workable software in a usable
way: I read your idea and write my model; if I get same results I've replicated
yours. You can always email the author.

Jan Kim: complex systems often have seemingly innocent details that make
a lot of difference. If we don’t have a full theory in these areas, we have to give
full details in case we’ve overlooked something important.

47



Christopher Alexander: little has been said on statements that might turn
out to be false. You have to make statements that could be false, and you
should indicate how they could be proved false; if the statement is not shown
to be false, then you have made progress. Everyone could write one paragraph
making an assertion that could be proven false and saying how it could be done.

Leo Caves: students in science, especially physics, are not taught to formu-
late and test hypotheses. It is not just writing, but training. Students need to
know how to get ideas over properly. In the previous session, discussion was
moving towards a philosophy of causality, formation of relationships etc. This
is a spanner in much scientific method. A lot of re-creation hoovers-up but does
not solve, and then recedes. We can all chose something to work on and survive
in good funding times, but are we doing the right things at a deeper level or
higher level?

Aaron Sloman: what is wrong with complaining about the subjectivity of
what we are say, is that if something could be proved wrong it is not subjective.
NB Newton’s particles versus Young’s waves — they prove that Newton was
wrong, but then the particle theory was rehabilitated. Popper would lead us
to the situation where we can decide only between those that are progressive
and those that are degenerative. The former change things, the latter just add
details.

Tom Addis: research on non-progressive topics shows that it gets ever more
complicated as it fills in gaps.

Stephen Emmott: we can make progress on a way forward by teaching the
history and philosophy of science.

Tom Addis and Aaron Sloman: philosophy is being squeezed out in all sub-
jects.

Jeff Johnson: in complexity and design, there is an EU ONS initiative. There
is an open network, which is new. We can benefit from it and contribute to it.
At the moment, it needs computer science input. European support is driven
by a belief in the importance of these areas to Furope. I am running part of
it. There is an educational element, and an element to do with writing and
communicating. They are setting up a European PhD programme in complex
systems science. There are lots of EU-funded projects. There is also a new free
Complex Systems Society with a conference in Paris in November. We can also
influence design. Someone has a road map.

Christopher Alexander: design is the science of systems not as they are but
as they ought to be. There is an initiative in twenty-first century design by
the AHRB, embracing complexity in design, with biologically-inspired design
clusters. The biological people don’t know a lot about design. A way forward
is to engage and connect with complex systems and design communities.

Jon Timmis: How does the panel see the community? What is it, what are
its links? There is huge diversity here. What will we do that is concrete from
this? Subgroups, clusters or whatever?

Susan Stepney: it is not yet at community; it is an aggregation. The purpose
is to make new connections. We are also interested to know if meetings like this
are worthwhile — should we do more of this?

48



Martyn Amos: We need the UK version of Santa Fe; it’s been mooted many
times over the last five years by the EPSRC and others. Can it be taken forward?
Is there a desire for this?

Susan Stepney: York is putting together YCCSA [York Centre for Complex
Systems Analysis], as a virtual organisation; it will be in a new building on
the new campus. There are already lots of people involved from different de-
partments, a mini-community. We are trying to get people together on a more
formal basis, and we want visitors. Other places are doing similar things. A
distributed network can emerge.

Stephen Emmott sought a show of hands on support for an SFI in UK. The
dissent was only in terms of widening the question to an SFI in Europe.

Jeff Johnson: all researchers want the new SFI at their institute or on their
patch. We need to learn how to make the links within Europe and a network
beyond.

Tim Clarke: —I'm a control engineer working on space systems, autonomous
ones. The project has been running for two years, with several PhDs and other
students. We’re definitely on the right track given what’s been said here. We
have a real problem, “space, the final frontier”, for which our approach is the
only way forward for distant exploration. We want to collaborate on aspects
such as reactive and deliberative systems, uncertainty, levels of information
representation. There’s a lot of work and it is all exciting; it is a good vehicle
for such a grand challenge.

Geoffrey Canright: a network is not enough. SFI gives more; it gives physical
co-location, and that is worth the cost of getting there. We want something the
same in Europe. We need to sort it out; a network needed, but more is needed
as well. We would all love it.

Cristian Calude: this year saw the Valparaiso (Chile) Institute Of Complex
Systems inaugurated. It’s lead by someone famous and is following in the steps
of SFI. This is a model to look at and an opportunity.

John A. Clark: it would be nice to identify specific problems for PhD stu-
dents to work on, to get people in. They need to be worthwhile things. We
might consider providing PhD topics for other people to supervise; a good PhD
programme would need this.

Stephen Emmott: in this discussion, problems in the past are dominating,
which is a shame. Some future ideas are coming through.

49



