
Journeys in Non-Classical Computation
A Grand Challenge for Computing Research

18 May 2004
Susan Stepney, Samuel L. Braunstein , John A. Clark, Andy Tyrrell : University of York

Andrew Adamatzky, Robert E. Smith : University of the West of England

Tom Addis : University of Portsmouth

Colin Johnson, Jonathan Timmis, Peter Welch : University of Kent

Robin Milner, University of Cambridge

Derek Partridge : University of Exeter

The Challenge

A gateway event [34] is a change to a system that
leads to the possibility of huge increases in kinds
and levels of complexity. It opens up a whole new
kind of phase space to the system’s dynamics.
Gateway events during evolution of life on earth
include the appearance of eukaryotes (organisms
with a cell nucleus), an oxygen atmosphere, multi-
cellular organisms, and grass. Gateway events
during the development of mathematics include
each invention of a new class of numbers
(negative, irrational, imaginary, …), and dropping
Euclid’s parallel postulate.

A gateway event produces a profound and
fundamental change to the system: once through
the gateway, life is never the same again. We are
currently poised on the threshold of a significant
gateway event in computation: that of breaking free
from many of our current “classical computational”
assumptions. The Grand Challenge for computer
science is

to journey through the gateway event
obtained by breaking our current classical
computational assumptions, and thereby

develop a mature science of Non-Classical
Computation

Journeys versus Goals

To travel hopefully is a better thing than to arrive.
 – Robert Louis Stevenson, “El Dorado”, 1878.

Many Grand Challenges are cast in terms of goals,
of end points: “achieving the goal, before this
decade is out, of landing a man on the moon and
returning him safely to earth” [49], mapping the
human genome, proving whether P = NP or not.
We believe that a goal is not the best metaphor to
use for this particular Grand Challenge, however,
and prefer that of a journey.

The metaphor of a journey emphasises the
importance of the entire process, rather than
emphasising the end point. In the 17th and 18th
centuries it was traditional for certain sections of
“polite society” to go on “a Grand Tour of
Europe”, spending several years broadening their
horizons: the experience of the entire journey was
important. And in the Journey of Life, death is
certainly not the goal! Indeed, an open journey,

passing through gateway events, exploring new
lands with ever expanding horizons, need not have
an end point.

A journey of a thousand miles begins with a single step.
 – Lao Tzu, Tao Te Ching, Chapter 64, ~600 B.C.

Journeys and goals have rather different properties.
A goal is a fixed target, and influences the route
taken to it. With an open journey of exploration,
however, it is not possible to predict what will
happen: the purpose of the journey is discovery,
and the discoveries along the journey suggest new
directions to take. One can suggest starting steps,
and some intermediate way points, but not the
detailed progress, and certainly not the end result.

Thinking of the Non-Classical Computation
Challenge in terms of a journey, or rather several
journeys, of exploration, we suggest some early
way points that appear sensible to aim for. But we
emphasise that these are early points, that we spy

today as we peer through the gateway. As the
community’s journey progresses, new way points
will heave into view, and we can alter our course to
encounter these as appropriate.

The Road goes ever on and on.
 – J. R. R. Tolkien, The Lord of the Rings, 1954.

Six classical paradigms to disbelieve before breakfast

Classical computing is an extraordinary success
story. However, there is a growing appreciation
that it encompasses an extremely small subset of all
computational possibilities.

In many avenues of life, we create unnecessary
limitations. Perhaps the most invidious of these are
the implicit assumptions we make. We need to
distinguish this has to be the case from the merely
this has always been the case. Discoveries may
emerge when what was considered an instance of
the former is found to be an instance of the latter.
For example, dropping Euclid’s parallel postulate
gave rise to the whole field of non-Euclidean
geometry, arguably paving the way for General
Relativity. We wish to encourage similar revolts
against the assumptions of classical computing. So
below we identify several paradigms that seem to
define classical computing, but that may not
necessarily be true in all computing paradigms, and
we encourage the community to drop, invert, or
otherwise perturb these paradigms in whatever
ways seem interesting. Our brochure of reality-
based journeys is a start.

Many computational approaches seek inspiration in
reality (mainly biology and physics), or seek to
exploit features of reality. These reality-based
computing approaches hold great promise. Often,
nature does it better, or at the very least differently
and interestingly. Examining how the real world
solves its computational problems provides
inspirations for novel algorithms (such as genetic
algorithms or artificial immune systems), for novel
views of what constitutes a computation (such as
complex adaptive systems, and self-organising
networks), and for novel computational paradigms
(such as quantum computing).

There is a gulf between the maturity of classical
computing and that of the emerging non-classical
paradigms. For classical computing, intellectual
investment over many years is turning craft into
science. To fully exploit emerging non-classical
computational approaches we must seek for them
such rigour and engineering discipline as is
possible. What that science will look like is
currently unclear, and the Grand Challenge
encourages exploration.

Here we outline some assumptions of classical
computation, and ways researchers in different

fields are challenging them. In later sections we
discuss alternatives in more detail. (Some of the
categories arguably overlap.)

It ain’t necessarily so.
 – George Gershwin, Porgy and Bess, 1934

1: The Turing paradigm
classical physics: information can be can be freely
copied, information is local, states have particular
values. Rather, at the quantum level information
cannot be cloned, entanglement implies non-
locality, and states may exist in superpositions.

atomicity: computation is discrete in time and
space; there is a before state, an after state and an
operation that transforms the former into the latter.
Rather, the underlying implementation substrate
realises intermediate physical states.

infinite resources: Turing machines have infinite
tape state, and zero power consumption. Rather,
resources are always constrained.

substrate as implementation detail: the machine is
logical, not physical. Rather, a physical
implementation of one form or another is always
required, and the particular choice has
consequences.

universality is a good thing: one size of digital
computer, one size of algorithm, fits all problems.
Rather, a choice of implementation to match the
problem, or hybrid solutions, can give more
effective results.

closed and ergodic systems: the state space can be
pre-determined. Rather, the progress of the
computation opens up new regions of state space in
a contingent manner.

2: The von Neumann paradigm
sequential program execution. Rather, parallel
implementations already exist.

fetch-execute-store model of program execution.
Rather, other architectures already exist, for
example, neural nets, FPGAs.

the static program: the program stays put and the
data comes to it. Rather, the data could stay put
and the processing rove over it.

3: The output paradigm
a program is a black box: it is an oracle abstracted
away from any internal structure. Rather, the
trajectory taken by a computation can be as
interesting, or more interesting, than the final
result.

a program has a single well-defined output
channel. Rather, we can chose to observe other
aspects of the physical system as it executes.

a program is a mathematical function: logically
equivalent systems are indistinguishable. Rather,
correlations of multiple outputs from different
executions, or different systems, may be of interest.

4: The algorithmic paradigm
a program maps the initial input to the final output,
ignoring the external world while it executes.
Rather, many systems are ongoing adaptive
processes, with inputs provided over time, whose
values depend on interaction with the open
unpredictable environment; identical inputs may
provide different outputs, as the system learns and
adapts to its history of interactions; there is no
prespecified endpoint.

randomness is noise is bad: most computer science
is deterministic. Rather, nature-inspired processes,
in which randomness or chaos is essential, are
known to work well.

the computer can be switched on and off:
computations are bounded in time, outside which
the computer does not need to be active. Rather,
the computer may engage in a continuous
interactive dialogue, with users and other
computers.

5: The refinement paradigm
incremental transformational steps move a
specification to an implementation that realises that
specification. Rather, there may be a discontinuity
between specification and implementation, for
example, bio-inspired recognisers.

binary is good: answers are crisp yes/no, true/false,
and provably correct. Rather, probabilistic,
approximate, and fuzzy solutions can be just as
useful, and more efficient.

a specification exists, either before the develop-
ment and forms its basis, or at least after the
development. Rather, the specification may be an
emergent and changing property of the system, as
the history of interaction with the environment
grows.

emergence is undesired, because the specification
captures everything required, and the refinement
process is top-down. Rather, as systems grow
more complex, this refinement paradigm is
infeasible, and emergent properties become an
important means of engineering desired behaviour.

6: The “computer as artefact” paradigm
computation is performed by artefacts:
computation is not part of the real world. Rather,
in some cases, nature “just does it”, for example,
optical Fourier transforms.

the hardware exists unchanged throughout the
computation. Rather, new hardware can appear as
the computation proceeds, for example, by the
addition of new resources. Also, hardware can be
“consumed”, for example, a chemical computer
consuming its initial reagents. In the extreme,
nanites will construct the computer as part of the
computation, and disassemble it at the end.

the computer must be on to work. Rather, recent
quantum computation results [46] suggest that you
don’t even need to “run” the computer to get a
result!

Doubtless there are other classical paradigms that
we accept almost without question. They too can
be fruitfully disbelieved.

The Real World : breaking the Turing paradigm

Real World as its own computer
The universe doesn’t need to calculate, it just does
it. We can take the computational stance, and
view many physical, chemical and biological
processes as if they were computations: the
Principle of Least Action “computes” the shortest
path for light and bodies in free fall; water
“computes” its own level; evolution “computes”
fitter organisms; DNA and morphogenesis

“computes” phenotypes; the immune system
“computes” antigen recognition.

This natural computation can be more effective
than a digital simulation. Gravitational stellar
clusters do not “slow down” if more stars are
added, despite the problem appearing to us to be
O(n2). And as Feynman noted [30], the real world
performs quantum mechanical computations
exponentially faster than can classical simulations.

Real World as our computer
Taking the computational stance, we may exploit
the way the world works to perform
“computations” for us. We set up the situation so
that the natural behaviour of the real world gives
the desired result.

There are various forms of real world sorting and
searching, for example. Centrifuges exploit
differences in density to separate mixtures of
substances, a form of gravitational sorting.
Vapours of a boiling mixture are richer in the
components that have lower boiling points (and the
residual mixture is richer in those that have higher
boiling points); distillation exploits this to give a
form of thermal sorting. Chromatography provides
chemical means of separation. Ferromagnetic
objects can be separated out from other junk by
using industrial-strength magnets. Optics can be
exploited to determine Fourier transforms.

Maggots perform the “computation” of eating dead
flesh: historically, maggots were used to clean
wounds, that is, to perform their computation in a
context to benefit us. More recently, bacterial
metabolisms have been altered to perform the
“computation” of cleaning up pollution.

Access control computations abound. Suitably
constructed shape is used to calculate whether the
key inserted in a tumbler lock is the correct one.
Physical interlocks are exploited for safety and
practical reasons across many industries: for
example, it is impossible to insert a nozzle from a
leaded petrol pump into the fuel tank of a unleaded
petrol car.

Real World as analogue computer
We may exploit the real world in more indirect
ways. The “computations” of the “real world as
our computer” are very direct. Often we are
concerned with more abstract questions.
Sometimes the physical world can be harnessed to
provide results that we need: we may be able to set
up the situation so that there is an analogy between
the computation performed by the real world, and
the result we want.

There is an age-old mechanism for finding the
longest stick of spaghetti in an unruly pile,
exploiting the physics of gravity and rigidity: we
can use this to sort by setting up an analogy
between spaghetti strand length and the quantity of
interest. Mercury and alcohol thermometers use a
physical means of computing temperature by fluid
expansion: the analogy is between the length of the
fluid column and the temperature. Millikan’s
calculation of the charge on an electron exploits
relationships between velocity of falling oil drops,

viscosity of air, the charge on those drops, and the
strength of surrounding electric fields.

Classical computing already exploits physics at the
level of electron movements. But there are other
ways of exploiting nature.

Analogue computing itself exploits the properties
of electrical circuits as analogues of differential
equations.

DNA computing [4] encodes problems and
solution as sequences of bases (strands) and seeks
to exploit mechanisms such as strand splitting,
recombination and reproduction to perform
calculations of interest. This can result in vast
parallelism, of the order of 1020 strands.

Quantum computing [70] presents one of the
most exciting developments for computer science
in recent times, breaking out of the classical Turing
paradigm. As its name suggests, it is based on
quantum physics, and can perform computations
that cannot be effectively implemented on a
classical Turing machine.1 It exploits interference,
many worlds, entanglement and non-locality.
Newer work still is further breaking out of the
binary mind-set, with multiple-valued “qudits”, and
continuous variables. Research in quantum
computing is mushrooming, and it is apparent that
we are not yet in position to fully exploit the
possibilities it offers. If only small quantum
computers were to prove practical then uses could
still be found for simulating various quantum
phenomena. However, if larger computers prove
possible we will find ourselves unprepared.

• Why are there so few distinct quantum
algorithms? How can new ones be found?

• How do we discover new a quantum algorithms
to solve a given problem? How do we use
existing algorithms to solve new problems?
How can we find the best algorithms to use
given limited computational resources? More
generally….
• What would a discipline of quantum software

engineering look like? (See later for more
detail.)

1 Analogue (as in continuous) computing also breaks the
Turing paradigm. But the real world is neither
analogue nor classically discrete; it is quantum. So
analogue computing might be dismissed as of
theoretical interest only. However, the same dismissal
might then be made of classically discrete (classical)
computation! (The real world is also relativistic, but
that paradigm has not been embraced by computation
theory, yet.)

• How can quantum computers be harnessed most
effectively as part of a hybrid computational
approach?

Real World as Inspiration
Many important techniques in computer science
have resulted from observing the real world. Meta-
heuristic search techniques have drawn inspiration
from physics (simulated annealing), evolution
(genetic algorithms [35] [67], genetic programming
[7] [52]), neurology (artificial neural networks [11]
[51] [66] [82]), immunology (artificial immune
systems [24]), plant growth (L-systems [80]),
social networks (ant colony optimisation [12]),
and other domains.

These have all proved remarkably successful, or
look highly promising, yet the science
underpinning their use comes nowhere near
matching the science of classical computing.
Given a raft of nature-inspired techniques we
would like to get from problem to solution
efficiently and effectively, and we would like to
reason about the performance of the resulting
systems. But this falls outside the classical
refinement paradigm.

• What would a science of non-classical
refinement look like? A science would allow us,
for example, to reason confidently about the
behaviour of neural networks in critical
applications, to derive highly effective systems
targeted at highly limited resources.

In the virtual worlds inside the computer, we are no
longer constrained by the laws of nature. Our
simulations can go beyond the precise way the real
world works. For example, we can introduce novel
evolutionary operators to our genetic algorithms,
novel kinds of neurons to our neural nets, and
even, as we come to understand the embracing
concepts, novel kinds of complex adaptive systems
themselves. The real world is our inspiration, not a
restriction.

• How can we use nature inspired computation to
build “better than reality” systems? What are the
computational limits to what we can simulate?

• What is the best you can do given many
components, each with highly restricted memory
and processing ability?

Massive parallelism : breaking the von Neumann
paradigm

Parallel processing (Cellular Automata [93], etc)
and other non-classical architectures break out of
the sequential, von Neumann, paradigm. (The fact
that the sequential paradigm is named after von
Neumann should not be taken to imply that von
Neumann himself was an advocate of purely
sequential computation; indeed, he was also one of
the early pioneers of CAs [69].)

Under the classical paradigm assumptions, any
parallel computation can be serialised, yet
parallelism has its advantages.

Real-time response to the environment. The
environment evolves at its own speed, and a single
processor might not be able to keep pace.
(Possibly the ultimate example of this will be the
use of vast numbers of nanotechnological
assemblers (nanites) to build macroscopic artefacts.
A single nanite would take too long, by very many
orders of magnitude.)

Better mapping of the computation to the problem
structure. The real world is intrinsically parallel,
and serialisation of its interactions to map the
computational structure can be hard. Parallelism
also permits colocation of each processor and the
part of the environment with which it interacts

most. It then permits colocation of the software:
software agents can roam around the distributed
system looking for the data of interest, and meeting
other agents in a context dependent manner.

And once the classical paradigm assumptions are
challenged, we can see that serialisation is not
necessarily equivalent.

Fault tolerance. Computation requires physical
implementation, and that implementation might
fail. A parallel implementation can be engineered
to continue working even though some subset of its
processors have failed. A sequential
implementation has only the one processor.

Interference/interaction between devices.
Computation requires physical implementation,
and those implementations have extra-logical
properties, such as power consumption, or
electromagnetic emissions, which may be
interpreted as computations in their own right (see
later). These properties may interfere when the
devices are running in parallel, leading to effects
not present in a serialised implementation.
(Possibly the ultimate example of this is the
exponentially large state space provided by the
superposed parallel qubits in a quantum computer.)

The use of massive parallelism introduces new
problems. The main one is the requirement for
decentralised control. It is just not possible to
have a single centralised source exercising precise
control over vast numbers of heterogeneous

devices (this is merely a covert attempt to serialise
the system). Part of this problem is tackled by the
sister Grand Challenges in Ubiquitous Systems,
and part is addressed in the later section on open
processes.

In the eye of the beholder : breaking the output paradigm

The classical paradigm of program execution is
that an abstract computation processes an input to
produce an output. This input-output mapping is a
logical property of the computation, and is all that
is important: no intermediate states are of interest,
the computation is independent of physical
realisation, and different instances of the
computation yield precisely the same results.

Computation, however, is in the eye of the
beholder. Algorithms are implemented by physical
devices; intermediate states exist, physical changes
happen in the world, different devices are
distinguishable. Any information that can be
observed in this physical world may be used to
enrich the perceived computation [19].

Logical Trajectory Observations
An executing algorithm follows a trajectory
through the logical state space. (Caveat: this is a
classical argument: intermediate quantum computa-
tional states may be in principle unobservable.)
Typically, this trajectory is not observed (except
possibly during debugging). This is shockingly
wasteful: such logical information can be a
computational resource in its own right. For
example, during certain types of heuristic search
the trajectory followed can give more information
about a sought solution than the final “result” of
the search itself.

• How can logical observations made during
execution be used to give useful information?

Physical Trajectory Observations
An executing algorithm is accompanied by
physical changes to the world: for example, it
consumes trajectory-dependent power as it
progresses, and can take trajectory-dependent time
to complete. Such physical resource consumption
can be observed and exploited as a computational
resource, for example, to deduce features of the

logical trajectory. (For example, some recent
attacks on smart cards have observed the power
consumption profile and data-dependent timing of
internal operations to deduce secret key
information [17].) Such physical observations
provide a very powerful source of information,
currently exploited mainly by attackers, but
available for more general computational use.

• What physical observations are feasible, and
correlated with logical trajectories?

• What new uses can be found for such physical
observations?

Differential Observations
An executing algorithm is realised in a physical
device. Physical devices have physical
characteristics that can change depending on
environmental conditions such as temperature, and
that differ subtly across logically identical devices.
(Indeed, much of the rationale for digitisation is the
removal of these differences.) So one can make
observations not merely of the output of a single
execution, but of set of outputs from a family of
executions, of multiple systems, of different but
related systems. For example, if repeated
executions of a search each get 90% of elements of
a sought solution correct then repeated executions
might be combined to give an overall solution.

• How can diversity of multiple computations be
exploited?

• How should diversity be engineered? By
repeated mutation of a source program? By
embracing technologically diverse solution
paradigms?

Higher-order Observations
These are observations not of the program
execution itself, but of the execution of the
program used to design (the program used to
design…) the program.

Open processes : breaking the algorithmic paradigm

In the classical paradigm, the ultimate goal of a
computation is reaching a fixed point: the final
output, the “result” of the computation, after which

we may switch off the computer. The majority of
classical science is also based around the notion of
fixed-point equilibrium and ergodicity (ergodicity

is the property that the system has well defined
spatial and temporal averages, because any state of
the system will recur with non-zero probability).

Modern theories of physics consider systems that
lack repetition and stability: they are far from
equilibrium and non-ergodic. Perhaps the most
obvious non-ergodic, far from equilibrium system
is that of life itself, characterised by perpetual
evolution (change). Most human problems are also
best described in such terms; since computation is
ultimately in service of such problems, the
implications of non-ergodic, far from equilibrium
physics must be considered in relationship to
computing’s future.

Consider the most basic of chaotic systems: the
logistic process, parameterised by R.

)1(1 ttt xRxx −=+

The behaviours of various logistic processes as a
function of R are shown in Figure 1, where each
point on the plot is a point on the attractor.

Figure 1: Points on the attractors of various logistic
processes, versus the parameter R

For values of 1 < R < 3, these logistic processes
have a fixed point attractor. For R = 3 they an
attractor of period two. As we raise R, the attractor
becomes period four, period eight, etc. This period
doubling continues as we raise R, and the values of
R where each doubling occurs get closer together.
For R > 3.569945671… the logistic process’s
attractor goes through an infinite number of values
(except for a few “islands” or order, of attractors
with multiples of odd periods). There is a phase
transition from order (the region of period
doubling) to chaos (“random” behaviour). The
phase transition point at R = 3.569945671… is the
so-called edge of chaos [60].

Consider a discretised process whose underlying
(continuous) dynamics are those of the logistic
equation. Imagine taking measurements from this
process. Take very coarse measurements: say the
process outputs 1 if , and 0 otherwise; and
take samples of length L bits. For a given L,
construct an automaton that represents the process.

So now the logistic processes generated by various
values of R are being interpreted as a variety of
automata: logistic machines. It turns out that there
is a clear phase transition (a peak in the machine
size versus the entropy of the bit sequence) as we
move from the period doubling region to the
chaotic region.

0.5x >

At the phase transition, the machine size versus the
length of the sequence L, expands without bound.
That is, at the edge of chaos, the logistic machine
requires an infinite memory machine for accurate
representation. There is a leap in the level of
intrinsic computation going on in the logistic
machine at the edge of chaos. (In terms of the
Chomsky hierarchy, the machine has gone from the
level of regular grammars to the level of context-
free grammars.)

At the edge of chaos, we can add new resources
(computational or physical) to get results that are
neither redundant (as they are in the structured
period doubling regime) nor random (as in the
chaotic regime). Within the classical paradigm,
such conditions would be anathema, indicating
unceasing variety that never yields “the solution”.
But in life-like systems, there is simultaneously
sustained order, and useful innovation. In this
setting, emergence of the unforeseen is a desirable
property, rather disruptive noise.

Some computational approaches attempt to exploit
the biological paradigm: cellular automata,
evolutionary computation, recurrent networks
(autocatalytic, neural, genomic, immune system,
ecological webs, …), social insect and agent-based
systems, DNA-computing, and nanite-systems that
build themselves. However, in most of these cases,
the implementations of such systems have been
locked into themselves, closed, unable to take on
new matter or information, thus unable to truly
exploit emergence.

We should consider open systems, systems where
new resources, and new kinds of resources can be
added at any time, either by external agency, or by
the actions of the system itself. These new
resources can provide gateway events, that
fundamentally alter the character of the system
dynamics, by opening up new kinds of regions of
phase space, and so allowing new possibilities.
Computational systems are beginning to open
themselves, to unceasing flows of information (if
not so much to new matter). The openness arises,
for example, through human interactivity as a
continuing dialogue between user and machine
[89], through unbounded networks, through robotic
systems with energy autonomy. As computers
become ubiquitous, the importance of open systems
physics to understanding computation becomes
critical. The solutions we expect from people are

ongoing processes, and this should be our expectation from computers too.

A coherent revolutionary Challenge, that also respects the
past

Classical physics did not disappear when modern
physics came along: rather its restrictions and
domains of applicability were made explicit.

Similarly, the various forms of non-classical
computation will not supersede classical
computation: they will augment and enrich it. And
when a wide range of tools is available, we can
pick the best one, or the best combination, for each
job. For example, it might be that using a quantum
algorithm to reduce a search space, and then a
meta-heuristic search to explore that, is more
effective than using either algorithm alone.

We would like

to create a general flexible conceptual
framework that allows effective and efficient
exploitation of hybrid approaches, including

classical and non-classical components

The journey is the important thing. At various
points in journey-space researches will alight to
mark their way, leaving behind diary entries to
which they may return at a later date. In common
parlance these intermediate recordings may be
regarded as “achievements”. Opportunities are
manifold. We expect journeys relevant to the sub-
disciplines to be articulated separately; several
have already been prepared. These are given in the
appendixes. Also relevant are the sister Ubiquitous
Systems challenges.

It is important these separate journeys are not seen
as independent explorations. Rather, their results
and insights should provide valuable groundwork
for the overarching challenge

to produce a fully mature science of all forms
of computation, that unifies the classical and

non-classical paradigms

The Grand Challenge Criteria

It arises from scientific curiosity about the
foundation, the nature or the limits of a scientific
discipline. It arises from questioning the
assumptions of the classical paradigms, and aims at
the creation of a new science.

It gives scope for engineering ambition to build
something that has never been seen before. It aims
to build a new science; the engineering
opportunities will follow.

It will be obvious how far and when the challenge
has been met (or not). It will never be met fully: it
is an open journey, not a closed goal. The science
will continue to mature, until itself overtaken by
the next paradigm shift.

It has enthusiastic support from (almost) the entire
research community, even those who do not
participate and do not benefit from it. No.
However, in the best tradition of paradigm shifts,
the change will occur.

An important scientific innovation rarely makes its way
by gradually winning over and converting its

opponents: it rarely happens that Saul becomes Paul.
What does happen is that the opponents gradually die

out, and that the growing generation is familiarised
with the ideas from the beginning.

 – Max Planck, Scientific Autobiography, 1949

It has international scope: participation would
increase the research profile of a nation. This is a
new fundamental area of computer science.

It is generally comprehensible, and captures the
imagination of the general public, as well as the
esteem of scientists in other disciplines. Much
popular literature already exists in several of these
areas, written by scientists in other disciplines
(quantum computing, complexity, nanotech, …),
and so they and the general public are arguably
already ahead of the CS community!

It was formulated long ago, and still stands. Its
seeds have been around for a long time, but it has
only recently become of obvious importance.

It promises to go beyond what is initially possible,
and requires development of understanding,
techniques and tools unknown at the start of the
project. The structure of the Challenge mirrors the
journey suggested by this criterion.

It calls for planned co-operation among identified
research teams and communities. It is a multi-
disciplinary Challenge, with contributions needed
from a range of research specialities.

It encourages and benefits from competition among
individuals and teams, with clear criteria on who is

winning, or who has won. There need not be a
single “winner”. Diversity of solutions should be
encouraged to be applicable to a range of
application domains. Winners may emerge in
particular application domains, as the strengths of
the various techniques become clear.

It decomposes into identified intermediate research
goals, whose achievement brings scientific or
economic benefit, even if the project as a whole
fails. There are several components to the
Challenge that can be explored in parallel.

It will lead to radical paradigm shift, breaking free
from the dead hand of legacy. Non-classical
computing is a radical paradigm shift!

It is not likely to be met simply from commercially
motivated evolutionary advance. Applications
might be supported by industry, but it is unlikely
that the development of the underlying science
would be.

References and Further Reading

[1] Editorial article. Nature Immunology 3(10) 883,

October 2002
[2] Andrew Adamatzky. Computing in Nonlinear

Media and Automata Collectives. IoP, 2001
[3] Andrew Adamatzky, ed. Collision-Based

Computing. Springer, 2002.
[4] Leonard M. Adleman. Molecular Computation of

Solutions to Combinatorial Problems. Science,
266:1021-1024, Nov 1994.

[5] Thomas Back, David B. Fogel, Zbigniew
Michalewicz, eds. Evolutionary Computation 1:
basic algorithms and operators. IoP, 2000

[6] Per Bak. How Nature Works: the science of self-
organized criticality. OUP, 1997

[7] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller,
Frank D. Francone. Genetic Programming, An
Introduction: on the automatic evolution of
computer programs and its applications. Morgan
Kaufmann, 1998

[8] Albert-Laszlo Barabasi. Linked: the new science of
networks. Perseus, 2002

[9] G. Berry, G. Boudol. The chemical abstract
machine. Theoretical Computer Science 96 217-
248, 1992

[10] Hugues Bersini, Francisco J. Varela. Hints for
Adaptive Problem Solving Gleaned from Immune
Networks. In H. P. Schwefel, H. Mühlenbein, eds,
Parallel Problem Solving from Nature. Springer,
1991

[11] Christopher M. Bishop. Neural Networks for
Pattern Recognition. OUP, 1995

[12] Eric W. Bonabeau, Marco Dorigo, Guy Theraulaz.
Swarm Intelligence: from natural to artificial
systems. OUP, 1999

[13] Daryl W. Bradley, Andy M. Tyrrell. Hardware
Fault Tolerance: an immunological approach. In
Proc IEEE Conf on System, Man, and Cybernetics.
2000

[14] S. D. Brookes, C. A. R. Hoare, A. W. Roscoe. A
theory of communicating sequential processes.
Journal of the ACM 31 560-699, 1984

[15] Cristian S. Calude, Gheorghe Paun. Computing
with Cells and Atoms. Taylor & Francis, 2001

[16] L. Cardelli, A. Gordon. Mobile ambients.
Theoretical Computer Science 240 177-213, 2000

[17] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao,
Pankaj Rohatgi. Power analysis: attacks and

countermeasures. In Annabelle McIver, Carroll
Morgan, eds. Programming Methodology.
Springer, 2003.

[18] Bastine Chopard, Michel Droz. Cellular Automata
Modeling of Physical Systems. CUP, 1998

[19] John A. Clark, Susan Stepney, Howard Chivers.
Breaking the model: finalisation and a taxonomy of
security attacks. Technical Report YCS-2004-371,
University of York. 2004

[20] E. M. Clarke, E. A. Emerson, A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
ToPLaS 8(2) 244-263, 1986

[21] R. Cleaveland, J. Parrow, B. Steffen. The
Concurrency Workbench: A Semantics Based Tool
for the Verification of Concurrent Systems. ACM
ToPLaS 15 36-72, 1993

[22] David W. Corne, Marco Dorigo, Fred Glover, eds.
New Ideas in Optimization. McGraw Hill, 1999.

[23] Dipankar Dasgupta, ed. Artificial Immune Systems
and Their Applications. Springer, 1999.

[24] Leandro N. de Castro, Jonathan Timmis. Artificial
Immune Systems: a new computational intelligence
approach. Springer, 2002.

[25] Leandro N. de Castro, Fernando J. von Zuben. An
Evolutionary Immune Network for Data Clustering.
SBRN '00, Brazil, 84-89. IEEE, 2000.

[26] Marianne Delorme, Jacques Mazoyer, eds. Cellular
Automata: a parallel model. Kluwer, 1999

[27] K. Eric. Drexler. Engines of Creation: the coming
era of nanotechnology. Doubleday, 1986

[28] K. Eric Drexler. Nanosystems: molecular
machinery, manufacturing and computation.
Wiley, 1992

[29] J. Doyne Farmer, Norman H. Packard, Alan S.
Perelson. The Immune System, Adaptation, and
Machine Learning. Physica D 22 187-204, 1986.

[30] Richard P. Feynman. Simulating Physics with
Computers. Int. J. Theor. Phys. 21(6/7). 1982.

[31] R. W. Floyd. Assigning meanings to programs.
Mathematical Aspects of Computer Science, Proc.
Symp. in Applied Mathematics 19, 19-32, AMS,
1967

[32] Stephanie Forrest, ed. Emergent Computation: self-
organizing, collective, and cooperative phenomena
in natural and computing networks. MIT Press,
1991.

[33] Stephanie Forrest, Alan S. Perelson, Lawrence
Allen, Rajesh Cherukuri. Self-Nonself
Discrimination in a Computer. Symposium on
Research in Security and Privacy, 202-212. IEEE,
1994

[34] Murray Gell-Mann. The Quark and the Jaguar.
Abacus, 1994.

[35] David E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, 1989.

[36] M. J. C. Gordon. HOL: A proof generating system
for higher-order logic. VLSI Specification,
Verification and Synthesis, Kluwer 1987

[37] Prabhat Hajela, Jun Sun Yoo. Immune Network
Modelling in Design Optimization. In [22]

[38] Emma Hart, Peter Ross. The Evolution and
Analysis of a Potential Antibody Library for Use in
Job Shop Scheduling. In [22]

[39] C. A. R. Hoare. An axiomatic basis for computer
programming. CACM 14(1) 39-45, 1971

[40] C. A. R. Hoare. Communicating Sequential
Processes. Prentice Hall, 1985

[41] John H. Holland. Hidden Order: how adaptation
builds complexity. Addison-Wesley, 1995

[42] John H. Holland. Emergence: from chaos to order.
OUP, 1998

[43] Yoshitero Ishida. Distributed and Autonomous
Sensing Based on Immune Network. In Proc
Artificial Life and Robotics, Beppu. AAAI Press.
1996

[44] Henrik Jeldtoft Jensen. Self-Organized Criticality:
emergent complex behaviour in physical and
biological systems. CUP, 1998

[45] Niels K. Jerne. Towards a Network Theory of the
Immune System. Annals of Immunology 125C 373-
389, 1974

[46] Richard Jozsa: Characterising Classes of Functions
Computable by Quantum Parallelism. Proc. R. Soc.
Lond. A 435. 1991

[47] Stuart A. Kauffman. The Origins of Order: self-
organization and selection in evolution. OUP, 1993

[48] J. A. Scott Kelso. Dynamic Patterns: the self-
organization of brain and behavior. MIT Press,
1995

[49] John F. Kennedy. Announcement to the US
Congress. 25 May, 1961

[50] Jeffrey O. Kephart. A Biologically Inspired
Immune System for Computers. In Rodney A.
Brooks, Pattie Maes, eds, Artificial Life IV. MIT
Press , 1994

[51] Teuvo Kohonen. Self-Organization and Associative
Memory. Springer, 1988

[52] John R. Koza. Genetic Programming: on the
programming of computers by means of natural
selection. MIT Press, 1992

[53] John R. Koza. Genetic Programming II: automatic
discovery of reusable programs. MIT Press, 1994

[54] John R. Koza, Forrest H. Bennett III, David Andre,
Martin A. Keane. Genetic Programming III:
Darwinian invention and problem solving. Morgan
Kaufmann, 1999

[55] D. Kozen. Results on the propositional mu-
calculus. Theoretical Computer Science 27 333-
354, 1983

[56] George Lakoff. Women, Fire, and Dangerous
Things. University of Chicago Press, 1986

[57] George Lakoff, Mark Johnson. Metaphors We Live
By. University of Chicago Press, 1980

[58] Leslie Lamport. The Temporal Logic of Actions.
ACM ToPLaS 16(3) 872-923, 1994

[59] L. F. Landweber, E. Winfree, eds. Evolution as
Computation. Springer, 2002

[60] Christopher G. Langton. Computation at the Edge
of Chaos: phase transitions and emergent
computation. In [32]

[61] Christopher G. Langton, ed. Artificial Life: an
Overview. MIT Press, 1995

[62] Benoit B. Mandelbrot. The Fractal Geometry of
Nature. Freeman, 1977

[63] Robin Milner. A calculus of communicating
systems. LNCS 92, Springer, 1980

[64] Robin Milner. Communicating and Mobile
Systems: the π -Calculus. CUP, 1999

[65] Robin Milner, J. Parrow, D. Walker. A calculus of
mobile processes. Information and Computation
100(1) 1-77, 1992

[66] Marvin L. Minsky, Seymour A. Papert.
Perceptrons. MIT Press, 1988

[67] Melanie Mitchell. An Introduction to Genetic
Algorithms. MIT Press, 1996

[68] Mark Neal, Jonathan Timmis. Timidity: A Useful
Emotional Mechanism for Robot Control?
Informatica: Special Issue on Perception and
Emotion based Reasoning, 2003

[69] John von Neumann. Theory of Self-Reproducing
Automata, edited by A. W. Burks. University of
Illinois Press, 1966

[70] Michael A. Nielsen, Isaac L. Chuang. Quantum
Computation and Quantum Information. CUP,
2000

[71] Mihaela Oprea, Stephanie Forrest. Simulated
evolution of antibody gene libraries under pathogen
selection. In Systems, Man and Cybernetics. IEEE,
1998

[72] Derek Partridge. On the difficulty of really
considering a radical novelty. Minds and Machines
5(3) 391-410, 1995

[73] Derek Partridge. Non-Programmed Computation.
CACM 43 293-301, 2000.

[74] Derek Partridge, T. C. Bailey, R. M. Everson, A.
Hernandes, W. J. Krzanowski, J. E. Fieldsend,
V.Schetinin. A Bayesian computer. 2004.
http://www.cs.york.ac.uk/nature/gc7/partridge.pdf

[75] Gheorghe Paun. Membrane Computing: an
introduction. Springer, 2002.

[76] Heinz-Otto Peitgen, Peter H. Richter. The Beauty of
Fractals: images of complex dynamical systems.
Springer, 1986

[77] C. A. Petri. Kommunikation mit automaten. PhD
Thesis, Technical Report 2, Institut fur
Instrumentelle Mathemematik, Bonn, 1962

[78] A. Pnueli. The temporal logic of programs.
Proceedings of FOCS, 46-77. IEEE, 1977

[79] V. R. Pratt. Semantical considerations on Floyd-
Hoare logic. Proc. 17th Symp. Foundations of
Computer Science, 109-121. IEEE, 1976

[80] Przemyslaw Prusinkiewicz, Aristid Lindenmayer.
The Algorithmic Beauty of Plants. Springer, 1990

[81] J. C. Reynolds. Towards a theory of type structure.
Proc. Paris Symposium on Programming, LNCS
16, 408-425, Springer, 1974

http://www.cs.york.ac.uk/nature/gc7/partridge.pdf

[82] David E. Rumelhart, James L. McClelland.
Parallel Distributed Processing. MIT Press, 1986

[83] D. S. Scott, C. Strachey. Towards a mathematical
semantics for computer languages. Proc. Symposia
on Computers and Automata, Microwave Research
institute Symposia 21, 19-46, 1971

[84] Tanya Sienko, Andrew Adamatzky, Nicholas G.
Rambidi, Michael Conrad, eds. Molecular
Computing. MIT Press, 2003

[85] Derek J. Smith, Stephanie Forrest, David H.
Ackley, Alan S. Perelson. Modeling the effects of
prior infection on vaccine efficacy. In [23]

[86] Susan Stepney. Critical Critical Systems. In
Formal Aspects of Security, FASeC'02. LNCS 2629.
Springer, 2003

[87] Tommaso Toffoli, Norman H. Margolus. Cellular
Automata Machines. MIT Press, 1985

[88] Duncan J. Watts. Small Worlds: the dynamics of
networks between order and randomness. Princeton
University Press, 1999

[89] Peter Wegner. Why interaction is more powerful
than algorithms. CACM 40(5) 1997

[90] P. H. Welch et al. Concurrency Research Group.
www.cs.kent.ac.uk/research/groups/crg/ 2004

[91] L. Wittgenstein. Tractatus Logico-Philosophicus.
1921

[92] L. Wittgenstein. Philosophical Investigations.
Blackwells, 1953

[93] Stephen Wolfram. Cellular Automata and
Complexity: collected papers. Addison-Wesley,
1994

[94] Andrew Wuensche, Mike Lesser. The Global
Dynamics of Cellular Automata. Addison-Wesley,
1992

Initial Journeys and Waypoints

The appendixes that follow comprise a collection
of suggested journeys that could be brought under
the umbrella of Non-Classical Computation. It is
assumed that these journeys would be conducted
not in isolation, but in the context of the overall
challenge, informing it, and being informed by it.
The currently identified journeys are:

• Non-Classical Philosophy – Socially Sensitive
Computing

• Non-Classical Physics – Quantum Software
Engineering

• Non-Classical Refinement – Approximate
Computation

• Computing in non-linear media – reaction-
diffusion and excitable processors

• Artificial Immune Systems
• Non-Classical Interactivity – Open Dynamical

Networks
• Non-Classical Architectures – Evolving

Hardware
• Non-Classical Architectures – Molecular Nano-

technology
• Non-von Architectures – Through the Concur-

rency Gateway

Journey: Non-Classical Philosophy – Socially Sensitive
Computing

Wittgenstein produced two major works on the
philosophy of language: the 1921 Tractatus [91],
and the 1953 Philosophical Investigations [92].
We can use the Tractatus and its relationship to the
world, as a model of classical computation.
However, Wittgenstein found flaws in his initial
work, and he explored these in his later
Philosophical Investigations. Can we use these
later ideas as a model of post-classical
computation?

A Philosophical Paradigm and
Computing
Wittgenstein’s Tractatus encapsulates a formal and
logical representational of language into a
descriptive form based upon denotational (or
referential) semantics. Given the Church-Turing

Thesis we can take the Tractatus as a paradigmatic
description of classical computer science.

A major result of the Tractatus stance is that every
object is potentially unambiguously describable.
Let us define a ‘rational’ set to be a set where
there is a finite set of rules that can include
unambiguously any member of that set and
unambiguously excludes any non-member of that
set. All the sets referenced by the Tractatus are
rational and context independent, or have an
explicit context that is also rational. The Tractatus
provides an extensive model of computer
languages.

There are social consequences of the view adopted
by the Tractatus in that it is assumed that rules can
be created for all situations and as such these rule
can bypass human judgement. It also assumes that

http://www.cs.kent.ac.uk/research/groups/crg/

there is only one correct way of seeing the world
and so human existence can be governed by some
finite set of laws.

Dual Semantics
Computer languages have a dual semantics. The
names given to data items, procedures and sub-
routines at the highest level have referents in the
world. The analysis of the problem domain
identifies constructs in the world that are meant to
be stable and unchanging (as per Tractatus
referents) to which names can be given and
meaning assigned. Yet the ultimate referent is the
bit, the mechanical equivalent of Wittgenstein’s
referent objects. At the bit level the program links
to the world and has meaning, which allows the
program to have “sense” with respect to the
computer.

Program

Problem Domain

Computer States (bits)

Figure 2. The dual semantics

But according to the Tractatus, a proposition can
have one and only one complete analysis. Such an
analysis is dependent upon only the essential
features of the proposition (here, program) that link
it to the referent objects (here, the bit). So the
alternative high-level interpretation of a program
depends upon its accidental features. This
develops a peculiar tension in program design that
is hard to keep stable, particularly with respect to
the informal, and often undefined, mechanism
which links the program names with the user’s
domain. Further, the ‘objects’ that are usually
chosen to be referenced in the informal analysis of
the problem domain do not normally have all the
features required of Wittgenstein’s objects.

The Paradigm Leap
The Tractatus is a magnificent piece of work and is
an effective description of how programming
languages should be linked to a computer through
‘sense’ (as with meaning) assignment. There is no
problem with the engineering necessity of this
approach to sense and meaning. On a broader scale
it sidesteps many of the paradoxes of the linguistic
philosophy of the day. However, it has one fatal
flaw when applied to the human use of language
and Wittgenstein eventually exposed this flaw. He
noted that it is not possible to unambiguously
describe everything within the propositional
paradigm. He found that the normal use of
language is riddled with example concepts that
cannot be bounded by logical statements that

depend upon a pure notion of referential objects.
One of his illustrations is an attempt to define a
“game”. Such a definition cannot be achieved that
either excludes all examples that are not games or
include all examples that are. Most things are not
potentially unambiguously describable. This lack
of boundaries for concepts is the family
resemblance effect. It is through such
considerations that Wittgenstein proposed his new
linguistic philosophy.

We call the basis of this new philosophy inferential
semantics. Let us define an ‘irrational’ set to be a
set where no finite set of rules can be constructed
that can include unambiguously any member of
that set and, at the same time, unambiguously
exclude any non-member of that set.2

Even though there are irrational sets we still have
rational sets, and so denotation remains one
mechanism for relating meaning to a name. For
irrational sets there is an additional and more
important mechanism for meaning assignment
based on human usage and context. It is this latter
mechanism that provides the link between the
program and the world it is designed to represent
and is the other half of the dual semantics.

Some Predictions
So we have computer programs with a semantics
based upon computer bits, but we create programs
that cannot rationally be assigned meaning to the
very problem domain for which they have been
written. Programs must remain in the domain of
rational sets if they are to be implemented on a
machine. However, we do have the freedom to use
the program’s accidental properties without
affecting the program’s meaning with respect to the
computer. We can chose the names we use and
select the computer organisation from the
possibilities bounded by the essential program.

A proposition, and hence a program, can adopt
many equivalent forms. It is the job of a compiler
to make a transformation of a program in order that
it is acceptable for a particular computer to run it.
Apart from some limitations, the choice of form is
in the hands of the programmer.

This means that:

• reverse engineering requires domain information
• formal ‘objects’ (e.g. operating systems) will be

stable but informal ‘objects’ (e.g. persons, chairs,

2 Note that we are not talking about such things as fuzzy

sets, or probabilistic sets. These sets are rational in
that a membership number is assigned by a finite set
of rules.

games) will never be fully captured or be stable
because they are irrational sets

• it will not be possible to completely represent
certain human functionality such as natural
language understanding on any machine that is
not adaptable

• increasing a training set for machine-learning
algorithms will eventually cause degradation in
recognition performance if the set includes
irrational distinctions

Inferential Semantics
The tension caused by the dual semantics that
pivots on the essential and accidental meaning of
the signs used in programs has been recognised as
can be seen by the continued search for new
languages, program structuring, and systems design
methods (e.g. conceptual modelling, object
orientation). The central problem of the human
context has also been addressed through the pursuit
of natural language understanding, naïve physics,
case-based reasoning and adaptive interfaces.
There is a belief that given sufficient power or
moving beyond the Turing machine would
somehow solve the problem. However, none of the
approaches tried so far have really succeeded, not
with many-fold increases in computer power, or
parallel mechanisms such as neural nets. Many of
the pursuits have been constrained by the formal
bounds represented by the Tractatus and those
approaches that have broken away have not
bridged the gap identified here.

The Challenge
An alternative to Wittgenstein’s family
resemblance is Lakoff’s [56][57] use of prototypes
(paradigms) and metaphor instead of reference.
With either route we have a more acceptable
approach to human relationships in that there will
always be a need for human judgement because
what is acceptable behaviour or performance is a
time sensitive and socially dependent notion. The
requirement to encapsulate a wide range and ever
changing perceptions of a problem domain will be
the need for a continuous link with human activity.
Such perceptions cannot be predicted and hence
planed for in advance. So many of the current
principles of design will have to be shelved and
two distinct design paths will need to be forged that
involve the two independent elements of a
program; the formal rational and the informal
irrational (figure 3).

The challenge is

to construct computing based upon family
resemblance rather than sets, paradigms

rather than concepts, and metaphor rather
than deduction, and to devise systems that
make judgement rather than take decisions

One possibility is that we might be able to write
dynamic, socially sensitive interfacing-compilers
that can match any program to any user (figure 3).

Minimum Program

Computer States (bits)

Problem Domain

Names & Organisation

Social sensitive
feedback

Contexts allows
the use of

rational sets

Figure 3. Showing where change can occur to
solve the dual semantic problem

Such a compiler would be in ‘conversation’ with
its user, other users and machines via (say) the
Internet absorbing the human cultures and
language so that its generated semantic and
semiotic mappings make a program usable by a
person. This might provide a more natural
communication between people and machines; it
may identify what is really meant by common
sense.

The overall Challenge
GC7 provides a series of challenges in non-
classical computing. It is hoped that such
explorations will produce computational engines
that rise beyond some of the limitations found in
classical computation.

Many of these limitations are caused by the
existence of irrational sets, or are created by the
mismatch between the computer and its system
with the problem domains.

The challenge can be expressed as

 to develop a Science of Mechanisms

The science would develop a way of arranging
mechanisms into family organisations, and in
particular identify such mechanisms by their
organisational features; features that are relevant to
a counter family organisation of problem domains.
A result would be a way of reducing complexity of
implementation by construction mechanisms that
match the problem. Flexibility to change (as
required for irrational sets) would be provided by a
change in mechanism definition. Mechanism
definition would also include the soft variants in

terms of program organisation and the possibility of combining distinct physical implementations.

Journey: Non-Classical Physics – Quantum Software
Engineering

This journey of Non-Classical Computation is

to develop a mature discipline of Quantum
Software Engineering

We wish to be ready to exploit the full potential of
commercial quantum computer hardware, once it
arrives, projected to be around 2020 (or, less
optimistically, “20 years from now”, no matter
when “now” is).

We might have to wait a while for commercial
quantum computers, but when they arrive, Moore’s
law suggests they will grow in power very quickly.
Doubling a classical computer’s register length
(roughly) doubles classical computing power, but
adding just one bit to a quantum computer’s
register doubles quantum computing power. We
need to be ready to exploit these devices once they
appear. However, the majority of today’s theory of
computation, algorithms, programming languages,
specification models, refinement calculi, and so on,
is purely classical. The challenge is to build the
corresponding languages, tools and techniques for
quantum software engineering.

We need to raise the level of thinking about
quantum programs. Today we reason about
quantum programs predominantly at the level of
quantum gates: imagine how far classical
computing would have progressed if the only
language we had to describe programs was that of
AND and OR gates! Most importantly, we need a
new paradigm (or paradigms) for thinking about
quantum computations, to augment the existing
classical declarative, functional, and imperative
paradigms.

The whole of classical software engineering needs
to be reworked and extended into the quantum
domain.

Foundations
Much foundational work is still needed. We need
further developments of the fundamentals of
quantum computability. We need to investigate
quantum algorithmic complexity: time, space,
“parallel universe space”, and any other parameters
of interest.

We have models of classical computation – von
Neumann machines with fetch-execute-store,
imperative, functional and logic languages, etc –
that let us write and reason about classical

programs without worrying about logic levels,
transistors, gates, etc. In much the same way we
need metaphors and models of quantum
computation, that enable us design and reason
about quantum algorithms without recourse to QM,
unitary matrices, etc. Does Deutsch’s many-worlds
description provide the best programming
metaphor, or are there better ones? Whatever the
actual metaphors chosen, they must be formalised
into new computational models.

We need theories and models of that weirdest
quantum process of all: that of quantum
entanglement. Two qubit entanglement is
relatively well understood – but multi qubit
entanglement, and qudit entanglement, are barely
understood.

Quantum Computational Models
There are many models of classical computation,
such as Turing machines, functional combinators,
logic circuits, fixed point approaches, and so on.
Within the context of classical computation these
are essentially equivalent, yielding identical results
but from vastly differing underlying formalisms.
Within the quantum computational world this unity
is less clear. For example, a fixed-point algorithm
on a quantum computer could include a
superposition of all fixed points, not just the stable
one obtained by repeated substitution.

This suggests that the various classical formalisms
may generalise to the quantum realm in different
ways. Currently, the most extensively studied
quantum computational model is the circuit model.
But designing high-level algorithms, reasoning
about complexity, or other such important tasks,
are very hard in this formalism.

Additionally, this model may not be the most
appropriate quantum generalisation. The
underlying structure of Quantum Information may
be so radically different from anything that we
currently understand that we need a whole new
approach. Quantum mechanical versions of
classical models may simply be insufficiently
powerful to encompass the new properties offered
by the quantum domain.

However, before we attempt to resolve such a
daunting issue, there is much to be gained from
examining the various classical models, to see if,
and how, and how far, they might provide us with

new insights into computation within the quantum
domain.

We need to thoroughly investigate the various
classical computational models in terms of their
generalisability to cover quantum properties. This
will either provide powerful new generalised
quantum computational models, or potentially
demonstrate that a truly novel, fundamentally
quantum, paradigm is indeed required.

Additionally, this work will feed back into classical
computation (one example of this interrelationship
between the necessity of quantum reversibility and
the possibility of designing efficient classical
“reversible compilers”).

Languages and Compilers
We need to determine the fundamental building
blocks of quantum programming: is there a simple
extension of GCL? of classical logic languages? of
classical assembly languages? is an entirely new
paradigm needed?

We need to design suitable assembly level and
high level Q-languages (analogues of classical
imperative, declarative, and functional languages,
at 3rd, 4th, 5th generation, and beyond). We need to
design and build the corresponding Q-compilers
for these languages.

We need to design and implement (initially,
simulate) new Q-algorithms (beyond the current
ones of Min Max, Shor’s period finding algorithm
used for factorization, and Grover’s algorithm for
DB searching). What classes of algorithms may be
quantised? How may certain well-known classical
algorithms be quantised?

We need to develop suitable reasoning systems
and refinement calculi for these languages. (Even
sequential composition is different in the quantum
regime, due to the fundamental unobservability of
the intermediate state.) Although higher level
specifications may well abstract away from details
of any underlying classical versus quantum
implementation, there may be certain application-
specific quantum specification languages, for
example, for quantum protocols.

Methods and Tools
Before commercial quantum computers are
available, we have to make do with simulations on

classical machines. We need to implement
powerful quantum computer simulators, in order
to perform computational experiments and validate
language and algorithm designs. (Computational
resources for simulating quantum algorithms can
be exponentially large. Something like a
simulation engine of multiple FPGAs might be
appropriate, to get the required massive
parallelism.)

We need to discover what higher level structuring
techniques and architectures are suitable for
quantum software. In particular, can classical
structuring (such as object-orientation, or
component based software), be extended to
incorporate Q-software? How can classical and
quantum paradigms co-exist? (It seems likely that,
at least to start with, most software will remain
classical, with a “call-out” to quantum power as
needed. But the development process needs to be
able to handle such hybrid developments
seamlessly.)

Given that quantum execution is in principle
unobservable, we need to discover new debugging
and testing techniques for these Q-languages.

We need to design ways of visualising Q-
algorithm execution, as an aid to understanding,
design, and implementation.

Novel Quantum possibilities
Quantum information processing can do some
things that cannot even be simulated by discrete
deterministic classical computers. We need to
extend quantum software engineering to
encompass these new domains.

Quantum devices can produce genuine random
numbers; classical digital simulations can produce
only pseudo-random numbers. We need to
investigate the differences this causes, if any. In
the short term, will a quantum computer simulator
need to be hooked up to a genuinely random
number source? In the longer term, what new
power, what new difficulties, might emerge as a
result of genuine randomness?

Quantum entanglement offers many new
possibilities, such as information teleportation. We
need to understand how entanglement can be
applied to produce genuinely new algorithms, and
new kinds of protocols.

Journey: Non-Classical Refinement – Approximate
Computation

This journey of Non-Classical Computation is

to develop a science of approximate
computation, and to derive from it a well-

founded discipline for engineering
approximate software

A radical departure from discrete correct/incorrect
computation is required, a shift away from logics
towards statistical foundations, such that
meaningful estimates of ‘confidence’ emerge with
each approximate result. This implies that
probabilities play an integral part in computation
throughout the process. The component
probabilities and the eventual confidence estimates,
if secured by large numbers (e.g. repeated sampling
from a proposed distribution), imply a
computational effort that is becoming increasingly
feasible as a result of hardware advances as well as
innovative developments in statistical modelling
theory (e.g. reversible-jump Markov Chain Monte
Carlo methods).

Classical computation versus
approximations
The classical, discrete, view of computation has
each step as either correct or incorrect, and the
middle ground excluded. This naturally leads to
formal logics as the dominant underpinning
framework. The programmer devises the
“formula”, which is intended to be an exact
solution to the problem; this symbol structure is
translated into a machine executable form and the
manipulations that the programmer envisaged are
performed automatically, at high speed and with
complete accuracy.

Consider the symbol structures being manipulated
by a trained a multilayer perceptron (MLP), for
example. These are not formulae composed of
operators and variables that admit a ready mapping
to the operations and parameters of the human
conception of the problem. One consequence is
that any adjustment to the function to be computed
by an MLP involves complete retraining, because
code-fixing is not an option. The “formulae”
cannot reasonably be devised by a programmer;
they must be automatically generated from data
samples.

Typically, the output of an MLP classifier, a real-
value, is arbitrarily thresholded to obtain a class
label. This and other inherent weaknesses of an
approximate classifier constructed with empirically
determined (suboptimal) values for its parameters
are widely acknowledged. Ad hoc-ery is rife in
neural computing, but work on error-bars already
points the way towards a well-founded science.

These innovative developments to move beyond
the constraint of correct/incorrect results from

hand-crafted formulae are but piecemeal strategies;
they need to be woven into the basic fabric of a
comprehensive model for approximate
computation, not stitched-on to classical
computation as useful extras, or mere curiosities.

How would the classical paradigm be
shifted?
Taking the viewpoint that the computational task is
an unknown (or intractable, see later) function, the
computational goal is to approximate it in a way
that holds the promise of reasonable optimality, but
crucially associates a meaningful estimate of
confidence with every output computed. In general
terms, data-driven software development supplants
specification-driven; computational tasks are
viewed as data-defined rather than (abstract)
specification-defined.

In detail, the approach might be through a survey,
sampling by, say, Markov Chain Monte Carlo
methods across a continuum of potentially viable
models. By doing this within a Bayesian
framework, rationalisable probabilities are attached
to various elements throughout the computational
process. The outcome is a weighted average across
a range of modelling possibilities. It is a well-
founded approximation whose validity emerges as
a secure estimate from the computational processes
employed. The infrastructure of the new paradigm
seeks to avoid searching, comparing and selecting
from amongst a discrete set of alternative models
(and hence commitment to a specific model, or
even discrete set of alternative models) by
maintaining the range of potential models as a set
of continuous parameters; probability theories,
secured by large-number sampling, provide the
over-arching framework.

A fundamental basis of continuity avoids the
brittleness inherent in discrete, classical
computation. Notice, for example, that the
necessary discretisation of the real numbers that
plagues classical computation is not similarly
problematic for MLPs, despite their fundamental
dependence upon the real continuum.

Initially at least, classical computation will provide
the virtual machine upon which the approximate
computations will run, but hardware innovations
coupled with the establishment of generally
applicable approximation algorithms could change
that dramatically. However, building the required
confidence in a classically programmed virtual
machine is not the same scale of problem as doing
it individually for every piece of application
software.

The initial challenge is to begin to establish the
limits and the potential infrastructure of such a
science of approximate computation. This includes

major subdomains, such as a discipline of
engineering approximate software. It also involves
the identification and integration into a coherent
framework of many activities that are currently
pursued under a variety of labels, for example,
statistical pattern recognition, some varieties of
data mining, statistical data modelling, some
technologies of inductive generalization or data-
driven computation.

A science of approximate computation:
when and where?
The new science of approximate computation will
not oust the classical one; it will sit alongside it as
a new weapon in an armoury of well-founded
alternative computational techniques to be used
when appropriate.

It will be appropriate to use whenever a
computational task is defined more by samples of
desired or observed behaviour than by an abstract
specification. It will also be appropriate to use
whenever the problem is well defined but
computationally intractable, where the particular
task is appropriate for approximate solutions, albeit
with a ‘confidence’ measure attached; there is no
prohibition on certainty emerging as an extreme of
approximation.

Consider an illuminating extreme – safety-critical
software. Such systems would seem to absolutely

require the classical strategy: they must be correct.
However, the practical impossibility of this
requirement leads to a slight relaxation: it is
typically couched in terms of a very low
failure/error rate, and the major component of the
required assurances is extensive testing. The
bulwark of statistical reasoning, as an integral part
of the testing, is thus dragged in by the back door
(as it were) – how much better to integrate it into
the fabric of the computation from beginning to
end, instead of tagging in on the end as a stopgap
for verification failure?

Will ‘programming’ an approximation computer be
more difficult than conventional programming?
All we can say is it will be fundamentally different
[74] – for example, data analysis, selecting
sampling strategies, rather than formula derivation.
The ‘programming’ difficulties that confront the
user of this new paradigm will be directly
determined by how successful we are in
formulating the fundamental model(s) of
approximate computation.

Nothing in the above requires a new paradigm: any
of the innovations envisaged could be realised
within the scope of classical computation, as some
already are. However, although a screwdriver can
be used to open a tin, it is quicker, neater and
generally preferable to use a well-designed tin
opener for the task.

Journey: Computing in non-linear media – reaction-
diffusion and excitable processors

Nature diffuses, reacts and excites. Does it
compute? Everyday life gives us instances of
propagating structures: dynamics of excitation in
heart and neural tissue, calcium waves in cell
cytoplasm, the spreading of genes in population
dynamics, forest fires. Could we use the travelling
structures — emerging in reaction-diffusion and
excitable systems — to do computation? This
journey of Non-Classical Computation is

to develop a science of computation using
spatio-temporal dynamics and propagating

phenomena, in many-dimensional amorphous
non-linear media

What is so particular about reaction-diffusion
systems? A non-linear chemical medium is
bistable: each micro-volume of the medium has at
least two steady stable states, and the micro-
volume switches between these states. In the
chemical medium, fronts of diffusing reactants
propagate with constant velocity and wave-form;
the reagents of the wave front convert reagents

ahead of the front into products left behind. In an
excitable chemical medium the wave propagation
occurs because of coupling between diffusion and
auto-catalytic reactions. Auto-catalytic species
produced in one micro-volume of the medium
diffuse to neighbouring micro-volumes, and thus
trigger an auto-catalytic reaction there. So an
excitable medium responds to perturbations that
exceed the excitation threshold, by generating
excitation waves.

Why are excitation waves so good for computing?
Unlike mechanical waves, excitation waves do not
conserve energy, rather, they conserve waveform
and amplitude, do not interfere, and generally do
not reflect. So excitation waves can play an
essential role of information transmission in active
non-linear media processors.

Specialised non-linear media processors
A problem’s spatial representation is a key feature
of reaction-diffusion processors. Data and results

are represented through concentration profiles of
the reagents, or spatial configurations of activity
patterns. A computation is also defined in a
physical space. The computation is realised by
spreading and interacting waves of the reagents, or
excitation patterns. A computational code, or
program, is interpreted in a list of possible
reactions between the diffusing components, and in
a form of diffusive or excitation coupling between
micro-volumes of the computing medium.
Usually, such properties could not be changed
online. However they can be determined and
adjusted to work towards the solution of a
particular problem. Therefore most reaction-
diffusion processors are intentionally designed to
solve a few particular problems — they are
specialised. Examples of working laboratory
prototypes of specialised reaction-diffusion
computing devices include Belousov-Zhabotinsky
chemical medium image processors implemented
(Kuhnert-Agladze-Krinsky and Rambidi designs),
chemical processors for computation of a skeleton
of planar shape, plane sub-division (Voronoi
diagram), shortest path (Adamatzky-Tolmachev-De
Lacy Costello designs), chemical processors for
robot navigation and taxis (De Lacy Costello-
Adamatzky implementations).

Experimental chemical computers are very rare
species — there are just a handful of chemical
processors in the world — why? Because the
design of every chemical processor requires at least
a chemist and a computer scientist. So one of the
actual tasks deals with the make-up of non-
classical scientists is

to dissolve boundaries between chemical-
physical sciences and theoretical computer

science, training a new generation of scientists
who tackle theory and experiments with ease

Computational (logical) universality of
non-linear media: dynamical vs. static
architectures
A natural process is called computationally
universal, by analogy with mathematical machines,
if it potentially can calculate any computable
logical function, so realises a functionally complete
set of logical gates in its spatio-temporal dynamics.
So in the state of the given system, we need to
represent information quanta (usually TRUE and
FALSE values of a Boolean variable), logic gates
(where information quanta are processes), and
routes of information transmission or connections
between the gates. There are two ways to build a
logical circuit in a non-linear system: structural, or
stationary, and structureless, or dynamic, designs.

In a stationary design, which underlines an
architecture-based universality, a logical circuit is

embedded into a system in such a manner that all
elements of the circuit are represented by the
system’s stationary states; the architecture is static
and its topology is essential for a computation.
The architecture-based universality allows for
applying conventional solutions to unconventional
materials: we could fabricate varieties of traditional
computers made of non-standard materials (glass
tubes filled with chemicals, molecular arrays,
excitable tissues). Examples of stationary
architectures of non-classical computers include
Hjelmfelt-Weinberger-Ross mass-transfer or
kinetic-based logical gates (a logical gate is
constructed by adjusting flow rates of chemical
species between several reactors), Tóth-Showalter
circuits (a logical circuit comprises several narrow
tubes filled with Belousov-Zhabotinsky excitable
chemical medium, the tubes are connected via
expansion chambers where logical functions are
implemented by interacting wave fronts), and
Adamatzky-de Lacy Costello palladium gate
(implemented in simple non-excitable reaction-
diffusion chemical system).

Most biological systems are “architecture-based
computationally universal”. Could they compute
better if they lose this comparmentalisation? If all
neurons in our brain were to dissolve their
membranes and fuse into an amorphous mass,
could this “gooware” be computationally more
powerful?

Dynamic, or collision-based, computers employ
mobile self-localisations, which travel in space and
execute computation when they collide with each
other. Truth-values of logical variables are
represented by absence or presence of the
travelling information quanta. There are no pre-
determined wires: patterns can travel anywhere in
the medium, a trajectory of a pattern motion is
analogous to a momentarily wire. A typical
interaction gate has two input ‘wires’ (trajectories
of the colliding mobile localisations) and, typically,
three output ‘wires’ (two representing the
localisations’ trajectories when they continue their
motion undisturbed, the third giving the trajectory
of a new localisation formed as the result of the
collision of two incoming localisations). The
travelling is analogue to information transfer, while
collision is an act of computation, thus we call the
set up collision-based computing. There are three
sources of collision-based computing: Berlekamp-
Conway-Guy proof of universality of Conway’s
Game of Life via collisions of glider streams,
Fredkin-Toffoli conservative logic and cellular
automaton implementation of the billiard ball
model (Margolus block cellular automata), and the
Steiglitz-Kamal-Watson particle machine (a
concept of computation in cellular automata with
soliton-like patterns). A wide range of physical,

chemical, and biological media are capable of
collision-based computing. Thus, for example, this
type of computation can be implemented as
localised excitation in two- and three-dimensional
excitable lattices, as breathers and solitons
travelling along polymer chains (and DNA
molecules), as excitons in mono-molecular arrays
(like Scheibe aggregates), and even as quasi-
particles in gas-discharge systems and two-
component reaction-diffusion systems.

So far we can implement a gate or two in collision
of propagating localisations — what about a
collision-based chip?

Complexity and Computation
Non-linear sciences are a centrepiece of
contemporary sciences, from physics to biology.
The dynamics of non-linear media are becoming a
crucial tool in understanding complex behaviour in
natural and artificial systems, emergent behaviour,
complexity, and self-organized criticality. Non-
linear dynamics of large-scale massive systems,
described in terms of physical systems or their
continuous and discrete mathematical and
computational models, are typically recruited at the
present time to explain the nature of complexity, to
predict the behaviour of biological and social
systems, and to discover the novel properties of
multi-component systems. To develop a solid
framework of computing in non-linear media we
must answer a number of questions residing at the
edge between complexity and computation.

What families of computational tasks are solved in
chemical and biological non-linear media?

How are the computing abilities of non-linear
media related to the behavioural complexity of the
media itself? Is it necessarily true that a system
with a more complex behaviour can solve more
computationally complex problems than a system
with less complex behaviour?

What is a relation between complexity of space-
time dynamics of a non-linear medium, and
computational complexity of the medium as a
computer?

How do we exert some control over the dynamics
of non-linear media? What engineering
approaches are required to form interfaces between
conventional computers and experimental
prototypes of non-linear media based computers?

How do we program non-linear medium
computers? What is a trade-off between the
medium’s complexity and the medium’s
programmability? Does complexity reduce
programmability?

Cellular automata: Non-linear medium
mathematical machines
The field of cellular automata — massive-parallel
locally-connected mathematical machines —
flourishes and occupies a significant part of
computational sciences. A cellular automaton is a
lattice of uniform finite automata; the automata
evolve in discrete time and take their states from a
finite set. All automata of the lattice update their
states simultaneously. Every automaton calculates
its next state depending on the states of its closest
neighbours.

Cellular automata models of reaction-diffusion and
excitable media capture essential aspects of natural
media in a computationally tractable form, and thus
could be adopted as a tool for automatic design of
non-linear media computers, development of
reaction-diffusion algorithms, and pre-experiment
verifications.

Discovering Computation
How do we find reaction-diffusion or excitable
media to fulfil our computational goals in real wet-
ware? There is not much choice at the moment.
There are dozens of oscillating chemical reactions,
yet most look quite similar, and so almost
everybody experiments mainly with Belousov-
Zhabotinsky media. The advantage of such
ubiquity is the chance to verify each other’s
experiments. At the molecular level the situation is
not as good: we can fabricate molecular arrays, but
there are almost no reports on any feasible
computing experiments, either with classical
waves, or with mobile-self localisations. Which
problems can be solved in what types of non-linear
media? Should we fabricate these media from
scratch or could we instead search for already
existing species in nature?

What are the principal characteristics of spatially-
extended non-linear media (chemical, physical or
biological) that enable them to implement useful
computation?

Journey: Artificial Immune Systems

The inspiration and the analogy
There is a growing interest in the use of the
biological immune system as a source of
inspiration to the development of computational
systems [24]. The natural immune system protects
our bodies from infection with a complex
interaction of white blood cells, called B Cells and
T Cells. Upon encountering an antigen (an
infecting item), B Cells are stimulated by
interacting with the antigen, and, with the help of T
Cells, undergo rapid cloning mutation. This is an
attempt by the immune system to kill off the
invading antigen and prepare the immune system
for another infection from that antigen (or similar
antigen). The immune system maintains a memory
of the infection, so that if ever exposed to the same
antigen again, a quicker response can be elicited
against the infection.

There are many facets of the immune system that
can be considered useful for computation,
including pattern recognition, feature extraction,
learning, noise tolerance, memory, and inherent
distributed parallel processing. For these and other
reasons, the immune system has received a
significant amount of interest as a metaphor within
computing. This emerging field of research is
known as Artificial Immune Systems (AIS).

Essentially, AIS is concerned with the use of
immune system components and processes as
inspiration to construct computational systems.
AIS is very much an emerging area of biologically
inspired computation. This insight into the natural
immune system has led to an increasing body of
work in a wide variety of domains. Much of this
work emerged from early work in theoretical
immunology [45] [29] [10], where mathematical
models of immune system process were developed
in an attempt to better understand the function of
the immune system. This acted as a mini-catalyst
for computer scientists, with some of the early AIS
work being on fault diagnosis [43], computer
security [33], and virus detection [50].
Researchers realised that, although the computer
security metaphor was a natural first choice for
AIS, there are many other potential application
areas that could be explored, such as machine
learning [25], scheduling [38], immunised fault
tolerance [13], and optimisation [37]. In addition,
AIS has been offering better understanding of the
immune system [85] [71], whose mechanisms are
hugely complex and poorly understood, even by
immunologists. The field of AIS is both a
powerful computing paradigm and a prominent
apparatus for improving understanding of complex
biological systems.

Questions can also be asked such as: How do we
construct truly autonomous evolving systems that

are capable of adapting to an ever-changing
environment? How do we construct systems that
can implement complex control mechanisms that
are beyond the capabilities of current approaches?
How do we cope with the massive increase in
complexity of systems that are being given to the
information technology society as a whole?

AIS algorithms have the possibility of breaking the
algorithmic paradigm in two ways. First, they
capture the immune system’s mechanism of
exploiting randomness, therefore removing the idea
that “randomness is bad”. Secondly, the immune
system is inherently a continually learning system
with no end point, with no “final output”. Clearly,
current solutions to such problems have made some
progress. However, with the increases in scale and
complexity come new and ill-understood demands
on computational systems. This has resulted in
many systems being inflexible, ad hoc, difficult to
configure, and impenetrably arcane to maintain.
Therefore, alternative ways to construct a new
generation of more autonomous and self-organising
computational systems are being sought.

The models
There are two main models for AIS: the population
based models (or selection models), and the
network model (see [24] for details), which have
impacts on different areas of the main Grand
Challenge.

The Selection model

The immune selection model is computationally
inspired by the processes during early maturation
of immune cells, before they are released into the
lymphatic system. It uses some particular
algorithm (positive, negative, clonal, …) to select a
set of recognisers (supervised learning) or
classifiers (unsupervised learning), of self or non-
self (details depending on the precise algorithm).

This model fits well with the other bio-inspired soft
learning systems, such as neural nets and genetic
algorithms. The major contributions to the Grand
Challenge are in the area of breaking the
refinement paradigm.

In all these soft learning approaches, there is a
discontinuity between the problem statement and
the bio-inspired solution. With both NNs and
AISs, the solution is distributed over the entire
system. Each artificial antibody may recognise
several different antigens: the specific response to a
particular antigen is a global property of all the
antibodies. The complex response emerges from
the simpler behaviour of individual parts.

The way point questions specific to AIS include:

• What are the effects on the selection algorithm of
parameter selection, with regards to the outcome
and applicability of these algorithms?

• Can we observe the computational trajectory
taken during selection and recognition to get
useful information?

The immune system selection model forms an
excellent exemplar for breaking the refinement
paradigm. The challenge is to develop a science of
non-classical refinement, that permits quantitative
reasoning about all bio-inspired algorithms,
including AISs, in both a bottom up and top down
manner:

• understanding and predicting the global
recognisers and classifiers that emerge from a
collection of local non-specific agents

• a means to design and implement appropriate sets
of recognisers or classifiers for particular
applications, in a rigorous (but possibly non-
incremental) way

• quantitative description methods that enable
rigorous reasoning about the behaviour of AISs,
such that they can be used reliably in critical
applications

Taking inspiration and input from all the bio-
inspired learning algorithms, major way points on
the Non-Classical Computation journey are

• a general theory of learning systems that
includes neural, evolutionary, and immune
systems as special cases

• use of the general theory to develop more
effective kinds of learning systems, inspired by,
but not based upon, any known biological
processes

The Network model

The immune system network model is
computationally inspired by the biological
processes used to maintain a dynamic “memory” of
immune responses, in a system where the lifetime
of individual immune memory cells is on the order
of weeks, yet the memory itself persists on the
order of years or decades.

Investigations and a deeper understanding of the
nature of scale free networks and their relation to
complex systems is required, to allow a greater
understanding of a variety of network type
structures. In particular, the formalisation of IS
molecular-cellular network by means of modern
graph theory (small-world models, scale-free
networks theorisation) should be pursued, to depict
the topological features and attributes affecting the
functionality of the network. Graph theory is one
of the most effective and advantageous instruments
for understanding the evolution of network systems
and a comprehension of the basic principles of

their structural organisation and evolution. As
such, it is needed to find the best solutions to the
problems of real world networks. This approach,
proceeding from the formalisation of elements of
the network and their interactions as nodes and
links, allows structuring a topology whose
characterising features can be derived from
analytical and numerical solutions. Modern graph
theory has already been successfully exploited for
studies of the topological and connective features
of existing real world networks like, for example,
citations of scientific papers and networks of
collaborations, WWW and Internet, biological
networks as neural networks, metabolic reactions
network, genome and protein network, ecological
and food webs, world web of human contacts and
languages, telephone call graphs, power grids, nets
of small world components. As far as we know, a
similar approach has never been applied to the
study of realistic (beyond the “undistinguishable
clones” hypothesis) IS network peculiarities (see
also [1]). By exploring the nature of scale-free
networks, immune system offer insight into
breaking the von Neumann paradigm in terms of
allowing for massive parallelism at sensible
computational costs.

The biological models

Like many other biologically inspired
computational ideas, the computer science and
biology of immune systems are developing in
parallel. The natural immune system, in particular,
is exceedingly complicated, and not understood at
all well. Additionally, the immune system does not
act in isolation. Indeed, there are many interactions
with other biological systems, such as the nervous
systems and endocrine (or hormonal) systems. The
interactions between these systems lead, in part, to
the biological concept of homeostasis: a steady
internal state. By exploring these ideas, there is the
potential to break many of the well-held paradigms
outlined in this challenge, such as the algorithmic
and refinement paradigms. Limited work has
already begun on this approach, with the
development of a small controller for robots [68].

Currently, the field of AIS is limited to the
development of algorithms in silico; questions are
still to be asked similar to that of DNA and
quantum computing, such as: it is possible to
construct computational devices based on the
chemical process inherent in the immune system?
The immune system has a wealth of complexity for
computation: rather than just extract metaphors
from it, is it possible to exploit the biological
mechanisms? The current discipline of AIS may
have been inspired by biology, but it is painfully
clear that AISs are but a pale shadow of the vast
complexity of subtlety of the natural immune
system. Computer scientists, mathematicians and

immunologists working together can ask, and
answer, some deep and interesting questions. For
example:

• How might we use the real immune system, and
other real physical and biological systems, for
computation?

• To what extent is the working of the immune
system, and other biological systems, dictated by
the physical substrate? Can all putative
“immune” responses be realised on all
substrates? Do some diseases exploit
computational constraints of the immune system
to defeat it?

• How can we use models to decide which parts of
the biology are necessary for correct robust
functioning, which parts are necessary only
because of the particular physical realisation, and

which parts merely contingent evolutionary
aspects?

• How can we use nature inspired computation to
build “better than reality” systems? What are the
computational limits to what we can simulate?

Conclusions
AIS do not break all the classic computational
paradigms: for example, they do not (yet?) use
concepts from quantum physics. However, they do
challenge some of the major paradigms. The
selection model is a good exemplar for examining
alternatives to the refinement paradigm, and the
network model is an excellent exemplar for
examining open network dynamics and emergence,
necessary for a full science of complex adaptive
systems.

Journey: Non-Classical Interactivity – Open Dynamical
Networks

Dynamic reaction networks can have complex non-
linear interactions, and feedback where reaction
products may themselves catalyse other reactions
in the network. They exhibit the emergent
complexity, complex dynamics, and self-organising
properties [6] [47] of many far-from-equilibrium
systems. These systems, and others, can self-
organise into regions “at the edge of chaos”,
neither too ordered nor too random, where they can
perform interesting computations (or computation
analogues). There are many dynamic network
models that occur in biological and social systems,
from Kauffman’s autocatalytic networks [47], and
genomic control networks, through dynamical
models of neural networks and cytokine immune
networks, to ecological food webs, and social and
technological networks.

All these subject areas could benefit from better
networks models [86]. Much of the existing
mathematical network theory is restricted to static,
homogeneous, structured, closed networks, since
these are the simplest, most tractable models to
work with. However, these are not realistic models
of biological networks: for example, antibodies
rove around the body (network, system, …)
looking for the anomalies, and new kinds of attacks
call for new kinds of defence. The journey is

 to develop a pragmatic theory of dynamic,
heterogeneous, unstructured, open networks

Dynamic: the network is not in steady state or
equilibrium, but is far from equilibrium, governed
by attractors and trajectories. (Swarm networks
may offer insights to this kind of dynamics [12])

Heterogeneous: the nodes, the connections, and the
communications can be of many different types,
including higher order types.

Unstructured: the network connectivity has no
particular regularity: it is not fully regular, or fully
connected, or even fully random. Clearly there
need to be some kinds of regularity present, but
these are likely to be of kinds that cannot be
reasoned about in terms of simple averages or
mean field notions; they are more likely have
fractal structure. Some recent advances in Small
World networks offer intriguing new insights [8]
[88].

Open (metadynamic): the structures are
unbounded, and the components are not fixed:
nodes and connections may come and go; new
kinds of nodes and connections may appear.

A general theory of such networks would have
wide applicability. Such a theory is a basic
requirement of complex systems development in
general, one application of which is pervasive, or
ubiquitous, computing (the subject of another
Grand Challenge). Such a theory a necessary way
point for answering many challenging questions.

Computation at the edge of chaos. What are it
capabilities? How can we hold a system at the
edge, far from equilibrium, to perform useful
computations? How can we make it self-organise
to the edge?

Designed emergence. How can we design (refine)
open systems that have desired emergent

properties? And do not have undesired emergent
properties?

Open systems science. What are the fundamental
properties of open systems? How can we predict
the effect of interventions (adding new things, or
removing things) to the system? How can we
understand the effect of a gateway event that opens
up new kinds of regions of phase space to a
computation? How can we design a system such
that gateway events, natural changes to phase
space, can occur endogenously?

Computation as a dynamical process. Physical
dynamical processes are characterized by motion in
a phase space, controlled or directed by various
attractors (so called because they “attract” the
trajectory of the system to them). As various
parameters of the system change, the shape of the
resulting attractor space can also change, and so the
trajectory may find itself being attracted to a
different region of the space. [48], for example,
uses these and related ideas to explain many
features of organisms’ behaviour, from gait
patterns to learning and recognition tasks.

One might like to think of this dynamical
behaviour in computational terms, with the
attractors as “states” in the phase space, and the
trajectories between them as “state transitions”.
This is a suggestive analogy, yet the conventional
state transition model has a rather static feel to it.
States and their transitions tend to be predefined,
and the execution of the transitions has to be
explicitly implemented by the computational

system. Contrastingly, the attractors are natural
consequences of the underlying dynamics, and new
attractors and resulting trajectories are natural
consequences of changes to that underlying
dynamics. A dynamical system is relatively robust
(a small perturbation to the trajectory will usually
leave it moving to the same attractor), and
computationally efficient (the computation is a
natural consequence of the physical laws of the
system, and does not need any further
implementation beyond that of the dynamical
system itself).

The challenge continues thus:

to develop a computational paradigm in
terms of dynamical attractors and trajectories

Does the state transition analogy hold? What are
the various attractors of a dynamical computation?
Can a computation be expressed as a trajectory
amongst various attractors, each changing as the
result of some parameter/input? How can we
encourage the system to move to a “better”
attractor? How can we map the route through
intermediate attractors that it should take? What
are the programming primitives and higher level
languages? What are the logics, reasoning
approaches, and refinement calculi? What are the
compilers and other development tools? What
kinds of algorithms are most suited to this
paradigm? What are the implementation
mechanisms? How can we simulate these systems
on classical machines?

Journey: Non-Classical Architectures – Evolving
Hardware

This journey of Non-Classical Computation is

to develop (biologically-inspired) computing
hardware that can adapt, evolve, grow, heal,

replicate, and learn

Computation Models
Biological inspiration in the design of computing
machines finds its source in essentially three
biological models:

• phylogenesis (P), the history of the evolution of
the species

• ontogenesis (O), the development of an
individual as orchestrated by his genetic code

• epigenesis (E), the development of an individual
through learning processes (nervous and immune
systems) influenced both by the genetic code (the
innate) and by the environment (the acquired).

These three models share a common basis: the
genome.

Phylogenesis: evolution

The process of evolution is based on alterations to
the genetic information of a species through two
basic mechanisms: selective reproduction and
variation. These mechanisms are non-
deterministic, fundamentally different from
classical algorithms, and potentially capable of
providing astonishingly good solutions to problems
that are formally intractable by deterministic
approaches. Existing analytical and experimental
tools are not designed for tackling such stochastic
search algorithms, however. We need new tools
and methodologies for generating novel results.

Phylogenesis already provides considerable
inspiration for algorithm design, in the discipline of
evolutionary computation [5] [59], which includes

genetic algorithms [35] [67] and genetic
programming [7] [52]. It has yet to have such an
impact on the conception of digital hardware,
however. Koza et al. pioneered the attempt to
apply evolutionary strategies to the synthesis of
electronic circuits when they applied genetic
algorithms to the evolution of a three-variable
multiplexer and of a two-bit adder. Evolutionary
strategies have been applied to the development of
the control circuits for autonomous robots, and
other research groups are active in this domain.
Although technical issues pose severe obstacles to
the development of evolvable electronic hardware,
there is still much to be gained from evolutionary
design given the appropriate hardware and
software mechanisms.

Ontogenesis: growth

Ontogenesis concerns the development of a single
multi-cellular biological organism. A set of
specific mechanisms define the growth of the
organism: its development from a single mother
cell (zygote) to the adult phase. The zygote
divides, each offspring containing a copy of the
genome (cellular division). This continues (each
new cell divides, creating new offspring, and so
on), and each newly formed cell acquires a
functionality (liver cell, epidermal cell, …)
depending on its surroundings, its position in
relation to its neighbours (cellular differentiation).

Cellular division is therefore a key mechanism in
the growth of multi-cellular organisms, impressive
examples of massively parallel systems: the
~ 6x1013 cells of a human body, each one a
relatively simple elements, work in parallel to
accomplish extremely complex tasks.
Development processes inspired by biological
growth should provide relevant insights on how to
handle massive parallelism in silicon. There are
also great gains to be achieved by using
ontogenetic mechanisms with regard to fault
tolerance and reliability.

Epigenesis: learning

The human genome contains ~ 3x109 bases, yet an
adult human body contains ~ 6x1013 cells, of which
~ 1010 are neurons, with ~ 1014 connections. The
genome cannot contain enough information to
completely describe all the cells and synaptic
connections of an adult organism. There must be a
process that allows the organism to increase in
complexity as it develops. This process,
epigenesis, includes the development of the
nervous, immune, and endocrine systems.

Epigenetic, or learning, mechanisms have already
had considerable impact on computer science, and
particularly on software design. The parallel
between a computer and a human brain dates to the

very earliest days of the development of computing
machines, and has led to the development of the
related fields of artificial intelligence and artificial
neural networks.

Living organisms interact with their environment
and respond to sensory inputs. In many cases this
behaviour is learnt over a period of time, after
which a specific stimulus will trigger the same,
possibly context dependent, response. Such
behaviour is mainly controlled by spiking neurons
and their interactions. Novel hardware
developments are being inspired by these
observations.

A more recent addition in the general area of
hardware systems and epigenetic processes are
artificial immune systems. Here the sophisticated
mechanisms associated with “fault tolerance” in
nature have been adapted for electronic hardware
system designs [13].

Complexity and Reliability
As systems become more complex it becomes
increasingly difficult to provide comprehensive
fault testing to determine the validity of the system.
Hence faults can remain in a system, and manifest
themselves as errors. Furthermore, faults may be
introduced into hardware from external sources,
such as electromagnetic interference. Components
within a system can die; no transistor will function
forever. These faults can ultimately cause a system
to fail. The ability of a system to function in the
presence of such faults, to become fault tolerant, is
a continually increasing area of research.

Through millions of years of refinement, biology
has produced living creatures that are remarkably
fault tolerant. They can survive injury, damage,
wear and tear, and continual attack from other
living entities in the form of infectious pathogens.
Biology manages to take huge amounts of
potentially unreliable matter and use self-checking,
self-repair, self-reconfiguration, multiple levels of
redundancy, multiple levels of defence, even
removing suspected cells, to develop complex
biological organisms that continue to work in an
extremely hostile environment.

While we consider our systems to be complex, how
might one compare a 747 jet with the complexity
of an ant, of a 2 year old child, let along the human
nervous system, the human immune system? As
technology moves towards nano- and quantum-
devices the current issues relating to complexity
will appear trivial. How might we design systems
with such parallelism, such complexity? How will
we ensure that they continue to function correctly
over long periods of time, and in unpredictable
environments?

The Journey

How can we “evolve” systems of the complexity
we will be dealing with produced by technology in
10-20 years? How can we “grow” systems high-
reliability designs? How can we build systems
that can learn from, and adapt to, their environment
in a way that improves their performance, that can
become immune to attacks, both internal and
external, that can learn to use all of the resources
available to them.

What is the effect of “design by evolution” on
silicon systems whose microscopic computing

paradigm is itself biologically-inspired? What is
the interaction between evolutionary processes and
the natural imperfections in non-digital chips?
How can evolutionary processes capture
functionality from such an imperfect computing
substrate that conventional design cannot? In
particular, when the silicon system is itself adaptive
and can “learn”, what is the optimal interaction
between “design by evolution” and subsequent
adaptation for specific purpose? Natural systems
use both methods: how can silicon computation or
its successors benefit?

Journey: Non-Classical Architectures – Molecular
Nanotechnology

Molecular Nanotechnology presents research
challenges that will lead to a greatly enriched and
more general science of computation. Safety and
dependability will present unprecedented demands;
the science will be responsible not only for robust
design to meet these demands, but for robust
analysis that shows they have been met.

Background and context
Nanotechnology is the design, development and
use of devices on the nanometre (atomic) scale.
Here we are not so much concerned with nano-
scale artefacts that take the current trend of
miniaturisation a few orders of magnitude further.
Rather we are interested in active physical nano-
devices that themselves manipulate the world at
their nano-scale in order to manufacture
macroscopic artefacts. This is Drexler’s [27][28]
vision of nano-scale assemblers that build
(assemble) macroscopic artefacts. (Such
assemblers are often known as nanites or
nanobots.)

In order for nanites to build macroscopic objects in
useful timescales, there needs to be a vast number
of them. A starting population of a few nanites
assembles more of their kind, which then assemble
more, with exponentially growing numbers. Once
they exist in sufficient numbers, they can build, or
become, the macroscopic artefact. This view of
nanotechnology promises many awe-inspiring
possibilities.

Some argue that such a technology is too good to
be true, or at least question the detail of Drexler’s
predictions. But one should note that there is no
conclusive counter-argument to them; indeed,
proteins and their associated cellular machinery
routinely assemble macroscopic artefacts, or, to use
more biological terminology, they grow organisms.

Here we discuss computational structures that will
be relevant whenever some technology for
sophisticated populations of nanites is achieved,
even if not all that has been predicted.

In principle it is possible for nanites to assemble
any physical artefact, by carefully controlled
placement of every component atom (possibly
requiring the use of much scaffolding). But in
general this is infeasible: in the worst case it could
need the global control and choreography of the
behaviour of every individual nanite. A more
feasible approach is to exploit mainly local
cooperation between suitably-programmed
neighbouring nanites, possibly mediated by their
shared local environment (which also more closely
mirrors the way biological organisms grow).

In order for nanotechnology to be possible, the
initial nanites must be fabricated somehow. This
complex engineering problem requires
collaborative research by physicists, chemists,
engineers, and biologists. To the extent that the
nanites need to be programmed to perform their
assembly tasks, computer science (CS) also has a
crucial role. We need to develop capabilities to
design, program and control complex networks of
nanites, so that they safely and dependably build
the desired artefacts, and so that they do not
accidentally build undesired ones.

Initial CS research needs to focus on potential
ways of designing and assembling artefacts in ways
that can be described in terms of predominately
local interactions, that is, in terms of the emergent
properties of vast numbers of cooperating nanites.
This requires analysis of emergent behaviour;
given the orders of magnitude involved, this can be
done only with a hierarchy of computational
models, explaining the assembly at many different
levels of abstraction.

Required computational advances
What CS theory and practice do we need in order
to be able to design, program and control networks
of nanites?

Emergent properties

We need a pragmatic theory of emergent
properties.

In much the same way that an organism is an
emergent property of its genes and proteins (and
more), the assembled artefact will be an emergent
property of the assembling nanites and their
programming. In general, this problem is
computationally irreducible, that is, there are no
“short cuts” to understanding or prediction, beyond
watching the behaviour unfold. Thus reasoning
about the precise behaviour of arbitrary networks
with a number of nodes comparable to the number
of cells in the human body (~1013) is (currently)
well beyond the state of the art. However, inability
to solve the general problem, in principle or in
practice, does not prevent exploration of large
classes of specific and interesting problems. So we
merely need a sufficient theory, one that enables us
to design nanites to build the many artefacts of
interest, and to analyse them for safety and
dependability. Certain classes of useful emergent
properties may well be tractable to reasoning. For
example, many organisms contain emergent
hierarchical branching structures, such as arteries,
lungs, nervous systems, and, of course,
prototypical tree branches. Such emergent
structures are particularly straightforward to
“program”, as evidenced by L-systems [80].

Growth and Development

We need a pragmatic theory of development and
growth.

A population of nanites first “grows” a vastly
larger population, then “grows” the artefact in
question. Again, we need a sufficient theory of
growth – to enable us to reason about structures
that are the result of a growth process.

Biological insights from embryology and
development will be fruitful here, and the relevant
ideas need to be abstracted and adapted for nanite
assemblers. This “artificial development” also has
its own properties: for example, the use of
scaffolding will probably be much more important.

Which features of biological organisms are
consequences of growth in general, and which are
consequences of “wet-ware” growth, and so are
different in assembled hardware? What constraints
are there in the growth process: is it possible to
“grow” a cooked steak ab initio, or must if first be

grown raw (isolated, or as part of a cow), and then
chemically modified?

Complex Networks

We need a pragmatic theory of dynamic,
heterogeneous, unstructured, open networks, as
espoused in the existing Journey: Non-Classical
Interactivity – Open Dynamical Networks.

Complex Adaptive Systems

All these CS advances mentioned above would
have application well beyond nanotechnology. All
are basic requirements for the general area of
Complex Adaptive Systems, of which
nanotechnology is but one exemplar. Real world
examples of CASs include swarms and flocks, ants,
immune systems, brains, autocatalytic networks,
life, ecologies, and so on. Artificial CASs include
complex control systems (industrial plants, Air
Traffic Control, etc), eCommerce supply chains
and webs, telecoms systems and the Internet, and
ubiquitous computing with its hordes of
communicating smart devices, economic systems,
and so on.

Behavioural Modelling
The pragmatic theories for Complex Adaptive
Systems, above, must be developed in response to
the challenge of nanotechnology, but they need not
start from scratch. During the last two or three
decades computer scientists have eroded the
boundary between programming, which prescribes
behaviour of a system, and modelling, which
analyses it. This trend arises naturally from a
change of emphasis, from stand-alone computers
doing one thing at a time to distributed systems –
networks of devices each acting independently,
with no centralised control. The resulting
computational models are in varying degrees
logical, algebraic, non-deterministic, stochastic.
They have been effectively used to analyse
programming languages and communication
disciplines. They have also been applied to
computer security, mobile phone systems,
behaviour in ant colonies, business processes, and
signal transduction in biological cells.

A large system such as the Internet can be
modelled at many levels of abstraction, correlated
where possible with the structure of the system. At
the higher levels, the analysis of agents’ behaviour
need not depend on the underlying technology used
to realise them. A natural research direction is
therefore to extrapolate existing CS models to
nanosystems where, despite orders of magnitude
increase in population size (compared with, say,
the Internet), many of the same general principles
of emergence and behaviour should apply.

At the lowest levels of abstraction, which may be
called embodiment, the analysis of agents’
behaviour depends crucially the underlying
technology used to realise them. For example,
individual nanites are made of only small numbers
of atoms, so a one-atom mutation to a nanite –
caused by faults in manufacture, by other nanites,
by random impact of cosmic rays – could have a
dramatic effect on behaviour. In order to reason
about the kinds of changes that mutations might
make (to reason about the “adjacent possible” [47]
of the nanite), it is essential to know the detailed
make-up and characteristics of the system
undergoing mutation.

Close cooperation is therefore needed among many
research disciplines, of which CS is one, in order to
understand nanopopulations fully. From the CS
viewpoint, the gain will be a greatly enriched and
more general science of computation.

We continue this section by summarising some of
the concepts, theories and tools that CS can bring
to the cooperation at the outset. We cite only a
selection from the large literature.

Stand-alone computation

Before distributed computing systems became the
norm, much computing research laid foundations
for the models and tools that those systems need.
A start was made in establishing the verification of
computer programs as an activity in formal logic
[31][39]. Tools for computer-assisted verification,
especially for computer hardware designs [36],
were pioneered. The status of computer programs
as mathematical descriptions of behaviour was
established [83]. Theories of types began to
emerge as a powerful aid to behavioural analysis as
well as to programming [81]. Even in the 1940s,
von Neumann’s model of self-reproducing cellular
automata anticipated some of the central ideas of
nanotechnology [69].

Abstract machines and process calculi

The first model to capture the complex interplay
between non-determinism and concurrency in
distributed systems was Petri Nets [77], these nets
were designed information flow in natural as well
as man-made systems. In the early eighties,
algebraic process calculi [14][40][63] were
designed to model interactive systems
hierarchically, and to model their behaviour
abstractly. The Chemical Abstract Machine [9]
captured the spatial structure of systems. The π-
calculus [64][65] and mobile ambient calculus [16]
made a further step in modelling systems that can
reconfigure both their spatial arrangement and their
connectivity.

These models have influenced the design of
programming and specification languages, for

example LOTOS, occam and Handel-C, and Ada.
They have been developed to model systems
stochastically, and to deal with hybrid
discrete/continuous systems. Recently their theory
has been seen to extend to graphical models that
are a priori suitable for populations of agents such
as nanites.

Logics and Tools

Allied to algebraic calculi are new forms of
mathematical logic, especially modal logics,
specially designed to specify the properties that an
interactive system should satisfy. Well-known
example are dynamic logic [79], temporal logic
[78], the temporal logic of actions [58] and the mu
calculus [55]. These logics often have a close link
with algebraic calculi; an algebraic term denotes
(part of) a system. while a logical formula says (in
part) how it should behave. This underlies a
successfully applied incremental methodology for
system analysis; one verifies more and more
properties of more and more parts (even the whole)
of a system. Such verification is aided by software
tools: model-checkers that can automatically
verify properties of fairly complex finite-state
systems [20]; and semi-automated tools that can
perform verifications with human guidance [21].

Safety and dependability
Nanites can disassemble, as well as assemble,
structures. This has led to the notion of the so-
called “grey goo” problem: nightmare visions of
hordes of rogue nanites disassembling the wrong
things, disassembling people, or even
disassembling the entire planet. It is potentially the
ultimate terrorist weapon.

Even if nanites are not deliberately engineered to
be destructive, such objects will “naturally” appear
in any replicating swarm of nanites. We are
dealing with such vast numbers of nanites that
some will spontaneously “mutate”. Given the three
features of reproduction, variation, and selection,
some form of evolution will inevitably occur,
leading to populations of “adjacent possible”
undesigned nanites. Computer science, allied with
biology, is crucial to the task of investigating and
understanding these artificial evolutionary
processes, and the defences we can design against
them.

Dependability – the quality of a system that
justifies its use even in critical conditions – is
already a topic of extensive research in computer
science. It involves mathematical analysis, as in
the case of program verification and computer
security; more widely, it involves making systems
aware of, and able to report upon, their behaviour.
It cannot exist without good modelling. The
modelling of nanopopulations with dependability

in mind, given their emergent properties and the
inevitability of mutation, offers a huge challenge to
CS.

Conclusion
Nanotech assemblers offer the promise of fantastic
rewards. Some forms of nano-assemblers may well
be exploitable and exploited in many ways without

much CS input. Before we can achieve the full
promise, however, there are many hard Computer
Science problems to solve, concerning the design
of emergent properties, the growth of physical
artefacts, the programming and control of nanites,
and defences against the “grey goo” and other
safety critical scenarios.

Journey: Non-von Architectures – Through the
Concurrency Gateway

This journey of Non-Classical Computation is

to enable concurrency to be a fundamental
modelling and programming concept, with a

clean and simple conceptual model, and
efficiently implemented

Breaking the von Neumann paradigm
The real world exhibits concurrency at all levels of
scale, from atomic, through human, to astronomic.
This concurrency is endemic. Central points of
control do not remain stable for long. Most of the
novel paradigms identified in GC7 hint at
something stronger: central points of control
actively work against the logic and efficiency of
whatever we are trying to control, model, or
understand.

Today, concurrency is not considered a
fundamental concept, to be used with everyday
fluency. It is considered an advanced topic, to be
avoided unless there is no other way to obtain
specific performance targets.

Classical concurrency technologies are based on
multiple threads of execution plus various kinds of
locks to control the sharing of data between them;
get the locking wrong and systems will
mysteriously corrupt themselves or deadlock.
There are also performance problems. Thread
management imposes significant overheads in
memory and run time. Even when using only
‘lightweight’ threads, applications need to limit
their implementations to only a few hundred
threads per processor, beyond which performance
catastrophically collapses.

Yet air traffic control over the UK requires the
management of far greater concurrency than
standard practice will directly and safely and
simply allow. Common web services need to be
able to conduct business with tens of thousands of
clients simultaneously. Modelling even the
simplest biological organisms quickly takes us into
consideration of millions of concurrently active,
autonomous, and interacting, agents.

Limited by programming and performance
constraints, we compromise on the degree of
concurrency in our application design and
implementation. The compromises add significant
complexity that, combined with the semantic
instability of the concurrency mechanisms we do
practice, lead to mistakes and the poor quality, late
delivery and over-budget systems that are accepted
as normal – for now – by our industry and its
customers.

We urgently need more natural models and
implementations of concurrency. Fortunately, we
have them. Pushing through this particular
gateway, by the mainstream computing
community, will additionally help establish a
mindset for the much grander challenges.

Hypothesis
All computer systems have to model the real world,
at some appropriate level of abstraction, if they are
to receive information and feedback useful
information. To make that modelling easier, we
should expect concurrency to play a fundamental
rôle in the design and implementation of systems,
reflecting the reality of the environment in which
they are embedded. This does not currently seem to
be the case.

Our thesis is that computer science has taken at
least one wrong turn. Concurrency should be a
natural way to design any system above a minimal
level of complexity. It should simplify and hasten
the construction, commissioning, and maintenance
of systems; it should not introduce the hazards that
are evident in modern practice; it should be
employed as a matter of routine. Natural
mechanisms should map into simple engineering
principles with low cost and high benefit. Our
hypothesis is that this is possible.

We propose a computational framework, based on
established ideas of process algebra, to test the
truth of the above hypothesis. It will be accessible
from current computing environments (platforms,

operating systems, languages) but will provide a
foundation for novel ones in the future.

Hoare’s CSP [40] has a compositional and
denotational semantics, which means that it allows
modular and incremental development (refinement)
even for concurrent components. This means that
we get no surprises when we run processes in
parallel (since their points of interaction have to be
explicitly handled by all parties to these
interactions). This is not the case for standard
threads-and-locks concurrency, which have no
formal denotational semantics, and by which we
get surprised all the time.

We need some extensions to CSP to describe
certain new dynamics. We want to allow networks
of processes to evolve, to change their topologies,
to cope with growth and decay without losing
semantic or structural integrity. We want to
address the mobility of processes, channels and
data and understand the relationships between
these ideas. We want to retain the ability to reason
about such systems, preserving the concept of
refinement. For this we turn to Milner’s π-calculus
[64].

The framework will provide highly efficient
practical realisations of this extended model. Its
success in opening up the horizons of GC7 will be
a long term test of the hypothesis. Shorter term
tests will be the development of demonstrators
(relevant to a broad range of computer applications
– including those that are of concern to GC1, GC4
and GC6) with the following characteristics:

• they will be as complex as needed, and no more
(through the concurrency in the design being
directly delivered by the concurrency in the
implementation)

• they will be scalable both in performance and
function (so the cost of incremental enhancement
depends only on the scale of the enhancement,
not on the scale of the system being enhanced)

• they will be amenable to formal specification and
verification

• the concurrency models and mechanisms in their
design and implementation will be practical for
everyday use by non-specialists: concurrency
becomes a fundamental element in the toolkit of
every professional computer engineer

• they will make maximum use of the underlying
computation platform (through significantly
reduced overheads for the management of
concurrency, including the response times to
interrupts)

Current State of the Framework
Over the past ten years, the Concurrency Research
Group at Kent [90] has been laying the foundations

for such a framework. They have developed, and
released as open source, concurrency packages for
Java (JCSP), C (CCSP), C++ (C++CSP), J#
(J#CSP), and occam (occam-π). These all provide
the mobile dynamics fed in from the π-calculus.

occam-π is a sufficiently small language to allow
experimental modification and extension, whilst
being built on a language of proven industrial
strength. It integrates the best features of CSP and
the π-calculus, focussing them into a form whose
semantics is intuitive and amenable to everyday
engineering by people who are not specialised
mathematicians; the mathematics is built into the
language design, its compiler, run-time system and
tools. The new dynamics broadens its area of
direct application to a wide field of industrial,
commercial and scientific practice.

occam-π runs on modern computing platforms and
has much of the flexibility of Java and C, yet with
exceptionally low performance overheads and all
the safety guarantees of classical occam and the
lightness of its concurrency mechanisms. It
supports the dynamic allocation of processes, data
and channels, their movement across channels and
their automatic de-allocation (without the need for
garbage collection, which otherwise invalidates
real-time guarantees). Aliasing errors and race
hazards are not possible in occam-π systems,
despite the new dynamics. This means that subtle
side-effects between component processes cannot
exist, which impacts (positively) on the general
scalability and dependability of systems. The
mobility and dynamic construction of processes,
channels and data opens up a wealth of new design
options that will let us follow nature more closely,
with network structures evolving at run-time.
Apart from the logical benefits derived from such
directness and flexibility, there will be numerous
gains for application efficiency.

The low performance overheads mean that
dynamic systems evolving hundreds of thousands
of (non-trivial) occam-π processes are already
practical on single processors. Further, occam-π
networks can naturally span many machines: the
concurrency model does not change between
internal and external concurrency. Application
networks up to millions of serious processes then
become viable, on modest clusters of laptops.
Moore’s Law indicates that in the next few years
networks of tens of millions of (non-trivial)
processes will become possible.

Enabling other Journeys
Such a platform provides an enabling technology
for modelling emergent properties, including those
mentioned above, such as Open Dynamical

Networks, Molecular Nanotechnolgy, Artificial
Immune Systems.

Hierarchical networks of communicating processes
are particularly suitable for these problems. The
languages used to support modelling and
simulation must be simple, formal, and dynamic,
and have a high-performance implementation. The
models must be simple, and amenable to
manipulation and formal reasoning. The
topologies of these networks of agents will evolve,
as they support growth and decay that comes from
agents moving, splitting, and combining.

Individual agents must be mobile, and aware of
their location and neighbourhood. Simulations will
require very large numbers of processes, so the
implementation must have minimal overhead.

occam-π is a good candidate for modelling and
programming such systems: it is robust and
lightweight, and has sound theoretical support. It
can be used to construct systems to the order of 106
processes on modest processor resources,
exhibiting rich behaviours in useful run-times.
This is enough to make a start on our journey..

	The Challenge
	Journeys versus Goals
	Six classical paradigms to disbelieve before breakfast
	1: The Turing paradigm
	2: The von Neumann paradigm
	3: The output paradigm
	4: The algorithmic paradigm
	5: The refinement paradigm
	6: The “computer as artefact” paradigm

	The Real World : breaking the Turing paradigm
	Real World as its own computer
	Real World as our computer
	Real World as analogue computer
	Real World as Inspiration

	Massive parallelism : breaking the von Neumann paradigm
	In the eye of the beholder : breaking the output paradigm
	Logical Trajectory Observations
	Physical Trajectory Observations
	Differential Observations
	Higher-order Observations

	Open processes : breaking the algorithmic paradigm
	A coherent revolutionary Challenge, that also respects the past
	The Grand Challenge Criteria
	References and Further Reading
	Initial Journeys and Waypoints
	Journey: Non-Classical Philosophy – Socially Sen
	A Philosophical Paradigm and Computing
	Dual Semantics
	The Paradigm Leap
	Some Predictions
	Inferential Semantics
	The Challenge
	The overall Challenge

	Journey: Non-Classical Physics – Quantum Softwar
	Foundations
	Quantum Computational Models
	Languages and Compilers
	Methods and Tools
	Novel Quantum possibilities

	Journey: Non-Classical Refinement – Approximate
	Classical computation versus approximations
	How would the classical paradigm be shifted?
	A science of approximate computation: when and where?

	Journey: Computing in non-linear media – reactio
	Specialised non-linear media processors
	Computational (logical) universality of non-linear media: dynamical vs. static architectures
	Complexity and Computation
	Cellular automata: Non-linear medium mathematical machines
	Discovering Computation

	Journey: Artificial Immune Systems
	The inspiration and the analogy
	The models
	The Selection model
	The Network model
	The biological models

	Conclusions

	Journey: Non-Classical Interactivity – Open Dyna
	Journey: Non-Classical Architectures – Evolving
	Computation Models
	Phylogenesis: evolution
	Ontogenesis: growth
	Epigenesis: learning

	Complexity and Reliability
	The Journey

	Journey: Non-Classical Architectures – Molecular
	Background and context
	Required computational advances
	Emergent properties
	Growth and Development
	Complex Networks
	Complex Adaptive Systems

	Behavioural Modelling
	Stand-alone computation
	Abstract machines and process calculi
	Logics and Tools

	Safety and dependability
	Conclusion

	Journey: Non-von Architectures – Through the Con
	Breaking the von Neumann paradigm
	Hypothesis
	Current State of the Framework
	Enabling other Journeys

