Nanotechnology: opportunities and challenges

GC7: Journeys in Non-Classical Computation

Robin Milner
The Computer Laboratory, University of Cambridge

Susan Stepney
Non-Standard Computation Group, Department of Computer Science, University of York
assemblers

• assemblers, nanites, nanobots
 • molecular scale robots
 - making macroscopic artefacts
 • assembling anything, from steaks to spaceships
• assemblers make conventional factories unnecessary

• CS challenges:
 - software, tools, techniques, models, ...
 • hardware/wetware up to physicists, engineers, biologists
nanoscale fabrication

• “desktop” fabrication plant, comprising
 - many very small devices
 • trillions of molecular scale robot assemblers, conveyors, manipulators, ...
 - early concepts used centralised computer control
 - electrical, mechanical, chemical, ...
 • assembly instructions broadcast to all the robot assemblers
 • each assembler has some local state to customise the instructions

• universal assembler
 - given the right assembly instructions, and the right raw materials, the plant can assemble anything
assembling artefacts

- growth and development on two levels
 - bootstrap a small initial assembler population
 - pool of raw material (mainly carbon)
 - assemble trillions of nanites (exponential growth)
 - eg, to build a new nano-fabrication plant
 - which then assembles, or “grows”, the artefact

http://www.imm.org/

http://www.omahasteaks.com/
the MNT design challenge

- assembled artefact is emergent property
 - of actions of vast number of nanites
- design requires “reverse emergence”
 - from desired emergent artefact
 - to behaviour of nanite assemblers

design appropriate assemblers
disassemblers

• as part of assembly
 • disassembly of raw materials required for assembly
 • disassembly of “scaffolding” required during assembly

• medical applications
 • scouring cholesterol from arteries
 • filtering blood toxins
 • removing damaged cells
 • repairing damaged nerves

• environmental applications
 • disassembling toxic chemicals into safe constituents
 • concentrating heavy metals
 • disassembling unwanted artefacts
when nanites go bad

• “grey goo” scenario
 - where replicating nanites escape, go rogue, and disassemble the planet

• “Some Limits to Global Ecophagy by Biovorous Nanoreplicators” -- Robert A. Freitas

 http://www.foresight.org/NanoRev/Ecophagy.html
Foresight Institute guidelines (excerpt)

- Artificial replicators must not be capable of replication in a natural, uncontrolled environment.
- Evolution within the context of a self-replicating manufacturing system is discouraged.
- Any replicated information should be error free.
- Any self-replicating device which has sufficient onboard information to describe its own manufacture should encrypt it such that any replication error will randomize its blueprint.
- Mutation (autonomous and otherwise) outside of sealed laboratory conditions, should be discouraged.
- MNT device designs should incorporate provisions for built-in safety mechanisms, such as: 1) absolute dependence on a single artificial fuel source or artificial "vitamins" that don't exist in any natural environment; ...

http://www.foresight.org/guidelines/current.html
evolution happens

- given vast numbers of nanites, some will go wrong
 - if they are self-replicating, they will evolve
 * evolution is an inevitable consequence of
 "reproduction, variation, selection"

- safety critical application
 - current approaches totally inadequate
 * "proof of correctness" doesn't help with a mutant
 - new safety techniques and tools required
 * design of non-viable "adjacent possible"
 - Foresight Institute guidelines are an excellent start
 * evolution will exploit anything
 - even (especially) things outside your abstract model
the proposed journey

• to solve the MNT design challenge, safely
 - designing the desired emergent properties
 • simple rules give complex behaviour
 • but which simple rules give the desired complex behaviour?
 • thorough understanding of Self-organising Complex Systems
 - designing the lack of undesired emergent properties
 - searching for suitable designs
 - large complex search space, bioinspired search algorithms
 - effect of embodied nanites
 • strange physics at very small sizes
 - friction, flow, etc all very different
 • inevitability of evolution
 - evolution exploiting embodied properties