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The Challenge 
 
A gateway event [34] is a change to a system that 
leads to the possibility of huge increases in kinds 
and levels of complexity.  It opens up a whole new 
kind of phase space to the system’s dynamics.  
Gateway events during evolution of life on earth 
include the appearance of eukaryotes (organisms 
with a cell nucleus), an oxygen atmosphere, multi-
cellular organisms, and grass.  Gateway events 
during the development of mathematics include 
each invention of a new class of numbers 
(negative, irrational, imaginary, …), and dropping 
Euclid’s parallel postulate.   

A gateway event produces a profound and 
fundamental change to the system: once through 
the gateway, life is never the same again.  We are 
currently poised on the threshold of a significant 
gateway event in computation: that of breaking free 
from many of our current “classical computational” 
assumptions.  The Grand Challenge for computer 
science is 

to journey through the gateway event 
obtained by breaking our current classical 
computational assumptions, and thereby 

develop a mature science of Non-Classical 
Computation 

 
Journeys versus Goals 
 

To travel hopefully is a better thing than to arrive. 
 – Robert Louis Stevenson, “El Dorado”, 1878. 

Many Grand Challenges are cast in terms of goals, 
of end points: “achieving the goal, before this 
decade is out, of landing a man on the moon and 
returning him safely to earth” [49], mapping the 
human genome, proving whether P = NP or not.  
We believe that a goal is not the best metaphor to 
use for this particular Grand Challenge, however, 
and prefer that of a journey.   

The metaphor of a journey emphasises the 
importance of the entire process, rather than 
emphasising the end point.  In the 17th and 18th 
centuries it was traditional for certain sections of 
“polite society” to go on “a Grand Tour of 
Europe”, spending several years broadening their 
horizons: the experience of the entire journey was 
important.  And in the Journey of Life, death is 
certainly not the goal!  Indeed, an open journey, 

passing through gateway events, exploring new 
lands with ever expanding horizons, need not have 
an end point. 

A journey of a thousand miles begins with a single step. 
 – Lao Tzu, Tao Te Ching, Chapter 64, ~600 B.C. 

Journeys and goals have rather different properties.  
A goal is a fixed target, and influences the route 
taken to it.  With an open journey of exploration, 
however, it is not possible to predict what will 
happen: the purpose of the journey is discovery, 
and the discoveries along the journey suggest new 
directions to take.  One can suggest starting steps, 
and some intermediate way points, but not the 
detailed progress, and certainly not the end result.   

Thinking of the Non-Classical Computation 
Challenge in terms of a journey, or rather several 
journeys, of exploration, we suggest some early 
way points that appear sensible to aim for.  But we 
emphasise that these are early points, that we spy 



today as we peer through the gateway.  As the 
community’s journey progresses, new way points 
will heave into view, and we can alter our course to 
encounter these as appropriate. 

The Road goes ever on and on. 
 – J. R. R. Tolkien, The Lord of the Rings, 1954. 

 
Six classical paradigms to disbelieve before breakfast 
 
Classical computing is an extraordinary success 
story.  However, there is a growing appreciation 
that it encompasses an extremely small subset of all 
computational possibilities.   

In many avenues of life, we create unnecessary 
limitations.  Perhaps the most invidious of these are 
the implicit assumptions we make.  We need to 
distinguish this has to be the case from the merely 
this has always been the case.  Discoveries may 
emerge when what was considered an instance of 
the former is found to be an instance of the latter.  
For example, dropping Euclid’s parallel postulate 
gave rise to the whole field of non-Euclidean 
geometry, arguably paving the way for General 
Relativity.  We wish to encourage similar revolts 
against the assumptions of classical computing.  So 
below we identify several paradigms that seem to 
define classical computing, but that may not 
necessarily be true in all computing paradigms, and 
we encourage the community to drop, invert, or 
otherwise perturb these paradigms in whatever 
ways seem interesting.  Our brochure of reality-
based journeys is a start.  

Many computational approaches seek inspiration in 
reality (mainly biology and physics), or seek to 
exploit features of reality.  These reality-based 
computing approaches hold great promise.  Often, 
nature does it better, or at the very least differently 
and interestingly.  Examining how the real world 
solves its computational problems provides 
inspirations for novel algorithms (such as genetic 
algorithms or artificial immune systems), for novel 
views of what constitutes a computation (such as 
complex adaptive systems, and self-organising 
networks), and for novel computational paradigms 
(such as quantum computing). 

There is a gulf between the maturity of classical 
computing and that of the emerging non-classical 
paradigms.  For classical computing, intellectual 
investment over many years is turning craft into 
science.  To fully exploit emerging non-classical 
computational approaches we must seek for them 
such rigour and engineering discipline as is 
possible.  What that science will look like is 
currently unclear, and the Grand Challenge 
encourages exploration.   

Here we outline some assumptions of classical 
computation, and ways researchers in different 

fields are challenging them.  In later sections we 
discuss alternatives in more detail.  (Some of the 
categories arguably overlap.) 

It ain’t necessarily so. 
 – George Gershwin, Porgy and Bess, 1934 

1: The Turing paradigm 
classical physics: information can be can be freely 
copied, information is local, states have particular 
values.  Rather, at the quantum level information 
cannot be cloned, entanglement implies non-
locality, and states may exist in superpositions. 

atomicity: computation is discrete in time and 
space; there is a before state, an after state and an 
operation that transforms the former into the latter.  
Rather, the underlying implementation substrate 
realises intermediate physical states. 

infinite resources: Turing machines have infinite 
tape state, and zero power consumption.  Rather, 
resources are always constrained. 

substrate as implementation detail: the machine is 
logical, not physical.  Rather, a physical 
implementation of one form or another is always 
required, and the particular choice has 
consequences. 

universality is a good thing: one size of digital 
computer, one size of algorithm, fits all problems.  
Rather, a choice of implementation to match the 
problem, or hybrid solutions, can give more 
effective results. 

closed and ergodic systems: the state space can be 
pre-determined.  Rather, the progress of the 
computation opens up new regions of state space in 
a contingent manner. 

2: The von Neumann paradigm 
sequential program execution.  Rather, parallel 
implementations already exist. 

fetch-execute-store model of program execution.  
Rather, other architectures already exist, for 
example, neural nets, FPGAs. 

the static program: the program stays put and the 
data comes to it.  Rather, the data could stay put 
and the processing rove over it. 



3: The output paradigm 
a program is a black box: it is an oracle abstracted 
away from any internal structure.  Rather, the 
trajectory taken by a computation can be as 
interesting, or more interesting, than the final 
result. 

a program has a single well-defined output 
channel.  Rather, we can chose to observe other 
aspects of the physical system as it executes. 

a program is a mathematical function: logically 
equivalent systems are indistinguishable.  Rather, 
correlations of multiple outputs from different 
executions, or different systems, may be of interest. 

4: The algorithmic paradigm 
a program maps the initial input to the final output, 
ignoring the external world while it executes.  
Rather, many systems are ongoing adaptive 
processes, with inputs provided over time, whose 
values depend on interaction with the open  
unpredictable environment; identical inputs may 
provide different outputs, as the system learns and 
adapts to its history of interactions; there is no 
prespecified endpoint. 

randomness is noise is bad: most computer science 
is deterministic. Rather, nature-inspired processes, 
in which randomness or chaos is essential, are 
known to work well.   

the computer can be switched on and off: 
computations are bounded in time, outside which 
the computer does not need to be active.  Rather,  
the computer may engage in a continuous 
interactive dialogue, with users and other 
computers. 

5: The refinement paradigm 
incremental transformational steps move a 
specification to an implementation that realises that 
specification.  Rather, there may be a discontinuity 
between specification and implementation, for 
example, bio-inspired recognisers. 

binary is good: answers are crisp yes/no, true/false, 
and provably correct. Rather, probabilistic, 
approximate, and fuzzy solutions can be just as 
useful, and more efficient.   

a specification exists, either before the develop-
ment and forms its basis, or at least after the 
development.  Rather, the specification may be an 
emergent and changing property of the system, as 
the history of interaction with the environment 
grows. 

emergence is undesired, because the specification 
captures everything required, and the refinement 
process is top-down.  Rather, as systems grow 
more complex, this refinement paradigm is 
infeasible, and emergent properties become an 
important means of engineering desired behaviour.  

6: The “computer as artefact” paradigm 
computation is performed by artefacts: 
computation is not part of the real world.  Rather, 
in some cases, nature “just does it”, for example, 
optical Fourier transforms. 

the hardware exists unchanged throughout the 
computation.  Rather, new hardware can appear as 
the computation proceeds, for example, by the 
addition of new resources.  Also, hardware can be 
“consumed”, for example, a chemical computer 
consuming its initial reagents.  In the extreme, 
nanites will construct the computer as part of the 
computation, and disassemble it at the end.   

the computer must be on to work.  Rather, recent 
quantum computation results [46] suggest that you 
don’t even need to “run” the computer to get a 
result!  

 

Doubtless there are other classical paradigms that 
we accept almost without question.  They too can 
be fruitfully disbelieved. 

 
The Real World : breaking the Turing paradigm 
 
Real World as its own computer 
The universe doesn’t need to calculate, it just does 
it.  We can take the computational stance, and 
view many physical, chemical and biological 
processes as if they were computations: the 
Principle of Least Action “computes” the shortest 
path for light and bodies in free fall; water 
“computes” its own level; evolution “computes” 
fitter organisms; DNA and morphogenesis 

“computes” phenotypes; the immune system 
“computes” antigen recognition. 

This natural computation can be more effective 
than a digital simulation.  Gravitational stellar 
clusters do not “slow down” if more stars are 
added, despite the problem appearing to us to be 
O(n2).  And as Feynman noted [30],  the real world 
performs quantum mechanical computations 
exponentially faster than can classical simulations. 



Real World as our computer 
Taking the computational stance, we may exploit 
the way the world works to perform 
“computations” for us.   We set up the situation so 
that the natural behaviour of the real world gives 
the desired result. 

There are various forms of real world sorting and 
searching, for example.  Centrifuges exploit 
differences in density to separate mixtures of 
substances, a form of gravitational sorting.  
Vapours of a boiling mixture are richer in the 
components that have lower boiling points (and the 
residual mixture is richer in those that have higher 
boiling points); distillation exploits this to give a 
form of thermal sorting.  Chromatography provides 
chemical means of separation.  Ferromagnetic 
objects can be separated out  from other junk by 
using industrial-strength magnets.  Optics can be 
exploited to determine Fourier transforms.  

Maggots perform the “computation” of eating dead 
flesh: historically, maggots were used to clean 
wounds, that is, to perform their computation in a 
context to benefit us.  More recently, bacterial 
metabolisms have been altered to perform the 
“computation” of cleaning up pollution. 

Access control computations abound.  Suitably 
constructed shape is used to calculate whether the 
key inserted in a tumbler lock is the correct one.  
Physical interlocks are exploited for safety and 
practical reasons across many industries: for 
example, it is impossible to insert a nozzle from a 
leaded petrol pump into the fuel tank of a unleaded 
petrol car.   

Real World as analogue computer 
We may exploit the real world in more indirect 
ways.  The “computations” of the “real world as 
our computer” are very direct.  Often we are 
concerned with more abstract questions.  
Sometimes the physical world can be harnessed to 
provide results that we need:  we may be able to set 
up the situation so that there is an analogy between 
the computation performed by the real world, and 
the result we want. 

There is an age-old mechanism for finding the 
longest stick of spaghetti in an unruly pile, 
exploiting the physics of gravity and rigidity: we 
can use this to sort by setting up an analogy 
between spaghetti strand length and the quantity of 
interest.  Mercury and alcohol thermometers use a 
physical means of computing temperature by fluid 
expansion: the analogy is between the length of the 
fluid column and the temperature.  Millikan’s 
calculation of the charge on an electron exploits 
relationships between velocity of falling oil drops, 

viscosity of air, the charge on those drops, and the 
strength of surrounding electric fields.   

Classical computing already exploits physics at the 
level of electron movements.  But there are other 
ways of exploiting nature. 

Analogue computing itself exploits the properties 
of electrical circuits as analogues of differential 
equations. 

DNA computing [4] encodes problems and 
solution as sequences of bases (strands) and seeks 
to exploit mechanisms such as strand splitting, 
recombination and reproduction to perform 
calculations of interest.  This can result in vast 
parallelism, of the order of 1020 strands. 

Quantum computing [70] presents one of the 
most exciting developments for computer science 
in recent times, breaking out of the classical Turing 
paradigm.  As its name suggests, it is based on 
quantum physics, and can perform computations 
that cannot be effectively implemented on a 
classical Turing machine.1  It exploits interference, 
many worlds, entanglement and non-locality.  
Newer work still is further breaking out of the 
binary mind-set, with multiple-valued “qudits”, and 
continuous variables.  Research in quantum 
computing is mushrooming, and it is apparent that 
we are not yet in position to fully exploit the 
possibilities it offers.  If only small quantum 
computers were to prove practical then uses could 
still be found for simulating various quantum 
phenomena. However, if larger computers prove 
possible we will find ourselves unprepared.  

• Why are there so few distinct quantum 
algorithms?  How can new ones be found? 

• How do we discover new a quantum algorithms 
to solve a given problem? How do we use 
existing algorithms to solve new problems?  
How can we find the best algorithms to use 
given limited computational resources? More 
generally…. 
• What would a discipline of quantum software 

engineering look like?  (See later for more 
detail.) 

                                                           

1  Analogue (as in continuous) computing also breaks the 
Turing paradigm.  But the real world is neither 
analogue nor classically discrete; it is quantum.  So 
analogue computing might be dismissed as of 
theoretical interest only.  However, the same dismissal 
might then be made of classically discrete (classical) 
computation!  (The real world is also relativistic, but 
that paradigm has not been embraced by computation 
theory, yet.) 



• How can quantum computers be harnessed most 
effectively as part of a hybrid computational 
approach?  

Real World as Inspiration 
Many important techniques in computer science 
have resulted from observing the real world.  Meta-
heuristic search techniques have drawn inspiration 
from physics (simulated annealing), evolution 
(genetic algorithms [35] [67], genetic programming 
[7] [52]), neurology (artificial neural networks [11] 
[51] [66] [82]), immunology (artificial immune 
systems [24]), plant growth (L-systems [80]), 
social networks (ant colony optimisation [12]),  
and other domains.   

These have all proved remarkably successful, or 
look highly promising, yet the science 
underpinning their use comes nowhere near 
matching the science of classical computing.  
Given a raft of nature-inspired techniques we 
would like to get from problem to solution 
efficiently and effectively, and we would like to 
reason about the performance of the resulting 
systems.  But this falls outside the classical 
refinement paradigm. 

• What would a science of non-classical 
refinement look like?  A science would allow us, 
for example, to reason confidently about the 
behaviour of neural networks in critical 
applications, to derive highly effective systems 
targeted at highly limited resources.   

In the virtual worlds inside the computer, we are no 
longer constrained by the laws of nature.  Our 
simulations can go beyond the precise way the real 
world works.  For example, we can introduce novel 
evolutionary operators to our genetic algorithms, 
novel kinds of neurons to our neural nets, and 
even, as we come to understand the embracing 
concepts, novel kinds of complex adaptive systems 
themselves.  The real world is our inspiration, not a 
restriction. 

• How can we use nature inspired computation to 
build “better than reality” systems?  What are the 
computational limits to what we can simulate? 

• What is the best you can do given many 
components, each with highly restricted memory 
and processing ability? 

 
Massive parallelism : breaking the von Neumann 
paradigm 
 
Parallel processing (Cellular Automata [93], etc) 
and other non-classical architectures break out of 
the sequential, von Neumann, paradigm.  (The fact 
that the sequential paradigm is named after von 
Neumann should not be taken to imply that von 
Neumann himself was an advocate of purely 
sequential computation; indeed, he was also one of 
the early pioneers of CAs [69].) 

Under the classical paradigm assumptions, any 
parallel computation can be serialised, yet 
parallelism has its advantages. 

Real-time response to the environment.  The 
environment evolves at its own speed, and a single 
processor might not be able to keep pace.  
(Possibly the ultimate example of this will be the 
use of vast numbers of nanotechnological 
assemblers (nanites) to build macroscopic artefacts.  
A single nanite would take too long, by very many 
orders of magnitude.) 

Better mapping of the computation to the problem 
structure.  The real world is intrinsically parallel, 
and serialisation of its interactions to map the 
computational structure can be hard.  Parallelism 
also permits colocation of each processor and the 
part of the environment with which it interacts 

most.  It then permits colocation of the software: 
software agents can roam around the distributed 
system looking for the data of interest, and meeting 
other agents in a context dependent manner.   

And once the classical paradigm assumptions are 
challenged, we can see that serialisation is not 
necessarily equivalent. 

Fault tolerance.  Computation requires physical 
implementation, and that implementation might 
fail.  A parallel implementation can be engineered 
to continue working even though some subset of its 
processors have failed.  A sequential 
implementation has only the one processor. 

Interference/interaction between devices.  
Computation requires physical implementation, 
and those implementations have extra-logical 
properties, such as power consumption, or 
electromagnetic emissions, which may be 
interpreted as computations in their own right (see 
later).  These properties may interfere when the 
devices are running in parallel, leading to effects 
not present in a serialised implementation.  
(Possibly the ultimate example of this is the 
exponentially large state space provided by the 
superposed parallel qubits in a quantum computer.) 



The use of massive parallelism introduces new 
problems.  The main one is the requirement for 
decentralised control.  It is just not possible to 
have a single centralised source exercising precise 
control over vast numbers of heterogeneous 

devices (this is merely a covert attempt to serialise 
the system).  Part of this problem is tackled by the 
sister Grand Challenges in Ubiquitous Systems, 
and part is addressed in the later section on open 
processes. 

 
In the eye of the beholder : breaking the output paradigm 
 
The classical paradigm of program execution is 
that an abstract computation processes an input to 
produce an output.  This input-output mapping is a 
logical property of the computation, and is all that 
is important: no intermediate states are of interest, 
the computation is independent of physical 
realisation, and different instances of the 
computation yield precisely the same results. 

Computation, however, is in the eye of the 
beholder.  Algorithms are implemented by physical 
devices; intermediate states exist, physical changes 
happen in the world, different devices are 
distinguishable.  Any information that can be 
observed in this physical world may be used to 
enrich the perceived computation [19]. 

Logical Trajectory Observations 
An executing algorithm follows a trajectory 
through the logical state space.  (Caveat: this is a 
classical argument: intermediate quantum computa-
tional states may be in principle unobservable.)  
Typically, this trajectory is not observed (except 
possibly during debugging).  This is shockingly 
wasteful: such  logical information can be a 
computational resource in its own right.  For 
example, during certain types of heuristic search 
the trajectory followed can give more information 
about a sought solution than the final “result” of 
the search itself.   

• How can logical observations made during 
execution be used to give useful information?  

Physical Trajectory Observations 
An executing algorithm is accompanied by 
physical changes to the world: for example, it 
consumes trajectory-dependent power as it 
progresses, and can take trajectory-dependent time 
to complete.  Such physical resource consumption 
can be observed and exploited as a computational 
resource, for example, to deduce features of the 

logical trajectory.  (For example, some recent 
attacks on smart cards have observed the power 
consumption profile and data-dependent timing of 
internal operations to deduce secret key 
information [17].)  Such physical observations 
provide a very powerful source of information, 
currently exploited mainly by attackers, but 
available for more general computational use.   

• What physical observations are feasible, and 
correlated with logical trajectories?   

• What new uses can be found for such  physical 
observations?   

Differential Observations 
An executing algorithm is realised in a physical 
device.  Physical devices have physical 
characteristics that can change depending on 
environmental conditions such as temperature, and 
that differ subtly across logically identical devices.  
(Indeed, much of the rationale for digitisation is the 
removal of these differences.)  So one can make 
observations not merely of the output of a single 
execution, but of set of outputs from a family of 
executions, of multiple systems, of different but 
related systems.  For example, if repeated 
executions of a search each get 90% of elements of 
a sought solution correct then repeated executions 
might be combined to give an overall solution.   

• How can diversity of multiple computations be 
exploited?  

• How should diversity be engineered?  By 
repeated mutation of a source program? By 
embracing technologically diverse solution 
paradigms?  

Higher-order Observations 
These are observations not of the program 
execution itself, but of the execution of the 
program used to design (the program used to 
design…) the program.   

 
Open processes : breaking the algorithmic paradigm 
 
In the classical paradigm, the ultimate goal of a 
computation is reaching a fixed point: the final 
output, the “result” of the computation, after which 

we may switch off the computer.  The majority of 
classical science is also based around the notion of 
fixed-point equilibrium and ergodicity  (ergodicity 



is the property that the system has well defined 
spatial and temporal averages, because any state of 
the system will recur with non-zero probability). 

Modern theories of physics consider systems that 
lack repetition and stability: they are far from 
equilibrium and non-ergodic.  Perhaps the most 
obvious non-ergodic, far from equilibrium system 
is that of life itself, characterised by perpetual 
evolution (change).  Most human problems are also 
best described in such terms; since computation is 
ultimately in service of such problems, the 
implications of non-ergodic, far from equilibrium 
physics must be considered in relationship to 
computing’s future. 

Consider the most basic of chaotic systems: the 
logistic process, parameterised by R. 
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The behaviours of various logistic processes as a 
function of R are shown in Figure 1, where each 
point on the plot is a point on the attractor.  

 

Figure 1: Points on the attractors of various logistic 
processes, versus the parameter R 

For values of 1 < R < 3, these logistic processes 
have a fixed point attractor.  For R = 3 they an 
attractor of period two.  As we raise R, the attractor 
becomes period four, period eight, etc.  This period 
doubling continues as we raise R, and the values of 
R where each doubling occurs get closer together.  
For R > 3.569945671… the logistic process’s 
attractor goes through an infinite number of values 
(except for a few “islands” or order, of attractors 
with multiples of odd periods).  There is a phase 
transition from order (the region of period 
doubling) to chaos (“random” behaviour).  The 
phase transition point at R = 3.569945671… is the 
so-called edge of chaos [60]. 

Consider a discretised process whose underlying 
(continuous) dynamics are those of the logistic 
equation.  Imagine taking measurements from this 
process.  Take very coarse measurements: say the 
process outputs 1 if , and 0 otherwise; and 
take samples of length L bits.  For a given L,  
construct an automaton that represents the process.  

So now the logistic processes generated by various 
values of R are being interpreted as a variety of 
automata: logistic machines.  It turns out that there 
is a clear phase transition (a peak in the machine 
size versus the entropy of the bit sequence) as we 
move from the period doubling region to the 
chaotic region.   

0.5x >

At the phase transition, the machine size versus the 
length of the sequence L, expands without bound.  
That is, at the edge of chaos, the logistic machine 
requires an infinite memory machine for accurate 
representation.  There is a leap in the level of 
intrinsic computation going on in the logistic 
machine at the edge of chaos.  (In terms of the 
Chomsky hierarchy, the machine has gone from the 
level of regular grammars to the level of context-
free grammars.) 

At the edge of chaos, we can add new resources 
(computational or physical) to get results that are 
neither redundant (as they are in the structured 
period doubling regime) nor random (as in the 
chaotic regime).  Within the classical paradigm, 
such conditions would be anathema, indicating 
unceasing variety that never yields “the solution”.  
But in life-like systems, there is simultaneously 
sustained order, and useful innovation.  In this 
setting, emergence of the unforeseen is a desirable 
property, rather disruptive noise.  

Some computational approaches attempt to exploit 
the biological paradigm: cellular automata, 
evolutionary computation, recurrent networks 
(autocatalytic, neural, genomic, immune system, 
ecological webs, …), social insect and agent-based 
systems, DNA-computing, and nanite-systems that 
build themselves.  However, in most of these cases, 
the implementations of such systems have been 
locked into themselves, closed, unable to take on 
new matter or information, thus unable to truly 
exploit emergence. 

We should consider open systems, systems where 
new resources, and new kinds of resources can be 
added at any time, either by external agency, or by 
the actions of the system itself.  These new 
resources can provide gateway events, that 
fundamentally alter the character of the system 
dynamics, by opening up new kinds of regions of 
phase space, and so allowing new possibilities.  
Computational systems are beginning to open 
themselves, to unceasing flows of information (if 
not so much to new matter).  The openness arises, 
for example, through human interactivity as a 
continuing dialogue between user and machine 
[89], through unbounded networks, through robotic 
systems with energy autonomy.  As computers 
become ubiquitous, the importance of open systems 
physics to understanding computation becomes 
critical.  The solutions we expect from people are 



ongoing processes, and this should be our expectation from computers too. 

 
A coherent revolutionary Challenge, that also respects the 
past 
 
Classical physics did not disappear when modern 
physics came along: rather its restrictions and 
domains of applicability were made explicit.   

Similarly, the various forms of non-classical 
computation will not supersede classical 
computation: they will augment and enrich it.  And 
when a wide range of tools is available, we can 
pick the best one, or the best combination, for each 
job.  For example, it might be that using a quantum 
algorithm to reduce a search space, and then a 
meta-heuristic search to explore that, is more 
effective than using either algorithm alone. 

We would like  

to create a general flexible conceptual 
framework that allows effective and efficient 
exploitation of hybrid approaches, including 

classical and non-classical components 

The journey is the important thing.  At various 
points in journey-space researches will alight to 
mark their way, leaving behind diary entries to 
which they may return at a later date.  In common 
parlance these intermediate recordings may be 
regarded as “achievements”.  Opportunities are 
manifold.  We expect journeys relevant to the sub-
disciplines to be articulated separately; several 
have already been prepared.  These are given in the 
appendixes.  Also relevant are the sister Ubiquitous 
Systems challenges.   

It is important these separate journeys are not seen 
as independent explorations.  Rather, their results 
and insights should provide valuable groundwork 
for the overarching challenge 

to produce a fully mature science of all forms 
of computation, that unifies the classical and 

non-classical paradigms 

 
The Grand Challenge Criteria 
 
It arises from scientific curiosity about the 
foundation, the nature or the limits of a scientific 
discipline. It arises from questioning the 
assumptions of the classical paradigms, and aims at 
the creation of a new science. 

It gives scope for engineering ambition to build 
something that has never been seen before.  It aims 
to build a new science; the engineering 
opportunities will follow. 

It will be obvious how far and when the challenge 
has been met (or not).  It will never be met fully: it 
is an open journey, not a closed goal.  The science 
will continue to mature, until itself overtaken by 
the next paradigm shift. 

It has enthusiastic support from (almost) the entire 
research community, even those who do not 
participate and do not benefit from it.  No.  
However, in the best tradition of paradigm shifts, 
the change will occur. 

An important scientific innovation rarely makes its way 
by gradually winning over and converting its 

opponents: it rarely happens that Saul becomes Paul. 
What does happen is that the opponents gradually die 

out, and that the growing generation is familiarised 
with the ideas from the beginning. 

 – Max Planck, Scientific Autobiography, 1949 

It has international scope: participation would 
increase the research profile of a nation.  This is a 
new fundamental area of computer science. 

It is generally comprehensible, and captures the 
imagination of the general public, as well as the 
esteem of scientists in other disciplines.  Much 
popular literature already exists in several of these 
areas, written by scientists in other disciplines 
(quantum computing, complexity, nanotech, …), 
and so they and the general public are arguably 
already ahead of the CS community! 

It was formulated long ago, and still stands.  Its 
seeds have been around for a long time, but it has 
only recently become of obvious importance. 

It promises to go beyond what is initially possible, 
and requires development of understanding, 
techniques and tools unknown at the start of the 
project.  The structure of the Challenge mirrors the 
journey suggested by this criterion. 

It calls for planned co-operation among identified 
research teams and communities.  It is a multi-
disciplinary Challenge, with contributions needed 
from a range of research specialities. 

It encourages and benefits from competition among 
individuals and teams, with clear criteria on who is 



winning, or who has won.  There need not be a 
single “winner”. Diversity of solutions should be 
encouraged to be applicable to a range of 
application domains.  Winners may emerge in 
particular application domains, as the strengths of 
the various techniques become clear. 

It decomposes into identified intermediate research 
goals, whose achievement brings scientific or 
economic benefit, even if the project as a whole 
fails.  There are several components to the 
Challenge that can be explored in parallel. 

It will lead to radical paradigm shift, breaking free 
from the dead hand of legacy.  Non-classical 
computing is a radical paradigm shift! 

It is not likely to be met simply from commercially 
motivated evolutionary advance.  Applications 
might be supported by industry, but it is unlikely 
that the development of the underlying science 
would be.
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Initial Journeys and Waypoints 
 
The appendixes that follow comprise a collection 
of suggested journeys that could be brought under 
the umbrella of Non-Classical Computation.  It is 
assumed that these journeys would be conducted 
not in isolation, but in the context of the overall 
challenge, informing it, and being informed by it.  
The currently identified journeys are: 

• Non-Classical Philosophy – Socially Sensitive 
Computing 

• Non-Classical Physics – Quantum Software 
Engineering 

• Non-Classical Refinement – Approximate 
Computation 

• Computing in non-linear media – reaction-
diffusion and excitable processors 

• Artificial Immune Systems 
• Non-Classical Interactivity – Open Dynamical 

Networks 
• Non-Classical Architectures – Evolving 

Hardware 
• Non-Classical Architectures – Molecular Nano-

technology 
• Non-von Architectures – Through the Concur-

rency Gateway 

 
Journey:  Non-Classical Philosophy – Socially Sensitive 
Computing 
 
Wittgenstein produced two major works on the 
philosophy of language: the 1921 Tractatus [91], 
and the 1953 Philosophical Investigations [92].  
We can use the Tractatus and its relationship to the 
world, as a model of classical computation.  
However, Wittgenstein found flaws in his initial 
work, and he explored these in his later 
Philosophical Investigations.  Can we use these 
later ideas as a model of post-classical 
computation? 

A Philosophical Paradigm and 
Computing 
Wittgenstein’s Tractatus encapsulates a formal and 
logical representational of language into a 
descriptive form based upon denotational (or 
referential) semantics.  Given the Church-Turing 

Thesis we can take the Tractatus as a paradigmatic 
description of classical computer science.  

A major result of the Tractatus stance is that every 
object is potentially unambiguously describable.  
Let us define a ‘rational’ set to be a set where 
there is a finite set of rules that can include 
unambiguously any member of that set and 
unambiguously excludes any non-member of that 
set.  All the sets referenced by the Tractatus are 
rational and context independent, or have an 
explicit context that is also rational.  The Tractatus 
provides an extensive model of computer 
languages.   

There are social consequences of the view adopted 
by the Tractatus in that it is assumed that rules can 
be created for all situations and as such these rule 
can bypass human judgement.  It also assumes that 

http://www.cs.kent.ac.uk/research/groups/crg/


there is only one correct way of seeing the world 
and so human existence can be governed by some 
finite set of laws.   

Dual Semantics 
Computer languages have a dual semantics.  The 
names given to data items, procedures and sub-
routines at the highest level have referents in the 
world.  The analysis of the problem domain 
identifies constructs in the world that are meant to 
be stable and unchanging (as per Tractatus 
referents) to which names can be given and 
meaning assigned.  Yet the ultimate referent is the 
bit, the mechanical equivalent of Wittgenstein’s 
referent objects.  At the bit level the program links 
to the world and has meaning, which allows the 
program to have “sense” with respect to the 
computer.   

Program 

Problem Domain 

Computer States (bits) 

Figure 2. The dual semantics 

But according to the Tractatus, a proposition can 
have one and only one complete analysis.  Such an 
analysis is dependent upon only the essential 
features of the proposition (here, program) that link 
it to the referent objects (here, the bit).  So the 
alternative high-level interpretation of a program 
depends upon its accidental features.  This 
develops a peculiar tension in program design that 
is hard to keep stable, particularly with respect to 
the informal, and often undefined, mechanism 
which links the program names with the user’s 
domain.  Further, the ‘objects’ that are usually 
chosen to be referenced in the informal analysis of 
the problem domain do not normally have all the 
features required of Wittgenstein’s objects. 

The Paradigm Leap 
The Tractatus is a magnificent piece of work and is 
an effective description of how programming 
languages should be linked to a computer through 
‘sense’ (as with meaning) assignment. There is no 
problem with the engineering necessity of this 
approach to sense and meaning. On a broader scale 
it sidesteps many of the paradoxes of the linguistic 
philosophy of the day.  However, it has one fatal 
flaw when applied to the human use of language 
and Wittgenstein eventually exposed this flaw. He 
noted that it is not possible to unambiguously 
describe everything within the propositional 
paradigm.  He found that the normal use of 
language is riddled with example concepts that 
cannot be bounded by logical statements that 

depend upon a pure notion of referential objects.  
One of his illustrations is an attempt to define a 
“game”.  Such a definition cannot be achieved that 
either excludes all examples that are not games or 
include all examples that are.  Most things are not 
potentially unambiguously describable.  This lack 
of boundaries for concepts is the family 
resemblance effect.  It is through such 
considerations that Wittgenstein proposed his new 
linguistic philosophy.   

We call the basis of this new philosophy inferential 
semantics.  Let us define an ‘irrational’ set to be a 
set where no finite set of rules can be constructed 
that can include unambiguously any member of 
that set and, at the same time, unambiguously 
exclude any non-member of that set.2 

Even though there are irrational sets we still have 
rational sets, and so denotation remains one 
mechanism for relating meaning to a name.  For 
irrational sets there is an additional and more 
important mechanism for meaning assignment 
based on human usage and context.  It is this latter 
mechanism that provides the link between the 
program and the world it is designed to represent 
and is the other half of the dual semantics. 

Some Predictions  
So we have computer programs with a semantics 
based upon computer bits, but we create programs 
that cannot rationally be assigned meaning to the 
very problem domain for which they have been 
written.  Programs must remain in the domain of 
rational sets if they are to be implemented on a 
machine.  However, we do have the freedom to use 
the program’s accidental properties without 
affecting the program’s meaning with respect to the 
computer.  We can chose the names we use and 
select the computer organisation from the 
possibilities bounded by the essential program. 

A proposition, and hence a program, can adopt 
many equivalent forms.  It is the job of a compiler 
to make a transformation of a program in order that 
it is acceptable for a particular computer to run it.  
Apart from some limitations, the choice of form is 
in the hands of the programmer. 

This means that: 

• reverse engineering requires domain information 
• formal ‘objects’ (e.g. operating systems) will be 

stable but informal ‘objects’ (e.g. persons, chairs, 
                                                           
2 Note that we are not talking about such things as fuzzy 

sets, or probabilistic sets.  These sets are rational in 
that a membership number is assigned by a finite set 
of rules. 



games) will never be fully captured or be stable 
because they are irrational sets 

• it will not be possible to completely represent 
certain human functionality such as natural 
language understanding on any machine that is 
not adaptable 

• increasing a training set for machine-learning 
algorithms will eventually cause degradation in 
recognition performance if the set includes 
irrational distinctions 

Inferential Semantics 
The tension caused by the dual semantics that 
pivots on the essential and accidental meaning of 
the signs used in programs has been recognised as 
can be seen by the continued search for new 
languages, program structuring, and systems design 
methods (e.g. conceptual modelling, object 
orientation).  The central problem of the human 
context has also been addressed through the pursuit 
of natural language understanding, naïve physics, 
case-based reasoning and adaptive interfaces.  
There is a belief that given sufficient power or 
moving beyond the Turing machine would 
somehow solve the problem.  However, none of the 
approaches tried so far have really succeeded, not 
with many-fold increases in computer power, or 
parallel mechanisms such as neural nets.  Many of 
the pursuits have been constrained by the formal 
bounds represented by the Tractatus and those 
approaches that have broken away have not 
bridged the gap identified here. 

The Challenge 
An alternative to Wittgenstein’s family 
resemblance is Lakoff’s [56][57] use of prototypes 
(paradigms) and metaphor instead of reference.  
With either route we have a more acceptable 
approach to human relationships in that there will 
always be a need for human judgement because 
what is acceptable behaviour or performance is a 
time sensitive and socially dependent notion.  The 
requirement to encapsulate a wide range and ever 
changing perceptions of a problem domain will be 
the need for a continuous link with human activity.  
Such perceptions cannot be predicted and hence 
planed for in advance.  So many of the current 
principles of design will have to be shelved and 
two distinct design paths will need to be forged that 
involve the two independent elements of a 
program; the formal rational and the informal 
irrational (figure 3). 

The challenge is  

to construct computing based upon family 
resemblance rather than sets, paradigms 

rather than concepts, and metaphor rather 
than deduction, and to devise systems that 
make judgement rather than take decisions 

One possibility is that we might be able to write 
dynamic, socially sensitive interfacing-compilers 
that can match any program to any user (figure 3). 

Minimum Program 

Computer States (bits)

Problem Domain 

Names & Organisation 

 

Social sensitive 
feedback 

Contexts allows 
the use of 

rational sets 

Figure 3. Showing where change can occur to 
solve the dual semantic problem 

Such a compiler would be in ‘conversation’ with 
its user, other users and machines via (say) the 
Internet absorbing the human cultures and 
language so that its generated semantic and 
semiotic mappings make a program usable by a 
person.  This might provide a more natural 
communication between people and machines; it 
may identify what is really meant by common 
sense. 

The overall Challenge 
GC7 provides a series of challenges in non-
classical computing.  It is hoped that such 
explorations will produce computational engines 
that rise beyond some of the limitations found in 
classical computation.   

Many of these limitations are caused by the 
existence of irrational sets, or are created by the 
mismatch between the computer and its system 
with the problem domains. 

The challenge can be expressed as 

 to develop a Science of Mechanisms  

The science would develop a way of arranging 
mechanisms into family organisations, and in 
particular identify such mechanisms by their 
organisational features; features that are relevant to 
a counter family organisation of problem domains.  
A result would be a way of reducing complexity of 
implementation by construction mechanisms that 
match the problem.  Flexibility to change (as 
required for irrational sets) would be provided by a 
change in mechanism definition.  Mechanism 
definition would also include the soft variants in 



terms of program organisation and the possibility of combining distinct physical implementations. 

 
Journey:  Non-Classical Physics – Quantum Software 
Engineering 
 
This journey of Non-Classical Computation is  

to develop a mature discipline of Quantum 
Software Engineering 

We wish to be ready to exploit the full potential of 
commercial quantum computer hardware, once it 
arrives, projected to be around 2020 (or, less 
optimistically, “20 years from now”, no matter 
when “now” is). 

We might have to wait a while for commercial 
quantum computers, but when they arrive, Moore’s 
law suggests they will grow in power very quickly.  
Doubling a classical computer’s register length 
(roughly) doubles classical computing power, but 
adding just one bit to a quantum computer’s 
register doubles quantum computing power.  We 
need to be ready to exploit these devices once they 
appear.  However, the majority of today’s theory of 
computation, algorithms, programming languages, 
specification models, refinement calculi, and so on, 
is purely classical.  The challenge is to build the 
corresponding languages, tools and techniques for 
quantum software engineering.   

We need to raise the level of thinking about 
quantum programs.  Today we reason about 
quantum programs predominantly at the level of 
quantum gates: imagine how far classical 
computing would have progressed if the only 
language we had to describe programs was that of 
AND and OR gates!  Most importantly, we need a 
new paradigm (or paradigms) for thinking about 
quantum computations, to augment the existing 
classical declarative, functional, and imperative 
paradigms. 

The whole of classical software engineering needs 
to be reworked and extended into the quantum 
domain.   

Foundations 
Much foundational work is still needed.  We need 
further developments of the fundamentals of 
quantum computability.  We need to investigate 
quantum algorithmic complexity: time, space, 
“parallel universe space”, and any other parameters 
of interest. 

We have models of classical computation – von 
Neumann machines with fetch-execute-store, 
imperative, functional and logic languages, etc – 
that let us write and reason about classical 

programs without worrying about logic levels, 
transistors, gates, etc.  In much the same way we 
need metaphors and models of quantum 
computation, that enable us design and reason 
about quantum algorithms without recourse to QM, 
unitary matrices, etc.  Does Deutsch’s many-worlds 
description provide the best programming 
metaphor, or are there better ones?  Whatever the 
actual metaphors chosen, they must be formalised 
into new computational models. 

We need theories and models of that weirdest 
quantum process of all: that of quantum 
entanglement.  Two qubit entanglement is 
relatively well understood – but multi qubit 
entanglement, and qudit entanglement, are barely 
understood. 

Quantum Computational Models 
There are many models of classical computation, 
such as Turing machines, functional combinators, 
logic circuits, fixed point approaches, and so on.  
Within the context of classical computation these 
are essentially equivalent, yielding identical results 
but from vastly differing underlying formalisms.  
Within the quantum computational world this unity 
is less clear.  For example, a fixed-point algorithm 
on a quantum computer could include a 
superposition of all fixed points, not just the stable 
one obtained by repeated substitution.   

This suggests that the various classical formalisms 
may generalise to the quantum realm in different 
ways.  Currently, the most extensively studied 
quantum computational model is the circuit model.  
But designing high-level algorithms, reasoning 
about complexity, or other such important tasks, 
are very hard in this formalism.   

Additionally, this model may not be the most 
appropriate quantum generalisation.  The 
underlying structure of Quantum Information may 
be so radically different from anything that we 
currently understand that we need a whole new 
approach.  Quantum mechanical versions of 
classical models may simply be insufficiently 
powerful to encompass the new properties offered 
by the quantum domain.   

However, before we attempt to resolve such a 
daunting issue, there is much to be gained from 
examining the various classical models, to see if, 
and how, and how far, they might provide us with 



new insights into computation within the quantum 
domain. 

We need to thoroughly investigate the various 
classical computational models in terms of their 
generalisability to cover quantum properties.  This 
will either provide powerful new generalised 
quantum computational models, or potentially 
demonstrate that a truly novel, fundamentally 
quantum, paradigm is indeed required.   

Additionally, this work will feed back into classical 
computation (one example of this interrelationship 
between the necessity of quantum reversibility and 
the possibility of designing efficient classical 
“reversible compilers”). 

Languages and Compilers 
We need to determine the fundamental building 
blocks of quantum programming: is there a simple 
extension of GCL? of classical logic languages? of 
classical assembly languages? is an entirely new 
paradigm needed?  

We need to design suitable assembly level and 
high level Q-languages (analogues of classical 
imperative, declarative, and functional languages, 
at 3rd, 4th, 5th generation, and beyond).  We need to 
design and build the corresponding Q-compilers 
for these languages. 

We need to design and implement (initially, 
simulate) new Q-algorithms (beyond the current 
ones of Min Max, Shor’s period finding algorithm 
used for factorization, and Grover’s algorithm for 
DB searching).  What classes of algorithms may be 
quantised?  How may certain well-known classical 
algorithms be quantised?    

We need to develop suitable reasoning systems 
and refinement calculi for these languages.  (Even 
sequential composition is different in the quantum 
regime, due to the fundamental unobservability of 
the intermediate state.)  Although higher level 
specifications may well abstract away from details 
of any underlying classical versus quantum 
implementation, there may be certain application-
specific quantum specification languages, for 
example, for quantum protocols. 

Methods and Tools 
Before commercial quantum computers are 
available, we have to make do with simulations on 

classical machines.  We need to implement 
powerful quantum computer simulators, in order 
to perform computational experiments and validate 
language and algorithm designs.  (Computational 
resources for simulating quantum algorithms can 
be exponentially large.  Something like a 
simulation engine of multiple FPGAs might be 
appropriate, to get the required massive 
parallelism.)   

We need to discover what higher level structuring 
techniques and architectures are suitable for 
quantum software.  In particular, can classical 
structuring (such as object-orientation, or 
component based software), be extended to 
incorporate Q-software?  How can classical and 
quantum paradigms co-exist?  (It seems likely that, 
at least to start with, most software will remain 
classical, with a “call-out” to quantum power as 
needed.  But the development process needs to be 
able to handle such hybrid developments 
seamlessly.) 

Given that quantum execution is in principle 
unobservable, we need to discover new debugging 
and testing techniques for these Q-languages. 

We need to design ways of visualising Q-
algorithm execution, as an aid to understanding, 
design, and implementation. 

Novel Quantum possibilities 
Quantum information processing can do some 
things that cannot even be simulated by discrete 
deterministic classical computers.  We need to 
extend quantum software engineering to 
encompass these new domains.  

Quantum devices can produce genuine random 
numbers; classical digital simulations can produce 
only pseudo-random numbers.  We need to 
investigate the differences this causes, if any.  In 
the short term, will a quantum computer simulator 
need to be hooked up to a genuinely random 
number source?  In the longer term, what new 
power, what new difficulties, might emerge as a 
result of genuine randomness?  

Quantum entanglement offers many new 
possibilities, such as information teleportation.  We 
need to understand how entanglement can be 
applied to produce genuinely new algorithms, and 
new kinds of protocols.  

 
Journey:  Non-Classical Refinement – Approximate 
Computation 
 



This journey of Non-Classical Computation is   

to develop a science of approximate 
computation, and to derive from it a well-

founded discipline for engineering 
approximate software 

A radical departure from discrete correct/incorrect 
computation is required, a shift away from logics 
towards statistical foundations, such that 
meaningful estimates of ‘confidence’ emerge with 
each approximate result.  This implies that 
probabilities play an integral part in computation 
throughout the process.  The component 
probabilities and the eventual confidence estimates, 
if secured by large numbers (e.g. repeated sampling 
from a proposed distribution), imply a 
computational effort that is becoming increasingly 
feasible as a result of hardware advances as well as 
innovative developments in statistical modelling 
theory (e.g. reversible-jump Markov Chain Monte 
Carlo methods). 

Classical computation versus 
approximations 
The classical, discrete, view of computation has 
each step as either correct or incorrect, and the 
middle ground excluded.  This naturally leads to 
formal logics as the dominant underpinning 
framework.  The programmer devises the 
“formula”, which is intended to be an exact 
solution to the problem; this symbol structure is 
translated into a machine executable form and the 
manipulations that the programmer envisaged are 
performed automatically, at high speed and with 
complete accuracy.   

Consider the symbol structures being manipulated 
by a trained a multilayer perceptron (MLP), for 
example.  These are not formulae composed of 
operators and variables that admit a ready mapping 
to the operations and parameters of the human 
conception of the problem.  One consequence is 
that any adjustment to the function to be computed 
by an MLP involves complete retraining, because 
code-fixing is not an option.  The “formulae” 
cannot reasonably be devised by a programmer; 
they must be automatically generated from data 
samples. 

Typically, the output of an MLP classifier, a real-
value, is arbitrarily thresholded to obtain a class 
label.  This and other inherent weaknesses of an 
approximate classifier constructed with empirically 
determined (suboptimal) values for its parameters 
are widely acknowledged.  Ad hoc-ery is rife in 
neural computing, but work on error-bars already 
points the way towards a well-founded science. 

These innovative developments to move beyond 
the constraint of correct/incorrect results from 

hand-crafted formulae are but piecemeal strategies; 
they need to be woven into the basic fabric of a 
comprehensive model for approximate 
computation, not stitched-on to classical 
computation as useful extras, or mere curiosities. 

How would the classical paradigm be 
shifted? 
Taking the viewpoint that the computational task is 
an unknown (or intractable, see later) function, the 
computational goal is to approximate it in a way 
that holds the promise of reasonable optimality, but 
crucially associates a meaningful estimate of 
confidence with every output computed. In general 
terms, data-driven software development supplants 
specification-driven; computational tasks are 
viewed as data-defined rather than (abstract) 
specification-defined. 

In detail, the approach might be through a survey, 
sampling by, say, Markov Chain Monte Carlo 
methods across a continuum of potentially viable 
models.  By doing this within a Bayesian 
framework, rationalisable probabilities are attached 
to various elements throughout the computational 
process.  The outcome is a weighted average across 
a range of modelling possibilities.  It is a well-
founded approximation whose validity emerges as 
a secure estimate from the computational processes 
employed.  The infrastructure of the new paradigm 
seeks to avoid searching, comparing and selecting 
from amongst a discrete set of alternative models 
(and hence commitment to a specific model, or 
even discrete set of alternative models) by 
maintaining the range of potential models as a set 
of continuous parameters; probability theories, 
secured by large-number sampling, provide the 
over-arching framework. 

A fundamental basis of continuity avoids the 
brittleness inherent in discrete, classical 
computation.  Notice, for example, that the 
necessary discretisation of the real numbers that 
plagues classical computation is not similarly 
problematic for MLPs, despite their fundamental 
dependence upon the real continuum. 

Initially at least, classical computation will provide 
the virtual machine upon which the approximate 
computations will run, but hardware innovations 
coupled with the establishment of generally 
applicable approximation algorithms could change 
that dramatically.  However, building the required 
confidence in a classically programmed virtual 
machine is not the same scale of problem as doing 
it individually for every piece of application 
software. 

The initial challenge is to begin to establish the 
limits and the potential infrastructure of such a 
science of approximate computation.  This includes 



major subdomains, such as a discipline of 
engineering approximate software.  It also involves 
the identification and integration into a coherent 
framework of many activities that are currently 
pursued under a variety of labels, for example, 
statistical pattern recognition, some varieties of 
data mining, statistical data modelling, some 
technologies of inductive generalization or data-
driven computation.   

A science of approximate computation: 
when and where? 
The new science of approximate computation will 
not oust the classical one; it will sit alongside it as 
a new weapon in an armoury of well-founded 
alternative computational techniques to be used 
when appropriate. 

It will be appropriate to use whenever a 
computational task is defined more by samples of 
desired or observed behaviour than by an abstract 
specification.  It will also be appropriate to use 
whenever the problem is well defined but 
computationally intractable, where the particular 
task is appropriate for approximate solutions, albeit 
with a ‘confidence’ measure attached; there is no 
prohibition on certainty emerging as an extreme of 
approximation. 

Consider an illuminating extreme – safety-critical 
software.  Such systems would seem to absolutely 

require the classical strategy: they must be correct. 
However, the practical impossibility of this 
requirement leads to a slight relaxation: it is 
typically couched in terms of a very low 
failure/error rate, and the major component of the 
required assurances is extensive testing.  The 
bulwark of statistical reasoning, as an integral part 
of the testing, is thus dragged in by the back door 
(as it were) – how much better to integrate it into 
the fabric of the computation from beginning to 
end, instead of tagging in on the end as a stopgap 
for verification failure? 

Will ‘programming’ an approximation computer be 
more difficult than conventional programming?  
All we can say is it will be fundamentally different 
[74] – for example, data analysis, selecting 
sampling strategies, rather than formula derivation.  
The ‘programming’ difficulties that confront the 
user of this new paradigm will be directly 
determined by how successful we are in 
formulating the fundamental model(s) of 
approximate computation. 

Nothing in the above requires a new paradigm: any 
of the innovations envisaged could be realised 
within the scope of classical computation, as some 
already are.  However, although a screwdriver can 
be used to open a tin, it is quicker, neater and 
generally preferable to use a well-designed tin 
opener for the task. 

 
Journey:  Computing in non-linear media – reaction-
diffusion and excitable processors 
 
Nature diffuses, reacts and excites. Does it 
compute?  Everyday life gives us instances of 
propagating structures:  dynamics of excitation in 
heart and neural tissue, calcium waves in cell 
cytoplasm, the spreading of genes in population 
dynamics, forest fires.  Could we use the travelling 
structures — emerging in reaction-diffusion and 
excitable systems — to do computation?  This 
journey of Non-Classical Computation is   

to develop a science of computation using 
spatio-temporal dynamics and propagating 

phenomena, in many-dimensional amorphous 
non-linear media 

What is so particular about reaction-diffusion 
systems?  A non-linear chemical medium is 
bistable:  each micro-volume of the medium has at 
least two steady stable states, and the micro-
volume switches between these states.  In the 
chemical medium, fronts of diffusing reactants 
propagate with constant velocity and wave-form; 
the reagents of the wave front convert reagents 

ahead of the front into products left behind.  In an 
excitable chemical medium the wave propagation 
occurs because of coupling between diffusion and 
auto-catalytic reactions.  Auto-catalytic species 
produced in one micro-volume of the medium 
diffuse to neighbouring micro-volumes, and thus 
trigger an auto-catalytic reaction there.  So an 
excitable medium responds to perturbations that 
exceed the excitation threshold, by generating 
excitation waves.   

Why are excitation waves so good for computing?  
Unlike mechanical waves, excitation waves do not 
conserve energy, rather, they conserve waveform 
and amplitude, do not interfere, and generally do 
not reflect.  So excitation waves can play an 
essential role of information transmission in active 
non-linear media processors. 

Specialised non-linear media processors  
A problem’s spatial representation is a key feature 
of reaction-diffusion processors.  Data and results 



are represented through concentration profiles of 
the reagents, or spatial configurations of activity 
patterns.  A computation is also defined in a 
physical space.  The computation is realised by 
spreading and interacting waves of the reagents, or 
excitation patterns.  A computational code, or 
program, is interpreted in a list of possible 
reactions between the diffusing components, and in 
a form of diffusive or excitation coupling between 
micro-volumes of the computing medium.  
Usually, such properties could not be changed 
online.  However they can be determined and 
adjusted to work towards the solution of a 
particular problem.  Therefore most reaction-
diffusion processors are intentionally designed to 
solve a few particular problems — they are 
specialised.  Examples of working laboratory 
prototypes of specialised reaction-diffusion 
computing devices include Belousov-Zhabotinsky 
chemical medium image processors implemented 
(Kuhnert-Agladze-Krinsky and Rambidi designs), 
chemical processors for computation of a skeleton 
of planar shape, plane sub-division (Voronoi 
diagram), shortest path (Adamatzky-Tolmachev-De 
Lacy Costello designs), chemical processors for 
robot navigation and taxis (De Lacy Costello-
Adamatzky implementations).   

Experimental chemical computers are very rare 
species — there are just a handful of chemical 
processors in the world — why?  Because the 
design of every chemical processor requires at least 
a chemist and a computer scientist.  So one of the 
actual tasks deals with the make-up of non-
classical scientists is 

to dissolve boundaries between chemical-
physical sciences and theoretical computer 

science, training a new generation of scientists 
who tackle theory and experiments with ease 

Computational (logical) universality of 
non-linear media: dynamical vs. static 
architectures  
A natural process is called computationally 
universal, by analogy with mathematical machines, 
if it potentially can calculate any computable 
logical function, so realises a functionally complete 
set of logical gates in its spatio-temporal dynamics.  
So in the state of the given system, we need to 
represent information quanta (usually TRUE and 
FALSE values of a Boolean variable), logic gates 
(where information quanta are processes), and 
routes of information transmission or connections 
between the gates.  There are two ways to build a 
logical circuit in a non-linear system:  structural, or 
stationary, and structureless, or dynamic, designs. 

In a stationary design, which underlines an 
architecture-based universality, a logical circuit is 

embedded into a system in such a manner that all 
elements of the circuit are represented by the 
system’s stationary states; the architecture is static 
and its topology is essential for a computation.  
The architecture-based universality allows for 
applying conventional solutions to unconventional 
materials: we could fabricate varieties of traditional 
computers made of non-standard materials (glass 
tubes filled with chemicals, molecular arrays, 
excitable tissues).  Examples of stationary 
architectures of non-classical computers include 
Hjelmfelt-Weinberger-Ross mass-transfer or 
kinetic-based logical gates (a logical gate is 
constructed by adjusting flow rates of chemical 
species between several reactors), Tóth-Showalter 
circuits (a logical circuit comprises several narrow 
tubes filled with Belousov-Zhabotinsky excitable 
chemical medium, the tubes are connected via 
expansion chambers where logical functions are 
implemented by interacting wave fronts), and 
Adamatzky-de Lacy Costello palladium gate 
(implemented in simple non-excitable reaction-
diffusion chemical system).  

Most biological systems are “architecture-based 
computationally universal”.  Could they compute 
better if they lose this comparmentalisation?  If all 
neurons in our brain were to dissolve their 
membranes and fuse into an amorphous mass, 
could this “gooware” be computationally more 
powerful?  

Dynamic, or collision-based, computers employ 
mobile self-localisations, which travel in space and 
execute computation when they collide with each 
other.  Truth-values of logical variables are 
represented by absence or presence of the 
travelling information quanta.  There are no pre-
determined wires: patterns can travel anywhere in 
the medium, a trajectory of a pattern motion is 
analogous to a momentarily wire.  A typical 
interaction gate has two input ‘wires’ (trajectories 
of the colliding mobile localisations) and, typically, 
three output ‘wires’ (two representing the 
localisations’ trajectories when they continue their 
motion undisturbed, the third giving the trajectory 
of a new localisation formed as the result of the 
collision of two incoming localisations).  The 
travelling is analogue to information transfer, while 
collision is an act of computation, thus we call the 
set up collision-based computing.  There are three 
sources of collision-based computing:  Berlekamp-
Conway-Guy proof of universality of Conway’s 
Game of Life via collisions of glider streams, 
Fredkin-Toffoli conservative logic and cellular 
automaton implementation of the billiard ball 
model (Margolus block cellular automata), and the 
Steiglitz-Kamal-Watson particle machine (a 
concept of computation in cellular automata with 
soliton-like patterns).  A wide range of physical, 



chemical, and biological media are capable of 
collision-based computing.  Thus, for example, this 
type of computation can be implemented as 
localised excitation in two- and three-dimensional 
excitable lattices, as breathers and solitons 
travelling along polymer chains (and DNA 
molecules), as excitons in mono-molecular arrays 
(like Scheibe aggregates), and even as quasi-
particles in gas-discharge systems and two-
component reaction-diffusion systems.  

So far we can implement a gate or two in collision 
of propagating localisations — what about a 
collision-based chip?  

Complexity and Computation 
Non-linear sciences are a centrepiece of 
contemporary sciences, from physics to biology.  
The dynamics of non-linear media are becoming a 
crucial tool in understanding complex behaviour in 
natural and artificial systems, emergent behaviour, 
complexity, and self-organized criticality.  Non-
linear dynamics of large-scale massive systems, 
described in terms of physical systems or their 
continuous and discrete mathematical and 
computational models, are typically recruited at the 
present time to explain the nature of complexity, to 
predict the behaviour of biological and social 
systems, and to discover the novel properties of 
multi-component systems.  To develop a solid 
framework of computing in non-linear media we 
must answer a number of questions residing at the 
edge between complexity and computation.   

What families of computational tasks are solved in 
chemical and biological non-linear media?  

How are the computing abilities of non-linear 
media related to the behavioural complexity of the 
media itself?  Is it necessarily true that a system 
with a more complex behaviour can solve more 
computationally complex problems than a system 
with less complex behaviour?  

What is a relation between complexity of space-
time dynamics of a non-linear medium, and 
computational complexity of the medium as a 
computer? 

How do we exert some control over the dynamics 
of non-linear media?  What engineering 
approaches are required to form interfaces between 
conventional computers and experimental 
prototypes of non-linear media based computers?  

How do we program non-linear medium 
computers?  What is a trade-off between the 
medium’s complexity and the medium’s 
programmability?  Does complexity reduce 
programmability? 

Cellular automata: Non-linear medium 
mathematical machines  
The field of cellular automata — massive-parallel 
locally-connected mathematical machines — 
flourishes and occupies a significant part of 
computational sciences.  A cellular automaton is a 
lattice of uniform finite automata; the automata 
evolve in discrete time and take their states from a 
finite set.  All automata of the lattice update their 
states simultaneously.  Every automaton calculates 
its next state depending on the states of its closest 
neighbours.  

Cellular automata models of reaction-diffusion and 
excitable media capture essential aspects of natural 
media in a computationally tractable form, and thus 
could be adopted as a tool for automatic design of 
non-linear media computers, development of 
reaction-diffusion algorithms, and pre-experiment 
verifications.  

Discovering Computation  
How do we find reaction-diffusion or excitable 
media to fulfil our computational goals in real wet-
ware?  There is not much choice at the moment.  
There are dozens of oscillating chemical reactions, 
yet most look quite similar, and so almost 
everybody experiments mainly with Belousov-
Zhabotinsky media.  The advantage of such 
ubiquity is the chance to verify each other’s 
experiments.  At the molecular level the situation is 
not as good:  we can fabricate molecular arrays, but 
there are almost no reports on any feasible 
computing experiments, either with classical 
waves, or with mobile-self localisations.  Which 
problems can be solved in what types of non-linear 
media?  Should we fabricate these media from 
scratch or could we instead search for already 
existing species in nature?  

What are the principal characteristics of spatially-
extended non-linear media (chemical, physical or 
biological) that enable them to implement useful 
computation?  

 
Journey:  Artificial Immune Systems 
 



The inspiration and the analogy 
There is a growing interest in the use of the 
biological immune system as a source of 
inspiration to the development of computational 
systems [24].  The natural immune system protects 
our bodies from infection with a complex 
interaction of white blood cells, called B Cells and 
T Cells.  Upon encountering an antigen (an 
infecting item), B Cells are stimulated by 
interacting with the antigen, and, with the help of T 
Cells, undergo rapid cloning mutation.  This is an 
attempt by the immune system to kill off the 
invading antigen and prepare the immune system 
for another infection from that antigen (or similar 
antigen).  The immune system maintains a memory 
of the infection, so that if ever exposed to the same 
antigen again, a quicker response can be elicited 
against the infection.     

There are many facets of the immune system that 
can be considered useful for computation, 
including pattern recognition, feature extraction, 
learning, noise tolerance, memory, and inherent 
distributed parallel processing.  For these and other 
reasons, the immune system has received a 
significant amount of interest as a metaphor within 
computing.  This emerging field of research is 
known as Artificial Immune Systems (AIS). 

Essentially, AIS is concerned with the use of 
immune system components and processes as 
inspiration to construct computational systems.  
AIS is very much an emerging area of biologically 
inspired computation.  This insight into the natural 
immune system has led to an increasing body of 
work in a wide variety of domains.  Much of this 
work emerged from early work in theoretical 
immunology [45] [29] [10], where mathematical 
models of immune system process were developed 
in an attempt to better understand the function of 
the immune system.  This acted as a mini-catalyst 
for computer scientists, with some of the early AIS 
work being on fault diagnosis [43], computer 
security [33], and virus detection [50].   
Researchers realised that, although the computer 
security metaphor was a natural first choice for 
AIS, there are many other potential application 
areas that could be explored, such as machine 
learning [25], scheduling [38], immunised fault 
tolerance [13], and optimisation [37].  In addition, 
AIS has been offering better understanding of the 
immune system [85] [71], whose mechanisms are 
hugely complex and poorly understood, even by 
immunologists.  The field of AIS is both a 
powerful computing paradigm and a prominent 
apparatus for improving understanding of complex 
biological systems.  

Questions can also be asked such as: How do we 
construct truly autonomous evolving systems that 

are capable of adapting to an ever-changing 
environment?  How do we construct systems that 
can implement complex control mechanisms that 
are beyond the capabilities of current approaches?  
How do we cope with the massive increase in 
complexity of systems that are being given to the 
information technology society as a whole?  

AIS algorithms have the possibility of breaking the 
algorithmic paradigm in two ways.  First, they 
capture the immune system’s mechanism of 
exploiting randomness, therefore removing the idea 
that “randomness is bad”.  Secondly, the immune 
system is inherently a continually learning system 
with no end point, with no “final output”.  Clearly, 
current solutions to such problems have made some 
progress.  However, with the increases in scale and 
complexity come new and ill-understood demands 
on computational systems.  This has resulted in 
many systems being inflexible, ad hoc, difficult to 
configure, and impenetrably arcane to maintain. 
Therefore, alternative ways to construct a new 
generation of more autonomous and self-organising 
computational systems are being sought. 

The models 
There are two main models for AIS: the population 
based models (or selection models), and the 
network model (see [24] for details), which have 
impacts on different areas of the main Grand 
Challenge. 

The Selection model 

The immune selection model is computationally 
inspired by the processes during early maturation 
of immune cells, before they are released into the 
lymphatic system.  It uses some particular 
algorithm (positive, negative, clonal, …) to select a 
set of recognisers (supervised learning) or 
classifiers (unsupervised learning), of self or non-
self (details depending on the precise algorithm). 

This model fits well with the other bio-inspired soft 
learning systems, such as neural nets and genetic 
algorithms.  The major contributions to the Grand 
Challenge are in the area of breaking the 
refinement paradigm.   

In all these soft learning approaches, there is a 
discontinuity between the problem statement and 
the bio-inspired solution.  With both NNs and 
AISs, the solution is distributed over the entire 
system.  Each artificial antibody may recognise 
several different antigens: the specific response to a 
particular antigen is a global property of all the 
antibodies.  The complex response emerges from 
the simpler behaviour of individual parts. 

The way point questions specific to AIS include: 



• What are the effects on the selection algorithm of 
parameter selection, with regards to the outcome 
and applicability of these algorithms? 

• Can we observe the computational trajectory 
taken during selection and recognition to get 
useful information? 

The immune system selection model forms an 
excellent exemplar for breaking the refinement 
paradigm.  The challenge is to develop a science of 
non-classical refinement, that permits quantitative 
reasoning about all bio-inspired algorithms, 
including AISs, in both a bottom up and top down 
manner: 

• understanding and predicting the global 
recognisers and classifiers that emerge from a 
collection of local non-specific agents 

• a means to design and implement appropriate sets 
of recognisers or classifiers for particular 
applications, in a rigorous (but possibly non-
incremental) way  

• quantitative description methods that enable 
rigorous reasoning about the behaviour of AISs, 
such that they can be used reliably in critical 
applications 

Taking inspiration and input from all the bio-
inspired learning algorithms, major way points on 
the Non-Classical Computation journey are 

• a general theory of learning systems that 
includes neural, evolutionary, and immune 
systems as special cases 

• use of the general theory to develop more 
effective kinds of learning systems, inspired by, 
but not based upon, any known biological 
processes 

The Network model 

The immune system network model is 
computationally inspired by the biological 
processes used to maintain a dynamic “memory” of 
immune responses, in a system where the lifetime 
of individual immune memory cells is on the order 
of weeks, yet the memory itself persists on the 
order of years or decades.   

Investigations and a deeper understanding of the 
nature of scale free networks and their relation to 
complex systems is required, to allow a greater 
understanding of a variety of network type 
structures.  In particular, the formalisation of IS 
molecular-cellular network by means of modern 
graph theory (small-world models, scale-free 
networks theorisation) should be pursued, to depict 
the topological features and attributes affecting the 
functionality of the network.  Graph theory is one 
of the most effective and advantageous instruments 
for understanding the evolution of network systems 
and a comprehension of the basic principles of 

their structural organisation and evolution.  As 
such, it is needed to find the best solutions to the 
problems of real world networks.  This approach, 
proceeding from the formalisation of elements of 
the network and their interactions as nodes and 
links, allows structuring a topology whose 
characterising features can be derived from 
analytical and numerical solutions.  Modern graph 
theory has already been successfully exploited for 
studies of the topological and connective features 
of existing real world networks like, for example, 
citations of scientific papers and networks of 
collaborations, WWW and Internet, biological 
networks as neural networks, metabolic reactions 
network, genome and protein network, ecological 
and food webs, world web of human contacts and 
languages, telephone call graphs, power grids, nets 
of small world components.  As far as we know, a 
similar approach has never been applied to the 
study of realistic (beyond the “undistinguishable 
clones” hypothesis) IS network peculiarities (see 
also [1]). By exploring the nature of scale-free 
networks, immune system offer insight into 
breaking the von Neumann paradigm in terms of 
allowing for massive parallelism at sensible 
computational costs. 

The biological models 

Like many other biologically inspired 
computational ideas, the computer science and 
biology of immune systems are developing in 
parallel.  The natural immune system, in particular, 
is exceedingly complicated, and not understood at 
all well.  Additionally, the immune system does not 
act in isolation.  Indeed, there are many interactions 
with other biological systems, such as the nervous 
systems and endocrine (or hormonal) systems.  The 
interactions between these systems lead, in part, to 
the biological concept of homeostasis: a steady 
internal state.  By exploring these ideas, there is the 
potential to break many of the well-held paradigms 
outlined in this challenge, such as the algorithmic 
and refinement paradigms. Limited work has 
already begun on this approach, with the 
development of a small controller for robots [68]. 

Currently, the field of AIS is limited to the 
development of algorithms in silico; questions are 
still to be asked similar to that of DNA and 
quantum computing, such as: it is possible to 
construct computational devices based on the 
chemical process inherent in the immune system? 
The immune system has a wealth of complexity for 
computation: rather than just extract metaphors 
from it, is it possible to exploit the biological 
mechanisms?  The current discipline of AIS may 
have been inspired by biology, but it is painfully 
clear that AISs are but a pale shadow of the vast 
complexity of subtlety of the natural immune 
system.  Computer scientists, mathematicians and 



immunologists working together can ask, and 
answer, some deep and interesting questions. For 
example: 

• How might we use the real immune system, and 
other real physical and biological systems, for 
computation?   

• To what extent is the working of the immune 
system, and other biological systems, dictated by 
the physical substrate?  Can all putative 
“immune” responses be realised on all 
substrates?  Do some diseases exploit 
computational constraints of the immune system 
to defeat it? 

• How can we use models to decide which parts of 
the biology are necessary for correct robust 
functioning, which parts are necessary only 
because of the particular physical realisation, and 

which parts merely contingent evolutionary 
aspects? 

• How can we use nature inspired computation to 
build “better than reality” systems?  What are the 
computational limits to what we can simulate? 

Conclusions 
AIS do not break all the classic computational 
paradigms: for example, they do not (yet?) use 
concepts from quantum physics.  However, they do 
challenge some of the major paradigms.  The 
selection model is a good exemplar for examining 
alternatives to the refinement paradigm, and the 
network model is an excellent exemplar for 
examining open network dynamics and emergence, 
necessary for a full science of complex adaptive 
systems.  

 
Journey:  Non-Classical Interactivity – Open Dynamical 
Networks 
 
Dynamic reaction networks can have complex non-
linear interactions, and feedback where reaction 
products may themselves catalyse other reactions 
in the network.  They exhibit the emergent 
complexity, complex dynamics, and self-organising 
properties [6] [47] of many far-from-equilibrium 
systems.  These systems, and others, can self-
organise into regions “at the edge of chaos”, 
neither too ordered nor too random, where they can 
perform interesting computations (or computation 
analogues).  There are many dynamic network 
models that occur in biological and social systems, 
from Kauffman’s autocatalytic networks [47], and 
genomic control networks, through dynamical 
models of neural networks and cytokine immune 
networks, to ecological food webs, and social and 
technological networks.   

All these subject areas could benefit from better 
networks models [86].  Much of the existing 
mathematical network theory is restricted to static, 
homogeneous, structured, closed networks, since 
these are the simplest, most tractable models to 
work with.  However, these are not realistic models 
of biological networks: for example, antibodies 
rove around the body (network, system, …) 
looking for the anomalies, and new kinds of attacks 
call for new kinds of defence.  The journey is 

 to develop a pragmatic theory of dynamic, 
heterogeneous, unstructured, open networks  

Dynamic: the network is not in steady state or 
equilibrium, but is far from equilibrium, governed 
by attractors and trajectories.  (Swarm networks 
may offer insights to this kind of dynamics [12]) 

Heterogeneous: the nodes, the connections, and the 
communications can be of many different types, 
including higher order types. 

Unstructured: the network connectivity has no 
particular regularity: it is not fully regular, or fully 
connected, or even fully random.  Clearly there 
need to be some kinds of regularity present, but 
these are likely to be of kinds that cannot be 
reasoned about in terms of simple averages or 
mean field notions; they are more likely have 
fractal structure.  Some recent advances in Small 
World networks offer intriguing new insights [8] 
[88]. 

Open (metadynamic): the structures are 
unbounded, and the components are not fixed: 
nodes and connections may come and go; new 
kinds of nodes and connections may appear.   

A general theory of such networks would have 
wide applicability.  Such a theory is a basic 
requirement of complex systems development in 
general, one application of which is pervasive, or 
ubiquitous, computing (the subject of another 
Grand Challenge).  Such a theory a necessary way 
point for answering many challenging questions. 

Computation at the edge of chaos.  What are it 
capabilities?  How can we hold a system at the 
edge, far from equilibrium, to perform useful 
computations?  How can we make it self-organise 
to the edge? 

Designed emergence.  How can we design (refine) 
open systems that have desired emergent 



properties?  And do not have undesired emergent 
properties? 

Open systems science.  What are the fundamental 
properties of open systems?  How can we predict 
the effect of interventions (adding new things, or 
removing things) to the system?  How can we 
understand the effect of a gateway event that opens 
up new kinds of regions of phase space to a 
computation?  How can we design a system such 
that gateway events, natural changes to phase 
space, can occur endogenously? 

Computation as a dynamical process.  Physical 
dynamical processes are characterized by motion in 
a phase space, controlled or directed by various 
attractors (so called because they “attract” the 
trajectory of the system to them).  As various 
parameters of the system change, the shape of the 
resulting attractor space can also change, and so the 
trajectory may find itself being attracted to a 
different region of the space.  [48], for example, 
uses these and related ideas to explain many 
features of organisms’ behaviour, from gait 
patterns to learning and recognition tasks. 

One might like to think of this dynamical 
behaviour in computational terms, with the 
attractors as “states” in the phase space, and the 
trajectories between them as “state transitions”.  
This is a suggestive analogy, yet the conventional 
state transition model has a rather static feel to it.  
States and their transitions tend to be predefined, 
and the execution of the transitions has to be 
explicitly implemented by the computational 

system.  Contrastingly, the attractors are natural 
consequences of the underlying dynamics, and new 
attractors and resulting trajectories are natural 
consequences of changes to that underlying 
dynamics.  A dynamical system is relatively robust 
(a small perturbation to the trajectory will usually 
leave it moving to the same attractor), and 
computationally efficient (the computation is a 
natural consequence of the physical laws of the 
system, and does not need any further 
implementation beyond that of the dynamical 
system itself). 

The challenge continues thus:  

to develop a computational paradigm in 
terms of dynamical attractors and trajectories 

Does the state transition analogy hold?  What are 
the various attractors of a dynamical computation?  
Can a computation be expressed as a trajectory 
amongst various attractors, each changing as the 
result of some parameter/input?  How can we 
encourage the system to move to a “better” 
attractor?  How can we map the route through 
intermediate attractors that it should take?  What 
are the programming primitives and higher level 
languages?   What are the logics, reasoning 
approaches, and refinement calculi?  What are the 
compilers and other development tools?  What 
kinds of algorithms are most suited to this 
paradigm?  What are the implementation 
mechanisms?  How can we simulate these systems 
on classical machines?   

 
Journey:  Non-Classical Architectures – Evolving 
Hardware 
 
This journey of Non-Classical Computation is 

to develop (biologically-inspired) computing 
hardware that can adapt, evolve, grow, heal, 

replicate, and learn 

Computation Models 
Biological inspiration in the design of computing 
machines finds its source in essentially three 
biological models:  

• phylogenesis (P), the history of the evolution of 
the species 

• ontogenesis (O), the development of an 
individual as orchestrated by his genetic code 

• epigenesis (E), the development of an individual 
through learning processes (nervous and immune 
systems) influenced both by the genetic code (the 
innate) and by the environment (the acquired).  

These three models share a common basis: the 
genome. 

Phylogenesis: evolution 

The process of evolution is based on alterations to 
the genetic information of a species through two 
basic mechanisms: selective reproduction and 
variation.  These mechanisms are non-
deterministic, fundamentally different from 
classical algorithms, and potentially capable of 
providing astonishingly good solutions to problems 
that are formally intractable by deterministic 
approaches.  Existing analytical and experimental 
tools are not designed for tackling such stochastic 
search algorithms, however. We need new tools 
and methodologies for generating novel results. 

Phylogenesis already provides considerable 
inspiration for algorithm design, in the discipline of 
evolutionary computation [5] [59], which includes 



genetic algorithms [35] [67] and genetic 
programming [7] [52].  It has yet to have such an 
impact on the conception of digital hardware, 
however.  Koza et al. pioneered the attempt to 
apply evolutionary strategies to the synthesis of 
electronic circuits when they applied genetic 
algorithms to the evolution of a three-variable 
multiplexer and of a two-bit adder.  Evolutionary 
strategies have been applied to the development of 
the control circuits for autonomous robots, and 
other research groups are active in this domain.  
Although technical issues pose severe obstacles to 
the development of evolvable electronic hardware, 
there is still much to be gained from evolutionary 
design given the appropriate hardware and 
software mechanisms. 

Ontogenesis: growth 

Ontogenesis concerns the development of a single 
multi-cellular biological organism.  A set of 
specific mechanisms define the growth of the 
organism: its development from a single mother 
cell (zygote) to the adult phase.  The zygote 
divides, each offspring containing a copy of the 
genome (cellular division).  This continues (each 
new cell divides, creating new offspring, and so 
on), and each newly formed cell acquires a 
functionality (liver cell, epidermal cell, …) 
depending on its surroundings, its position in 
relation to its neighbours (cellular differentiation). 

Cellular division is therefore a key mechanism in 
the growth of multi-cellular organisms, impressive 
examples of massively parallel systems: the 
~ 6x1013 cells of a human body, each one a 
relatively simple elements, work in parallel to 
accomplish extremely complex tasks.  
Development processes inspired by biological 
growth should provide relevant insights on how to 
handle massive parallelism in silicon.  There are 
also great gains to be achieved by using 
ontogenetic mechanisms with regard to fault 
tolerance and reliability. 

Epigenesis: learning 

The human genome contains ~ 3x109 bases, yet an 
adult human body contains ~ 6x1013 cells, of which 
~ 1010 are neurons, with ~ 1014 connections.  The 
genome cannot contain enough information to 
completely describe all the cells and synaptic 
connections of an adult organism.  There must be a 
process that allows the organism to increase in 
complexity as it develops.  This process, 
epigenesis, includes the development of the 
nervous, immune, and endocrine systems. 

Epigenetic, or learning, mechanisms have already 
had considerable impact on computer science, and 
particularly on software design.  The parallel 
between a computer and a human brain dates to the 

very earliest days of the development of computing 
machines, and has led to the development of the 
related fields of artificial intelligence and artificial 
neural networks. 

Living organisms interact with their environment 
and respond to sensory inputs.  In many cases this 
behaviour is learnt over a period of time, after 
which a specific stimulus will trigger the same, 
possibly context dependent, response.  Such 
behaviour is mainly controlled by spiking neurons 
and their interactions.  Novel hardware 
developments are being inspired by these 
observations. 

A more recent addition in the general area of 
hardware systems and epigenetic processes are 
artificial immune systems.  Here the sophisticated 
mechanisms associated with “fault tolerance” in 
nature have been adapted for electronic hardware 
system designs [13]. 

Complexity and Reliability 
As systems become more complex it becomes 
increasingly difficult to provide comprehensive 
fault testing to determine the validity of the system.  
Hence faults can remain in a system, and manifest 
themselves as errors.  Furthermore, faults may be 
introduced into hardware from external sources, 
such as electromagnetic interference. Components 
within a system can die; no transistor will function 
forever.  These faults can ultimately cause a system 
to fail.  The ability of a system to function in the 
presence of such faults, to become fault tolerant, is 
a continually increasing area of research.  

Through millions of years of refinement, biology 
has produced living creatures that are remarkably 
fault tolerant.  They can survive injury, damage, 
wear and tear, and continual attack from other 
living entities in the form of infectious pathogens.  
Biology manages to take huge amounts of 
potentially unreliable matter and use self-checking, 
self-repair, self-reconfiguration, multiple levels of 
redundancy, multiple levels of defence, even 
removing suspected cells, to develop complex 
biological organisms that continue to work in an 
extremely hostile environment. 

While we consider our systems to be complex, how 
might one compare a 747 jet with the complexity 
of an ant, of a 2 year old child, let along the human 
nervous system, the human immune system?  As 
technology moves towards nano- and quantum-
devices the current issues relating to complexity 
will appear trivial.  How might we design systems 
with such parallelism, such complexity?  How will 
we ensure that they continue to function correctly 
over long periods of time, and in unpredictable 
environments? 



The Journey 

How can we “evolve” systems of the complexity 
we will be dealing with produced by technology in 
10-20 years?  How can we “grow” systems high-
reliability designs?   How can we build systems 
that can learn from, and adapt to, their environment 
in a way that improves their performance, that can 
become immune to attacks, both internal and 
external, that can learn to use all of the resources 
available to them. 

What is the effect of “design by evolution” on 
silicon systems whose microscopic computing 

paradigm is itself biologically-inspired?  What is 
the interaction between evolutionary processes and 
the natural imperfections in non-digital chips?  
How can evolutionary processes capture 
functionality from such an imperfect computing 
substrate that conventional design cannot?  In 
particular, when the silicon system is itself adaptive 
and can “learn”, what is the optimal interaction 
between “design by evolution” and subsequent 
adaptation for specific purpose?  Natural systems 
use both methods: how can silicon computation or 
its successors benefit?   

 
Journey:  Non-Classical Architectures – Molecular 
Nanotechnology 
 
Molecular Nanotechnology presents research 
challenges that will lead to a greatly enriched and 
more general science of computation.  Safety and 
dependability will present unprecedented demands; 
the science will be responsible not only for robust 
design to meet these demands, but for robust 
analysis that shows they have been met.  

Background and context 
Nanotechnology is the design, development and 
use of devices on the nanometre (atomic) scale.  
Here we are not so much concerned with nano-
scale artefacts that take the current trend of 
miniaturisation a few orders of magnitude further.  
Rather we are interested in active physical nano-
devices that themselves manipulate the world at 
their nano-scale in order to manufacture 
macroscopic artefacts.  This is Drexler’s [27][28] 
vision of nano-scale assemblers that build 
(assemble) macroscopic artefacts.  (Such 
assemblers are often known as nanites or 
nanobots.) 

In order for nanites to build macroscopic objects in 
useful timescales, there needs to be a vast number 
of them.  A starting population of a few nanites 
assembles more of their kind, which then assemble 
more, with exponentially growing numbers.  Once 
they exist in sufficient numbers, they can build, or 
become, the macroscopic artefact.  This view of 
nanotechnology promises many awe-inspiring 
possibilities.   

Some argue that such a technology is too good to 
be true, or at least question the detail of Drexler’s 
predictions.  But one should note that there is no 
conclusive counter-argument to them; indeed, 
proteins and their associated cellular machinery 
routinely assemble macroscopic artefacts, or, to use 
more biological terminology, they grow organisms.  

Here we discuss computational structures that will 
be relevant whenever some technology for 
sophisticated populations of nanites is achieved, 
even if not all that has been predicted. 

In principle it is possible for nanites to assemble 
any physical artefact, by carefully controlled 
placement of every component atom (possibly 
requiring the use of much scaffolding).  But in 
general this is infeasible: in the worst case it could 
need the global control and choreography of the 
behaviour of every individual nanite.  A more 
feasible approach is to exploit mainly local 
cooperation between suitably-programmed 
neighbouring nanites, possibly mediated by their 
shared local environment (which also more closely 
mirrors the way biological organisms grow).   

In order for nanotechnology to be possible, the 
initial nanites must be fabricated somehow.  This 
complex engineering problem requires 
collaborative research by physicists, chemists, 
engineers, and biologists.  To the extent that the 
nanites need to be programmed to perform their 
assembly tasks, computer science (CS) also has a 
crucial role.  We need to develop capabilities to 
design, program and control complex networks of 
nanites, so that they safely and dependably build 
the desired artefacts, and so that they do not 
accidentally build undesired ones. 

Initial CS research needs to focus on potential 
ways of designing and assembling artefacts in ways 
that can be described in terms of predominately 
local interactions, that is, in terms of the emergent 
properties of vast numbers of cooperating nanites.  
This requires analysis of emergent behaviour; 
given the orders of magnitude involved, this can be 
done only with a hierarchy of computational 
models, explaining the assembly at many different 
levels of abstraction. 



Required computational advances 
What CS theory and practice do we need in order 
to be able to design, program and control networks 
of nanites?   

Emergent properties 

We need a pragmatic theory of emergent 
properties.   

In much the same way that an organism is an 
emergent property of its genes and proteins (and 
more), the assembled artefact will be an emergent 
property of the assembling nanites and their 
programming.  In general, this problem is 
computationally irreducible, that is, there are no 
“short cuts” to understanding or prediction, beyond 
watching the behaviour unfold.  Thus reasoning 
about the precise behaviour of arbitrary networks 
with a number of nodes comparable to the number 
of cells in the human body (~1013) is (currently) 
well beyond the state of the art.  However, inability 
to solve the general problem, in principle or in 
practice, does not prevent exploration of large 
classes of specific and interesting problems.  So we 
merely need a sufficient theory, one that enables us 
to  design nanites to build the many artefacts of 
interest, and to analyse them for safety and 
dependability.  Certain classes of useful emergent 
properties may well be tractable to reasoning.  For 
example, many organisms contain emergent 
hierarchical branching structures, such as arteries, 
lungs, nervous systems, and, of course, 
prototypical tree branches.  Such emergent 
structures are particularly straightforward to 
“program”, as evidenced by L-systems [80].   

Growth and Development 

We need a pragmatic theory of development and 
growth.   

A population of nanites first “grows” a vastly 
larger population, then “grows” the artefact in 
question.  Again, we need a sufficient theory of 
growth – to enable us to reason about structures 
that are the result of a growth process.   

Biological insights from embryology and 
development will be fruitful here, and the relevant 
ideas need to be abstracted and adapted for nanite 
assemblers.  This “artificial development” also has 
its own properties: for example, the use of 
scaffolding will probably be much more important. 

Which features of biological organisms are 
consequences of growth in general, and which are 
consequences of “wet-ware” growth, and so are 
different in assembled hardware?  What constraints 
are there in the growth process: is it possible to 
“grow” a cooked steak ab initio, or must if first be 

grown raw (isolated, or as part of a cow), and then 
chemically modified? 

Complex Networks 

We need a pragmatic theory of dynamic, 
heterogeneous, unstructured, open networks, as 
espoused in the existing Journey: Non-Classical 
Interactivity – Open Dynamical Networks. 

Complex Adaptive Systems 

All these CS advances mentioned above would 
have application well beyond nanotechnology.  All 
are basic requirements for the general area of 
Complex Adaptive Systems, of which 
nanotechnology is but one exemplar.  Real world 
examples of CASs include swarms and flocks, ants, 
immune systems, brains, autocatalytic networks, 
life, ecologies, and so on.  Artificial CASs include 
complex control systems (industrial plants, Air 
Traffic Control, etc), eCommerce supply chains 
and webs, telecoms systems and the Internet, and 
ubiquitous computing with its hordes of 
communicating smart devices, economic systems, 
and so on. 

Behavioural Modelling 
The pragmatic theories for Complex Adaptive 
Systems, above, must be developed in response to 
the challenge of nanotechnology, but they need not 
start from scratch. During the last two or three 
decades computer scientists have eroded the 
boundary between programming, which prescribes 
behaviour of a system, and modelling, which 
analyses it.  This trend arises naturally from a 
change of emphasis, from stand-alone computers 
doing one thing at a time to distributed systems – 
networks of devices each acting independently, 
with no centralised control.  The resulting 
computational models are in varying degrees 
logical, algebraic, non-deterministic, stochastic.  
They have been effectively used to analyse 
programming languages and communication 
disciplines.  They have also been applied to 
computer security, mobile phone systems, 
behaviour in ant colonies, business processes, and 
signal transduction in biological cells. 

A large system such as the Internet can be 
modelled at many levels of abstraction, correlated 
where possible with the structure of the system.  At 
the higher levels, the analysis of agents’ behaviour 
need not depend on the underlying technology used 
to realise them.  A natural research direction is 
therefore to extrapolate existing CS models to 
nanosystems where, despite orders of magnitude 
increase in population size (compared with, say, 
the Internet), many of the same general principles 
of emergence and behaviour should apply. 



At the lowest levels of abstraction, which may be 
called embodiment, the analysis of agents’ 
behaviour depends crucially the underlying 
technology used to realise them.  For example, 
individual nanites are made of only small numbers 
of atoms, so a one-atom mutation to a nanite –
caused by faults in manufacture, by other nanites, 
by random impact of cosmic rays – could have a 
dramatic effect on behaviour.  In order to reason 
about the kinds of changes that mutations might 
make (to reason about the “adjacent possible” [47] 
of the nanite), it is essential to know the detailed 
make-up and characteristics of the system 
undergoing mutation. 

Close cooperation is therefore needed among many 
research disciplines, of which CS is one, in order to 
understand nanopopulations fully.  From the CS 
viewpoint, the gain will be a greatly enriched and 
more general science of computation.   

We continue this section by summarising some of 
the concepts, theories  and tools that CS can bring 
to the cooperation at the outset.  We cite only a 
selection from the large literature.  

Stand-alone computation 

Before distributed computing systems became the 
norm, much computing research laid foundations 
for the models and tools that those systems need.  
A start was made in establishing the verification of 
computer programs as an activity in formal logic 
[31][39].  Tools for computer-assisted verification, 
especially for computer hardware designs [36], 
were pioneered.  The status of computer programs 
as mathematical descriptions of behaviour was 
established [83].  Theories of types began to 
emerge as a powerful aid to behavioural analysis as 
well as to programming [81].  Even in the 1940s, 
von Neumann’s model of self-reproducing cellular 
automata anticipated some of the central ideas of 
nanotechnology [69].  

Abstract machines and process calculi 

The first model to capture the complex interplay 
between non-determinism and concurrency in 
distributed systems was Petri Nets [77], these nets 
were designed information flow in natural as well 
as man-made systems.  In the early eighties, 
algebraic process calculi [14][40][63] were 
designed to model interactive systems 
hierarchically, and to model their behaviour 
abstractly.  The Chemical Abstract Machine [9] 
captured the spatial structure of systems.  The π-
calculus [64][65] and mobile ambient calculus [16] 
made a further step in modelling systems that can 
reconfigure both their spatial arrangement and their 
connectivity. 

These models have influenced the design of 
programming and specification languages, for 

example LOTOS, occam and Handel-C, and Ada.  
They have been developed to model systems 
stochastically, and to deal with hybrid 
discrete/continuous systems.  Recently their theory 
has been seen to extend to graphical models that 
are a priori suitable for populations of agents such 
as nanites. 

Logics and Tools 

Allied to algebraic calculi are new forms of 
mathematical logic, especially modal logics, 
specially designed to specify the properties that an 
interactive system should satisfy.  Well-known 
example are dynamic logic [79], temporal logic 
[78], the temporal logic of actions [58] and the mu 
calculus [55].  These logics often have a close link 
with algebraic calculi; an algebraic term denotes 
(part of) a system. while a logical formula says (in 
part) how it should behave.  This underlies a 
successfully applied incremental methodology for 
system analysis; one verifies more and more 
properties of more and more parts (even the whole) 
of a system.  Such verification is aided by software 
tools:  model-checkers that can automatically 
verify properties of fairly complex finite-state 
systems [20]; and semi-automated tools that can 
perform verifications with human guidance [21]. 

Safety and dependability 
Nanites can disassemble, as well as assemble, 
structures.  This has led to the notion of the so-
called “grey goo” problem: nightmare visions of 
hordes of rogue nanites disassembling the wrong 
things, disassembling people, or even 
disassembling the entire planet.  It is potentially the 
ultimate terrorist weapon. 

Even if nanites are not deliberately engineered to 
be destructive, such objects will “naturally” appear 
in any replicating swarm of nanites.  We are 
dealing with such vast numbers of nanites that 
some will spontaneously “mutate”.  Given the three 
features of reproduction, variation, and selection, 
some form of evolution will inevitably occur, 
leading to populations of “adjacent possible” 
undesigned nanites.  Computer science, allied with 
biology, is crucial to the task of investigating and 
understanding these artificial evolutionary 
processes, and the defences we can design against 
them. 

Dependability – the quality of a system that 
justifies its use even in critical conditions – is 
already a topic of extensive research in computer 
science.  It involves mathematical  analysis, as in 
the case of program verification and computer 
security; more widely, it involves making systems 
aware of, and able to report upon, their behaviour.  
It cannot exist without good modelling.  The 
modelling of nanopopulations with dependability 



in mind, given their emergent properties and the 
inevitability of mutation, offers a huge challenge to 
CS. 

Conclusion 
Nanotech assemblers offer the promise of fantastic 
rewards.  Some forms of nano-assemblers may well 
be exploitable and exploited in many ways without 

much CS input.  Before we can achieve the full 
promise, however, there are many hard Computer 
Science problems to solve, concerning the design 
of emergent properties, the growth of physical 
artefacts, the programming and control of nanites, 
and defences against the “grey goo” and other 
safety critical scenarios.  

 
Journey:  Non-von Architectures – Through the 
Concurrency Gateway 
 
This journey of Non-Classical Computation is 

to enable concurrency to be a fundamental 
modelling and programming concept, with a 

clean and simple conceptual model, and 
efficiently implemented 

Breaking the von Neumann paradigm 
The real world exhibits concurrency at all levels of 
scale, from atomic, through human, to astronomic.  
This concurrency is endemic.  Central points of 
control do not remain stable for long.  Most of the 
novel paradigms identified in GC7 hint at 
something stronger: central points of control 
actively work against the logic and efficiency of 
whatever we are trying to control, model, or 
understand.   

Today, concurrency is not considered a 
fundamental concept, to be used with everyday 
fluency.  It is considered an advanced topic, to be 
avoided unless there is no other way to obtain 
specific performance targets.   

Classical concurrency technologies are based on 
multiple threads of execution plus various kinds of 
locks to control the sharing of data between them; 
get the locking wrong and systems will 
mysteriously corrupt themselves or deadlock.  
There are also performance problems. Thread 
management imposes significant overheads in 
memory and run time.  Even when using only 
‘lightweight’ threads, applications need to limit 
their implementations to only a few hundred 
threads per processor, beyond which performance 
catastrophically collapses. 

Yet air traffic control over the UK requires the 
management of far greater concurrency than 
standard practice will directly and safely and 
simply allow.  Common web services need to be 
able to conduct business with tens of thousands of 
clients simultaneously.  Modelling even the 
simplest biological organisms quickly takes us into 
consideration of millions of concurrently active, 
autonomous, and interacting, agents.   

Limited by programming and performance 
constraints, we compromise on the degree of 
concurrency in our application design and 
implementation.  The compromises add significant 
complexity that, combined with the semantic 
instability of the concurrency mechanisms we do 
practice, lead to mistakes and the poor quality, late 
delivery and over-budget systems that are accepted 
as normal – for now – by our industry and its 
customers. 

We urgently need more natural models and 
implementations of concurrency.  Fortunately, we 
have them.  Pushing through this particular 
gateway, by the mainstream computing 
community, will additionally help establish a 
mindset for the much grander challenges. 

Hypothesis 
All computer systems have to model the real world, 
at some appropriate level of abstraction, if they are 
to receive information and feedback useful 
information.  To make that modelling easier, we 
should expect concurrency to play a fundamental 
rôle in the design and implementation of systems, 
reflecting the reality of the environment in which 
they are embedded. This does not currently seem to 
be the case. 

Our thesis is that computer science has taken at 
least one wrong turn.  Concurrency should be a 
natural way to design any system above a minimal 
level of complexity.  It should simplify and hasten 
the construction, commissioning, and maintenance 
of systems; it should not introduce the hazards that 
are evident in modern practice; it should be 
employed as a matter of routine.  Natural 
mechanisms should map into simple engineering 
principles with low cost and high benefit. Our 
hypothesis is that this is possible. 

We propose a computational framework, based on 
established ideas of process algebra, to test the 
truth of the above hypothesis.  It will be accessible 
from current computing environments (platforms, 



operating systems, languages) but will provide a 
foundation for novel ones in the future. 

Hoare’s CSP [40] has a compositional and 
denotational semantics, which means that it allows 
modular and incremental development (refinement) 
even for concurrent components.  This means that 
we get no surprises when we run processes in 
parallel (since their points of interaction have to be 
explicitly handled by all parties to these 
interactions).  This is not the case for standard 
threads-and-locks concurrency, which have no 
formal denotational semantics, and by which we 
get surprised all the time. 

We need some extensions to CSP to describe 
certain new dynamics.  We want to allow networks 
of processes to evolve, to change their topologies, 
to cope with growth and decay without losing 
semantic or structural integrity.  We want to 
address the mobility of processes, channels and 
data and understand the relationships between 
these ideas.  We want to retain the ability to reason 
about such systems, preserving the concept of 
refinement.  For this we turn to Milner’s π-calculus 
[64].   

The framework will provide highly efficient 
practical realisations of this extended model.  Its 
success in opening up the horizons of GC7 will be 
a long term test of the hypothesis.  Shorter term 
tests will be the development of demonstrators 
(relevant to a broad range of computer applications 
– including those that are of concern to GC1, GC4 
and GC6) with the following characteristics: 

• they will be as complex as needed, and no more 
(through the concurrency in the design being 
directly delivered by the concurrency in the 
implementation) 

• they will be scalable both in performance and 
function (so the cost of incremental enhancement 
depends only on the scale of the enhancement, 
not on the scale of the system being enhanced) 

• they will be amenable to formal specification and 
verification 

• the concurrency models and mechanisms in their 
design and implementation will be practical for 
everyday use by non-specialists: concurrency 
becomes a fundamental element in the toolkit of 
every professional computer engineer 

• they will make maximum use of the underlying 
computation platform (through significantly 
reduced overheads for the management of 
concurrency, including the response times to 
interrupts) 

Current State of the Framework 
Over the past ten years, the Concurrency Research 
Group at Kent [90] has been laying the foundations 

for such a framework.  They have developed, and 
released as open source, concurrency packages for 
Java (JCSP), C (CCSP), C++ (C++CSP), J# 
(J#CSP), and occam (occam-π).  These all provide 
the mobile dynamics fed in from the π-calculus. 

occam-π is a sufficiently small language to allow 
experimental modification and extension, whilst 
being built on a language of proven industrial 
strength.  It integrates the best features of CSP and 
the π-calculus, focussing them into a form whose 
semantics is intuitive and amenable to everyday 
engineering by people who are not specialised 
mathematicians; the mathematics is built into the 
language design, its compiler, run-time system and 
tools.  The new dynamics broadens its area of 
direct application to a wide field of industrial, 
commercial and scientific practice. 

occam-π runs on modern computing platforms and 
has much of the flexibility of Java and C, yet with 
exceptionally low performance overheads and all 
the safety guarantees of classical occam and the 
lightness of its concurrency mechanisms.  It 
supports the dynamic allocation of processes, data 
and channels, their movement across channels and 
their automatic de-allocation (without the need for 
garbage collection, which otherwise invalidates 
real-time guarantees). Aliasing errors and race 
hazards are not possible in occam-π systems, 
despite the new dynamics. This means that subtle 
side-effects between component processes cannot 
exist, which impacts (positively) on the general 
scalability and dependability of systems.  The 
mobility and dynamic construction of processes, 
channels and data opens up a wealth of new design 
options that will let us follow nature more closely, 
with network structures evolving at run-time.  
Apart from the logical benefits derived from such 
directness and flexibility, there will be numerous 
gains for application efficiency. 

The low performance overheads mean that 
dynamic systems evolving hundreds of thousands 
of (non-trivial) occam-π processes are already 
practical on single processors.  Further, occam-π 
networks can naturally span many machines: the 
concurrency model does not change between 
internal and external concurrency.  Application 
networks up to millions of serious processes then 
become viable, on modest clusters of laptops.  
Moore’s Law indicates that in the next few years 
networks of tens of millions of (non-trivial) 
processes will become possible. 

Enabling other Journeys 
Such a platform provides an enabling technology 
for modelling emergent properties, including those  
mentioned above, such as Open Dynamical 



Networks, Molecular Nanotechnolgy, Artificial 
Immune Systems. 

Hierarchical networks of communicating processes 
are particularly suitable for these problems.  The 
languages used to support modelling and 
simulation must be simple, formal, and dynamic, 
and have a high-performance implementation.  The 
models must be simple, and amenable to 
manipulation and formal reasoning.  The 
topologies of these networks of agents will evolve, 
as they support growth and decay that comes from 
agents moving, splitting, and combining.  

Individual agents must be mobile, and aware of 
their location and neighbourhood.  Simulations will 
require very large numbers of processes, so the 
implementation must have minimal overhead. 

occam-π is a good candidate for modelling and 
programming such systems: it is robust and 
lightweight, and has sound theoretical support.  It 
can be used to construct systems to the order of 106 
processes on modest processor resources, 
exhibiting rich behaviours in useful run-times.  
This is enough to make a start on our journey..
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