Getting Started With Java Bread
Board In Windows

Java Bread Board 2

Table of Contents

g 100 [H o1 o] o AN URRUPRRPPRPITI 3
(T2 0 [0 = 0 LSRR 5
COMPONENES ...ttt ettt et e e e et e e e e e e eaee e e e e e amsee e e e aasbeeeeeansneaeeaannnneeeannes 5
LAY =SS 10
SIMUIBEION ...ttt et e e st e e be e e s bt e e e sns e e e sneeeesnneeesnneeens 11
Saving and Loading CirCUITS.ccoiueriiie ettt e e e snee e 13
CUuStoOM INtEGIrated CIFCUITS ...eoovveeeiiieeitiieestie ettt e e e snae e e snneeeas 14
User defined Integrated CirCUITSovveeiieee et 23

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 3

Introduction

The aim of this document is to introduce the main functionality of the Java bread
board (JBB) simulator. The document’s layout has been constructed to support JBB
laboratory 1, explaining the required software tools and steps involved to accomplish
each task. The Java bread board software is a simulation tool that replicates the
hardware development environment you will be using in the laboratory sessions,
allowing you to test out ideas and develop designs in the software labs or at home.
The software can be downloaded from:

http://www.cs.york.ac.uk/~mjf/CSA/APPS/JavaBreadBoard.zip

This zip file contains all the files you require and some additional documentation on
this simulation tool. Using your preferred web browser download the file
JavaBreadBoard.zip to c:\temp. Double click on thisfile to unzip it. Note, you can not
run this software from your home directory owing to the expanded directory name
used by this remote directory.

To execute this Java program you must have a Java runtime environment and virtual
machine installed on your computer. Note, for software and hardware lab machines
within the department this has already been pre-installed. For home machines this
software may not and can be downloaded from:

http://java.com/en/download/manual.jsp

At the time of writing this document the current Java runtime environment for the
Windows operating system is. Jre-6ul7-windows-i586-iftw-rv.exe. If required
download and install this software onto your home PC. Note, you will require
administrator rightsto do this.

The simulation software can be started at the command prompt or by double clicking
on the supplied batch file. To launch this program at the command line you first need
to open a command prompt:

Start - > Programs - > Accessories - > Command Prompt

At the command prompt type:

C:
cd c:\tenp\JavaBreadBoard

Thiswill move you to the directory containing the simulator’ s class file directory
hierarchy. To launch the simulator at the command prompt type:

go. bat

Alternatively you can double left click on this batch file from the file browser. This
will launch the Java bread board main interface as shown in figure 1.

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board

Pull down menus Quick launch icons Simulation speed

File Edit InSert Wire Simulation Trace Tools Help

I NSES ILIC TR

"] " r"" > | Sim Speed:; |

Mothing Selected

N

1

[\
K |\ / \
\
Information panel Virtual circuit drawing area:l

Figure 1 : Java bread board main interface

Java BreadBoard Simulator
File Edit Insert Wire Simulation Trace Tools Help

0 (8] (o] %) (B W][4 o] o] smsees

JBreadBoard library name:
EreadBoard.class

K

Figure 2 : Virtual bread board

Figure 3 : Virtual bread board internal construction

THE UNIVERSITY @%}’{

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 5

Bread boards

To assemble your virtual circuit you need at least one bread board. These can be
added to the simulator by either clicking the bread board icon | ®&| or click on the pull
down:

| nsert -> BreadBoard

Thiswill add a bread board to the simulator as shown in figure 2 onto which
integrated circuits, wires and other electronic components can be added. The bread
boards internal construction isillustrated in figure 3. Horizontal rows A and L run the
continuous length of the board, whilst rows B — K are divided into 47 vertical
columns spanning each half of the board. Following tradition the top horizontal row
of holes (row A) is connected to VCC and the bottom horizontal row of holes (row L)
is connected to GND.

Note, more bread boards can be added to the simulator as the complexity of your
virtua circuit increases. To delete a bread board left click on an empty area of the
desired board, this will update the information panel. The selected board can be
deleted by pressing the DEL button, clicking on the Delete object icon | x or click on
the pull down:

Edit -> Delete

Note, if the bread board contains components awarning popup will appear asking to
confirm this action. If you press OK all circuit elements on this board will be deleted.

Components

To add an integrated circuit to your virtual circuit either click on the * Select and Add
Chip’ icon & or click on the pull down:

Insert -> Chip

Thiswill open the * Select a Chip’ window as shown in figure 3, allowing you to select
from arange of pre-defined, custom or user defined integrated circuits. To help
organise these |Cs a common directory structure is used, classifying each IC by its
type and then function. To navigate down through this directory hierarchy double left
click on the desired I C type within the selection panel. To move back up this directory
hierarchy double right click on an empty region within the selection panel. The
example shown in figure 3 are the directory levels involved in selecting asimple
Boolean logic function IC.

ttl -> logic

Note, if the required IC can not be found please refer to the sections on custom or user
defined integrated circuits. To one of the listed integrated circuits single left click on
the required IC. In figure 3 ageneric 7400 dual input NAND gate has been selected.
Single clicking on one of the listed ICs will update the right hand side information
panel of thiswindow, giving you a brief description and the integrated circuit and its
pinout diagram.

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 6

To minimise the number of different 1Cs presented to the user a onetime only the top
level generic IC type is displayed in the selection panel. If available you may select a
specific derivative of this generic integrated circuit i.e. a particular manufacturer or
silicon implementation, using the ‘ Derivatives pull down box as shown in the bottom
right frame of figure 3. Note, different derivatives will implement the same logical
function, but could have different timing characteristics i.e. switching speeds as
defined in their datasheets.

Type/ I1C selection panel | Information panel

I
asic Derivatives: Dﬂ counter Derivatives: Dz|
[:pu_"m Manufacturer: :_E[:F':der Manufacturer:
cillator ipFloj L
o8 Description: P p Description:
ram generic
ittl Pin Diagram: logic Pin Diagram:

shiftRegister

| Derivatives pull down

A Select a Chip (%) [l B select a Chip

(Gen7400 Derivatives: |Gen7400 | (GEEen DT [Fibta) (R

(Gen7402 Manufacturer: Generic TTL gate [oen7402 Manufacturer: (Gen7400 e

Gen7404 Gen7404 o |SN74AC00

Gen7408 Description: Quadrugle 2-Input Fasitive-NAND Gates Gen7408 e T g L P oxilive-NAND Galas

Gen7410 Pin Diagram: Gen7410 Pin Diagram: (g 1e0p

Gen7411 Gen7411

Gen74133 Gen74133

en7420 a1 VM 1afjvee o 11 Vupvee

Gen7421 Gen7421

onras60 1.2 13048 cen74250 1B[]2 13[]4B

\Gen7427 1Y[3 12[]4A Gen7427 1Y []3 12[]4A

Gen7428 2A[]4 1[4y Gen7428 2A[]4 114y

Gen7430 2B[]5 10[]3B Gen7430 2B[5 10[13B

Gen7432 2v[]s 9f]3a Gen7432 2v[]s 9d3A

(Gen7486 eno 7 sfay (Gen7486 GND[]7) 8 []3Y
\

\ |
Available integrated circuitsj [sdectiCdetils

Figure 3 : Select a Chip (top left) top level chip hierarchy, (top right) TTL
subdirectory, (bottom left) logic subdirectory, (bottom right) Gen7400 derivatives list

To confirm your selection left click on the OK button. Thiswill add the selected IC to
your bread board as shown in figure 4.

If required the |C can now be moved by performing aleft click and hold on the *chip’
graphic. Thiswill allow you to drag the | C to the required position, as shown in figure
5. Note, the IC can only be moved to positions where there are enough unused holes
which do not invalidate the systems design rules e.g. connecting an output to an

THE UNIVERSlTvW

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 7

Java BreadBoard Simulator

File Edit Insert Wire Simulation Trace Tools Help

[0/5(8 o/ [w (@ (¢][] [smomes

[»

Component Mame: L
EreadBoard

JBreadBoard library name:
EreadBEoard.class

4]

OK

Figure 4 : added 7400 integrated IC

output or a power supply rail etc. This limitsthe IC’s position to the centra row of the
bread board e.g. rows F and G. Left clicking on an IC will update the I C information
panel on the left hand side of the main window.

Java BreadBoard Simulator
File Edit Insert Wire Simulation Trace Tools Help

(D& @] x| 0] &) ey smpee: |

— = — =

1A i} 1
1B
1Y Gen7400
I e
2B
2Y

GND

Compaonent Mame:
Gen7400

Description:
Guadruple 2-Input Pasitive-MARD
Gates

Manufacturer:
Generic TTL gate

JBreadBoard library name:
Gen7400.class

K |

Figure 5 : repositioned 7400 I C and information panel

To alow user defined test signals to be applied to avirtual circuit dual in-line package
(DIP) switches can be used. To add a DIP switch either click on the ‘Add DIP
Switches icon [# or click on the pull down:

Insert -> Dip Switches -> Single
-> Doubl e
-> Triple
-> Quad

THE UNIVERSITY @%)’{

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 8

If required the DIP switch can be moved by performing a left click, hold and drag as
previously described. Note, the default DIP switch package size used by the quick
launch icon istriple, this being updated to the most recent pull down menu selection.
Owing to the passive nature and size, DIP switches can be placed on alarger range of
rowsthan ICs, as shown in figure 6. However, design rule checks still apply e.g. the
three DIP switch banks starting at column 14 in figure 6 could be configured to short
out the power supply. To prevent this the simulator will prevent al three switchesin
that column being switched on. The default switch position of each switch in the DIP
is off i.e. open circuit. To change the state of a switchto oni.e. closed circuit, left
click on the dark blue square above the selected switch element. Thiswill move the
white switch bar up, turning that switch on e.g. the DIP switch bank starting at
column 30 in figure 6 has been set to OFF — ON — OFF. To change the state of a
switch to off, again click on the lower blue square below the selected switch element.
Thiswill move the white switch bar down, turning that switch off.

To alow auser to view the state of an input or an output light emitting diodes (LED)
can be used. To add a LED either click onthe *Add LED’ icon | & or click onthe
pull down:

| nsert -> LED -> Red
-> Yel | ow
-> (reen

If required the LED can be moved by performing aleft click, hold and drag as
previously described. Note, the default LED colour used by the quick launch icon is
red, this being updated to the most recent pull down menu selection. Owing to the
passive nature and size, LEDs can be placed on alarger range of rowsthan ICs, as
shown in figure 7. However, design rule checks still apply e.g. an LED can not be
placed between rows G and K as the anode and cathode would be shorted out. A LED
is always orientated with the anode top and cathode bottom. To illuminate a LED, a
positive voltage (VCC or DIP switch / 1C output) must be connected to the anode
whilst the cathode is connected to GND. Note, the Java bread board simulator only
simulates discrete signal statesi.e. logic 1, logic 0 and high impedance. Therefore, the
red, yellow and green LED network shown in figure 7 which would be illuminated in
areal circuit will not be illuminated during a simulation as the simulator can not
simulate the potential divider formed by these three LEDs.

WARNING : when constructing a real implementation of your virtual circuit in the
hardware remember to add a current limiting resister in series with each LED. Failure
to do thiswill damage the LED and the IC. The value of the resister used is dependent
onthe LED, typically start with 1KQ, if the LED is not very bright the resister can be
reduced in value to 470Q.

To delete a component left click on the component’s graphic and press the DEL
button, click on the Delete object icon | x| or click on the pull down:

Edit -> Delete

If you can not select the desired component you may need to switch to * Select Mode’,

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board

Java BreadBoard Simulator |:||E||X|
File Edit Insert Wire Simulation Trace Tools Help

BECINRCOONIDCINENE

joRele}
ZmZ

o
5
a

440

Companent Name:
I Dip Switches

JBreadBoard library name:
IDipswitch.cIass]

lok

Figure 6 : four triple DIP switch banks

Java BreadBoard Simulator
File Edit Insert Wire Simulation Trace Tools Help

[Dle{@] [x| mw e 8w e 0 smspend:

+
OFF ON
Camponent Mame: B
JLED
Status:
OFF —
K

Figure 7 : four light emitting diodes

Java BreadBoard Simulator.
File Edit Insert Wire Simulation Trace Tools Help

D@ @)] W] 8w] smspeed

Companent Mame:
EreadBoard

JBreadBoard library name:
EreadBoard.class =

ring Mode. Click to start Wire

Figure 8 : wiring a virtual circuit

THE UNIVERSITYW

Mike Freeman 09/03/2010
Department of Computer Science

Java Bread Board 10

this can be achieved by click on the * Selector’ icon |Sx| or click on the pull down:

Edit -> Sel ecti on Mde

Wires

To add wire interconnects to your virtual circuit either click on the *Wiring Mode'
icon |l or click on the pull down:

Wre -> Add Wre

Note, to alow an IC’s functionality to be simulated its power supply lines must be
connected using wiresto VCC (top horizontal row A) and GND (bottom horizontal
row L). To connect a wire between two points single left click on the starting bread
board hole and double left click on the destination hole. To route awire around
components i.e. turn through a 90 degree bend, single left click on the bread at the
point you wish to create the bend. If an anytime you wish to un-route a wire segment
you have laid down press the ESC key or click on the pull down:

Wre -> Cancel Wre Segnent

Thiswill sequentially remove each segment back to and including the initial starting
hole. Note, the default wire colour used by the quick launch icon isred, this being
updated to the most recent pull down menu selection.

Wre -> Wiite
-> Bl ack
-> Red
-> (range
-> Yel | ow
-> (reen
-> Bl ue

Typically different colours are used to indicate the different roles within a circuit, as
shown in figure 8. This circuit has been constructed to alow the truth table for a 7400
two input NAND gate to be tested. Traditionally red is used to signify VCC and black
GND. Input and output colours are user defined, in this example inputs have been
colour coded as yellow and outputs in blue.

To delete awire once laid, left click on the wire and press the DEL key, click on the
Delete object icon | x| or click on the pull down:

Edit -> Delete

To alow you to select awire you may need to switch from *Wiring Mode’ to ‘ Select
Mode', this can be achieved by click on the *Selector’ icon |5x| or click on the pull
down:

Edit -> Sel ecti on Mde

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 11

Simulation

When avirtual circuit has been designed its functionality can be confirmed through
simulation. Test inputsto the circuit are applied using DIP switches. To view the state
of specific test points the user can either add LEDs or test probes. Multiple test probes
can be added to adesign allowing the user to capture the state of the circuit at a
specific time. To add a probe click on the pull down:

Trace -> I nsert Probe

Thiswill add atest probe to your circuit [, the default position being row B, column
1. To move atest probe left click, hold and drag the probe graphic to the bread board
hole you wish to monitor. If you can not select the desired probe you may need to
switch to Select Mode', this can be achieved by click on the ‘ Selector’ icon || or
click on the pull down:

Edit -> Sel ecti on Mdde

Due to their size atest probe can be place in any bread board hole, as shown in figure
9i.e. probe 1 row A VCC, probe 2 row F unconnected and probe 3 row L GND. Note,
if you are unsure of aprobe’s ID single left click on the probe, this will update the
information panel.

gJa\m BreadBoard Simulator
File Edit Insert Wire Simulation Trace Tools Help

(D= @) (%X [0 § e b simspee:

Frobe Selected

Component Marme:
Yirtual Probe Device

Lahkel:
probe

JBreadBaoard library name: -
| Probe.class 4 Ml [Tr]

fox |

Figure 9 : test probe icon

To delete a probe once placed, left click on the probe and press the DEL key, click on
the Delete object icon | x| or click on the pull down:

Edit -> Delete

If you can not select the desired probe you may need to switch to * Select Mode' as
previously described.

THE UNIVERSITYW

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 12

To simulate a circuit either click on the ‘Run Simulation’ icon | » | or click on the pull
down:

Si mul ati on -> Run

The speed of the simulation will be determined by the processing performance of the
computer the Java bread board software is being executed upon on and the complexity
of the circuit. To enable the user to view individual gate transitions it is sometimes
useful to intentionally slow down the simulation speed. This can be achieved by
moving the simulation speed slider in the top right of the main interface window.

At anytime during a simulation DIP switch positions may be changed, however, no
additional components or wires may be added to or removed from the circuit.

To pause asimulation either click on the ‘ Pause Simulation’ icon | n | or click on the
pull down:

Si mul ati on -> Pause

A simulation is also paused when the circuit’ s probe state is saved. To save the
circuits state click on the pull down:

Trace -> Save Probe

Thiswill open anew window ‘Save’ allowing the user to specify the text file this data
should be written to. To restart the simulation click on the ‘Run Simulation’ icon as
previously described. The state of the circuit can be saved multiple times during a
simulation. If this data is written to the same file it will be automatically concatenated
onto its end, as shown in figure 10.

e A=

Time, probel, probez, probe3,
0,1,-1,0,

152000,1,-1,0,
535000,1,-1,0,
1437000,1,-1, 0,
2045000,1,-1,0

Figure 10 : trace text file

Thisisthe simulation trace for the test probes shown in figure 9, for which the
circuit’s state was recorded four times. Note, the state of the circuit at time zero is
always automatically added. Each save operation adds a new line to the specified file,
containing the current time and probe values separated by commas. Probe values may
betrue‘l’, false ‘0’ or unknown ‘-1’.

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 13

The simulation can be reset i.e. set to simulation time zero, by either pressing the
BACK SPACE key, clicking on the ‘Reset Simulation’ icon '« or click on the pull
down:

Simul ation -> Reset Sinulation

An alternative approach to enable the user to view individual gate transitions isto
single step through the circuits simulation events. A simulation is event driven. When
a components input is updated atimed event is created for its associated outputs based
onthe logic relationship and its transport delay. These events are sored in a queue
and can be stepped through sequentially rather than continuously as previously
described.

To step to the next timed event either press the ENTER key, click on the * Step
Simulation’ icon |+ or click on the pull down

Sinmulation -> Step Sinulation

Saving and Loading Circuits

To save avirtual circuit so that the user can continue working on adesign at alater
time click onthe ‘Save’ icon & or click on the pull down:

File -> Save

Thiswill open a*‘Save’ window allowing the user to specify an output file (.cir
extension). Enter afile name and left click on the Save button.

To load avirtual circuit to continue to develop an existing design click on the * Open’
icon | or click on the pull down:

File -> Open

Thiswill open the *Open’ window allowing the user to specify an input file (.cir
extension). Browse to and highlight the desired file and left click on the Open button.
Note, if there is a bread board already open an warning window will open information
you that all circuits currently present will be deleted.

In situation where a number of identical or very similar bread boards need to be
created a previously saved circuit can be inserted into a design i.e. additional bread
boards containing the desired circuit can be repeatably added to adesign. To insert an
existing virtual circuit click on the pull down:

File -> Insert CGrcuit

To start anew design i.e. delete all previous circuits currently open click on the ‘New’
icon | D or click on the pull down:

File -> New

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 14

Custom Integrated Circuits

If the required integrated circuit is not included in the pre-installed catalogue, or if the
desired functionality is not available in acommercial | C the Java bread board
software allows you to define a custom IC. There are two types of custom integrated
circuit supported, ‘logic’ and ‘ state machine’. Purely combinational logic based
circuits e.g. SOP networks, should use the ‘logic’ custom |C and those with an
internal state e.g. binary counter, the state machine custom IC. Each custom IC has a
fixed package layout with n inputs and m outputs as shown in figure 11. Note, inputs
are always on the left hand side of the IC and outputs on the right hand side.

INT[]1 n+m+2[]VvCC CLK [] vce
IN2[12 n+m+1[]OUTmM CLR [] OUTm
IN3 []3 IN1 []
INg [4 n+5[] OUT4 IN2 [] ouTs
n+4[] OUT3 IN3] ouT4
INn [n n+3[] OUT2 - .. ouT3
GND[In+1 n+2f]OUT1 INn [] ouT2

GND [] OUT1

Figure 11 : logic I C (left), state machine I C (right)

To define the truth table for alogic custom | C the user can either use the truth table
editor, or the schematic capture editor. To open the truth table editor click on the pull
down:

Tools -> Truth Tabl e Editor

Thiswill open the initial Truth Table Editor window allowing the user to specify the
required number of inputs and outputs using the associated pull down boxes, as shown
in figure 12. The maximum number of inputs and outputs is currently limited to 8 and
16 respectively, in this example 4 inputs and 1 output have been selected. Note, any
combination of inputs and outputs are allowed. Where required ‘ not connected’ (NC)
pinswill be automatically inserted to pad out unused pin positions within the package
foot print.

X

L] Please state the number of input pins and output pins required

Input Pins OutputPins |1 |v| | Continue |

Figure 12: initial input and output pin selection

Left click the Continue button to proceed. Thiswill launch the main Truth Table
Editor window, allowing you to define the IC’ s input to output relationship, as shown
in figure 13. To change an output of a specific input state to the required value single
left click on that output’s column bit i.e. the light green column. Thiswill toggle the

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 15

bit value from 0—1, or 1—0. The user may also edit the input and output names by
double left clicking on the default names e.g. Inl, In2, Outl etc, a the top of each
column.

File Help
in in2 in3 ind out
] a] a]
] a] 1 1
] a 1 a 1
] a 1 1 1
] 1] a 1
] 1] 1 1
] 1 1 a 1
] 1 1 1 1
1 a] a 1
1 a] 1 1
1 a 1 a 1
1 a 1 1 1
1 1] a 1
1 1] 1 1
1 1 1 a 1
1 1 1 1 1
Chip Label OR4 Wide Chip 0 Yes @ MNo Chip Description
Four input OF gate
Manufacturer | Chip Delay / ns 50
Click on output pin cells to toggle values. Double-click column headers to change pin labels.

Figure 13: truth table editor of a four input OR gate

The name and a description of this IC can be entered in the bottom panel of this
window. A common propagation delay or Chip Delay i.e. the delay from an input
changing to an output being updated, is used for all outputs and can be specified in
nano seconds. One final option available to the user isto specify if this1C should use
a.600 (Wide) or .300 (Default) package size. Thisisoption is purely to allow the user
to match the ICs profile to aid in routing design of real implementations.

Once the truth table and other details have been entered this data can be stored to a
file. This can be accessed by clicking on the pull down:

File -> Create Chip File

Thiswill open a‘Save window allowing the user to specify an output file (.chp
extention). Enter afile name and left click on the Save button. Thiswill open the
‘Chip File Created’” window, you may either continue i.e. enter another truth table or
exit back to the main interface. If you select continue you may re-edit the current truth
table and save it under a different name. To change the number of inputs and output
click on the pull down:

File -> New

THE UNIVERSITYW

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 16

Ja\ra BreadBoard Simulator

File Edit Insert Wire Simulation Trace Tools Help

(D] @) (%X MW § W« b simSpeed

INT[}1 n+m+2[]VCC
IN2[J2 n+m+1[JOUTm
™ I
INg [4 n+5]] OUT4
n+4§ 1 OUT3
INn[In n+3] | OUT2
GND [n+1 n+2f] OUT1

Fourinput OF gate
fint, inZ, in3, in4]
[out1]

Manufacturar:
It

JEreadBEoard library name;
Logic.class

oK |

Figure 14: inserting a custom logic IC

To instantiate this new custom IC on a bread board click on the * Select and Add Chip’
icon or click on the pull down:

Insert -> Chip
Navigate down the directory hierarchy
ttl -> generic : Logic

selecting the generic Logic component as previously described. Click on OK. This
will open the ‘Open’ window allowing the user to select a.chp file that will configure
this generic logic IC. Using this file an IC of the correct size will be instantiated, as
shown in figure 14. This example is of a four input OR as defined in figure 13. Note,
as there are more inputs than outputs some of the output pin positions are defined as
NCi.e pins7, 8 and 9. VCC and GND being assigned pins 5 and 10 respectively.

An alternative method to defining alogic custom IC’ s truth table isto use the
schematic capture editor. To open the schematic capture editor click on the pull down:

Tools -> Schematic Capture Editor

Thiswill open the Circuit Diagram Editor window allowing the user to specify the
required logic function as a circuit diagram, as shown in figure 15. Note, the
schematic capture editor only supports combinational logic circuits implemented from
AND, OR and NOT gates.

THE UNIVERSITYW

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 17

File Edit Insert Wire Help

&) w[a| [Dfp]o|F] & £]

Chip Label ORd Wide Chip 0 Yes @ Mo Chip Description
Fourinput OR gate
Mamufacturer |me Chip Delay / ns Al

Chip file created

Figure 15: schematic capture editor of a four input OR gate

To add an input pin either click on the*Add Chip Input Pin’ icon |<=| or click on the
pull down:

Insert -> Input Pin

Thiswill open the ‘Pin Label’ window, allowing the user to assign a name to this pin.
Maximum size 12 characters. Enter a name and click OK. The user can now position
this input pin on the schematic by moving the mouse pointer to the desired position
and performing a single left click. To move a pin once position left click, hold and
drag the pin to the new position. To delete a pin left click the pin and pressthe DEL
key or click on the pull down:

Edit -> Delete

If you can not select the desired component you may need to switch to ‘ Select Mode',
this can be achieved by click on the * Selector’ icon .

To add an output pin either click on the * Add Chip Output Pin’ icon |£1- or click on
the pull down:

Insert -> Qutput Pin

THE UNIVERSlTvW

Mike Freeman 09/03/2010
Department of Computer Science

Java Bread Board 18

Operations as for input pin. The combinational logic linking the input and output pins
is constructed from a network of AND, OR, NOT gates and constants. To add one of
these components to a schematic either click on the pull down:

| nsert -> AND Gate 1D
-> OR Gate L
.> NOT Gate |7

=

-> & ound =
-> VCC i

or its associated icon. Operations as for pins. To add wire interconnects to a circuit
either click on the *Wiring Mode' icon [y or click on the pull down:

Wre -> Entering Wring Mde

To connect awire between two points single left click on the starting grid position and
double left click on the destination grid position. To route awire around components
i.e. turn through a 90 degree bend, single left click on the grid at the point you wish to
create the bend. If an anytime you wish to un-route a wire segment you have laid
down press the ESC key or click on the pull down:

Wre -> Cancel Wre Segnent

Thiswill sequentially remove each segment back to and including the initial starting
point. Note, the default wire colour used by the quick launch icon is black, this being
updated to the most recent pull down menu selection.

Wre -> Bl ack
-> Red
-> (range
-> Yel | ow
-> (reen
-> Bl ue
-> Cust on

To delete awire once laid, left click on the wire and press the DEL key, or click on
the pull down:

Edit -> Delete

To alow you to select awire you may need to switch from *Wiring Mode’ to ‘ Select
Mode', this can be achieved by click on the *Selector’ icon |5x | or click on the pull
down:

Wre -> Exit Wring Mde

Note, moving a component e.g. an AND gate will automatically delete its attached
wires. The name and a description of the I C using this schematic can be entered in the

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 19

bottom panel of thiswindow. Saving and instantiating a logic custom IC based on this
circuit is the same as for the truth table editor.

The truth table editor and schematic entry tools allow the user to produce custom
combinational logic blocks e.g. address decoders and constant bit patterns e.g.
initialisation data, they can not be used to design synchronous logic components.
Small synchronous logic | Cs can be designed using the state table editor, however, as
the user has to manually enter all state information it is not suitable for large circuits.
The state machine custom I C package has two additional pins: CLK and CLR, as
shown in figure 11. The CLR pin is a synchronous clear resetting the | Cs state back to
its default initial conditions. The CLK pinisrising edge sensitive clock driving the
internal D-type state flip-flops.

To open the state table editor click on the pull down:

Tools -> State Tabl e Editor

Thiswill open the initial State Table Editor window allowing the user to specify the
required number of inputs, outputs and states using the associated pull down boxes, as
shown in figure 16. The maximum number of inputs, outputs and statesis currently
limited to 8, 16 and 16 respectively, in this example 1 input, 4 outputs and 16 states
have been selected. Note, any combination of inputs and outputs are allowed. Where
required ‘ not connected’ (NC) pinswill be automatically inserted to pad out unused
pin positions within the package foot print.

Left click the Continue button to proceed. Thiswill launch the main State Table
Editor window, allowing you to define the IC’ s present state, next state relationship,
as shown in figure 17. To change the output state of a specific input state to the
required value single left click on that output’s column bit i.e. the light green column.

[x|

L] Please state the number of input pins, output pins
and states required

Input Pins EIEI OutputPins States |1ﬁ |1r| | Continue

Figure 16: initial input pin, output pin and state selection

Thiswill toggle the bit value from 0—1, or 1—0. To change the next state of a
gpecific input state to the required value single left click on that next state’s column
bit i.e. the white column. Thiswill open a pull down menu from which you can select
the desired next state. Note, the initial starting state of this IC can be selected from the
right hand side Starting State panel. The user may also edit the input and output
names by double left clicking on the default names e.g. Inl, In2, Outl etc, a the top
of each column.

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 20

State Table Editor

File Help

in1 Initial State outt out2 outa outd Mext State
0 0 0 0 0 0 0 Starting State
0 1 0 0 0 1 1
] 2]] 1] 2
I ——
g & L { L L 4 which the chip will
0 5 0 1 0 1 5
0 B 0] . 0 B start on power-up
0 7 0 1 1 1 7
0 8 1 0 0 0 8 0
]] 1]] 1] 1
0 10 1 0 1 0 10 2
0 11 1 0 1 1 11 3
] 12 1 1]] 12 n
] 13 1 1] 1 13 5
0 14 1 1 1 0 14
0 15 1 1 1 1 15 6
1 i [[[1 1 7
1 1 0 0 1 0 2 8
1 2 0 0 1 1 3 9
1 3] 1]] 4 10
1 4] 1] 1 b 11
B S (R 12
1 T 1]]] g 13
1 8 1 0 0 1 5 u
1] 1 0 1 0 10 15
1 10 1] 1 1 11
1 11 1 1 0 0 12
1 12 1 1 0 1 13
1 13 1 1 1] 14
1 14 1 1 1 1 18
1 14 0 0 0 0 0

Chip Label Countd Wide Chip () Yes @ Mo Chip Description

Four bit binary counter

Manufacturer (e Chip Delay / ns a0

Click on output pin cells to toggle values. Double-click column headers to change pin labels.

Figure 17: state table editor for afour bit binary counter

The design example shown in figure 17 is for afour bit binary counter with an input
enable EN (inl). Thisline is sampled on the rising edge of the CLK. If the CLR is
high the counter isreset to itsinitial state, state 0, otherwise the EN is tested:

1) EN low: counter not incremented. Next state set to present state.
Output value maintained.

2) EN high: counter incremented. Present state set to Next state i.e. the
next count state. Output value updated to the next binary value i.e.
current value + 1.

The name and a description of this 1C can be entered in the bottom panel of this
window. A common propagation delay or Chip Delay i.e. the delay from an input
changing to an output being updated, is used for all outputs and can be specified in
nano seconds. One final option available to the user isto specify if this IC should use
a.600 (Wide) or .300 (Default) package size. Thisisoption is purely to allow the user
to match the ICs profile to aid in routing design of real implementations.

THE UNIVERSITYW

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 21

Once the truth table and other details have been entered this data can be stored to a
file. This can be accessed by clicking on the pull down:

File -> Create Chip File

Thiswill open a‘Save’ window allowing the user to specify an outpuit file (.chp
extention). Enter afile name and left click on the Save button. This will open the
‘Chip File Created’ window, you may either continue i.e. enter another truth table or
exit back to the main interface. If you select continue you may re-edit the current truth
table and save it under a different name. To change the number of inputs, outputs or
states click on the pull down:

File -> New

gJa\m BreadBoard Simulator
File Edit Insert Wire Simulation Trace Tools Help
D[] [x| R 8 e] simspees:
ﬂ.-.- . > .-I-

NS |

CLK E 1 n+m+4 :l Vce 5 5 10 15! 120 25 a0 5
CLR[Q2 n+m+3[JOUTM 5 . _|
IN1[]3 . - | II |
IN2[]4 n+8[]ouUT5 o ||
IN3[]5 n+7 []OUT4 Hee—

... n+6[Jouts R B B
INn E n n1-5 D OUTZ 3 10 I 15 ;I_II .-I:- ._-.|_|I 4 I_--._.

GND[n+3 n+4JOUT1

Component Mame:
Countd

Description:

Four hit hinary counter
[in1]

[out!, out2, out3, outd]

Manufacturer:
Me

JBreadBoard library name:
Statehachine.class

ring Modle. Click to start Wire |

Figure 18: inserting a custom state machine IC

To instantiate this new custom IC on a bread board click on the * Select and Add Chip’
icon or click on the pull down:

Insert -> Chip
Navigate down the directory hierarchy

ttl -> generic : StateMachine

selecting the generic State Machine component as previously described. Click on OK.
Thiswill open the ‘Open’ window allowing the user to select a.chp file that will
configure this generic state machine IC. Using this file an 1C of the correct size will
be instantiated, as shown in figure 18. This example is of a four bit counter as defined

THE UNIVERSITYW

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 22

infigure 17. Note, as there are more outputs than inputs one of the input pin positions
isdefined asNC i.e. pins4. VCC and GND being assigned pins 5 and 10 respectively.
This example shows a fully functional test circuit with the CLK line driven by an
oscillator IC, inputs CLR and EN controlled by a DIP switch and the outputs
displayed on abank of five LEDS.

File Edit Search Markers Folding “iew LUilities hacros Plugins Help

TmQs 408 0088 AX JEW &l 5 @

Chip Text=0R4
Dezcription=Four input OF gate
Manufacturer=He

Wide Chip=Falsze

Clocked Chip=False

Input Pins=inl;inZ;in3;ind;
Output Pins=outl;

Nuwher of 3tates=1

Initial 3tate=0

-

aooo;
aool:
aolo;
ao1l1;
aloo;
alol1:
a11o;
0111:
1o00;
1o01;
1o10;
1011;
l1oo;
1101;
1110;
1111;

4] [»]
1,1 Al ftext,none, Cpl 252 - - - - wWilEETL

:50
:50
:50
;50
;50
;50
;50
F50
F50
F50
ran
ran
ran
sa0
sa0
sa0

[e e e e e e e e O e e A e e O = R
wr wr we we we we e e he e e e we ae e e
e e e e e e e e S R =
e T
[e e e e e e e e O e e A e e O = R

-

Figure 19: .chp for afour input OR gate

At present there is now software support to alow you to edit .chp files. However,
these text files can be manually edited using a standard text editor. Both the custom
logic and state machine 1Cs use the same file format as shown in figure 19 and 20
respectively. Lines 1 — 9 contain data relating to the name and description of the IC.
The remaining line contains a semicolon delimited present state/ next state table
defining the IC’ s functionality. The row format is:

Input state; Present internal state; Output state; Next internal state; Delay
The internal state information contained in a custom logic IC .chp file is not used as it

does not contain any memory elements. Note, to update these manual changes into the
simulator the virtual circuit must be reloaded into the Java bread board.

THE UNIVERSITYW

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board

23

B8] iF o

File Edit Search Markers Folding “iew LUtilities WMacros Plugins Help

TmQs &8 0048 AX = HEl &5 0

;0000;
;0001;
;0010;
:0011;
:0100;
:0101;
:0110;
s0111;
:1l000;
;9;1001;

L = R e N

s0:0001;
:0010;
;0011;
;0100;
;0101
:0110;
:0111;
:1l000;
s1001;
;9:1010;

KRR ODODODODOOOOOOOOOOO
e e e v e v v we D T
0 -1 o s W M

s15;0000

Ww oo -1 on s L = O

;10;1010;
;11;1011;
;1z:1100;
;13;1101;
:14:1110;
£15:1111;

1
2
3
4
H-
[
7
=3
9

;50
;50
H
H
H
;50
;50
;50
;50
;50
10;
11:
1z:
13;
14;
15;
;50
;50
;50
;50
&0
H
;50
;50
;50

a0
a0
50
50
50
50

10;50

sl021011;
11:1100;
l2;1101;
s13:1110;
:14:1111:

11;
1z;
13;
14;
15;

a0
a0
a0
50
50

:0:50

Chip Text=Countd
Description=Four bit binary counter
Manufacturer=He
Wide Chip=False
Clocked Chip=True
Input Pins=inl;
Output Pinsz=outl;outZ;outd;oucd;
Mumber of States=16

Initial State=0
HHHHHH

1]

L]

-

4215 All

{testnone,Cp1252) - - - - WilEEkb

Figure 20: .chp for afour bit Counter

User defined Integrated Circuits

If the required integrated circuit is not included in the pre-installed catalogue and can
not be implemented using custom I Cs, the user can define their own components. All
ICs used in the Java bread board simulator are coded in the Java programming
language and are based on a common superclass. IntegratedCircuit.java, as shown in
figure 21. An integrated circuit is defined as a component with zero or more pins.
Each pin associated with an I C is based on a common superclass: Pin.java, these

defining the role of that pin and its functionality as shown in figures 21 and 22. The
IntegratedCircuit class has been designed to support the most common functionality

found in an integrated circuit e.g. identifying a pins position on a package, or its
logical state. To illustrate how the user can develop a new integrated circuit the

THE UNIVERSlTvW

Mike Freeman 09/03/2010

Department of Computer Science

24

<<irterfaces=
[chipMode
Attributes
Operations
oublic void setdccess(ChipAccess @)

oublic void simulate()
ublic void reset()

oublic Sting getChipText()
oublic Sting getDeserption()
oublic Sting getlanufacturer)
oublic Sting getDiagram()

oublic int getlumberOfFins()
oublic boolean isWide()

oublic Sting getPin Type(inti)
oublic Sting(0.*] getDenvatives()
ublic int getDervative()

ublic Sting(0..] getPackages()
oublic int getPackage()

ublic void setDervative(intt)
oublic void setPackage (intp)

" [E IntegratedCircuit
= InputOutputPin Anributes
Attributes protected String name = this.getClass{.getSimpleName(y
protected inttplh = 1 protected String description
protected int tphl =1 protected String manufacturer
Operations protected String diagram
public InputOutputPin{ int pinNumber, String pinName, PinDriver pinDriver, int pinDelayTpih, int pinDelayl protected boolean wide = false

public InputOutputPin{ int pinNumber, String pinName, PinDriver pinDriver, int pinDelay } P
erations

public int getNumberGiPackagePins()
protected Pin getPinC int pinumber)
protected Pin getPin(String pinName)
protected Pin[0.”] getPins{ Sting pinName)
public Sting getPinName(int pinNumber)
\ public int getPinNumber String pinName)
public baolean isPininput{ int pinNumber)

public InputOutputPin{ int pinNumber, String pinName, int pinDelay)
public InputOutputPing int pinNumber, String pinName)

public PinDriver getPinDriver)

public int getPinDelayTphi{)

public int getPinDelayTplh)

\ public boolean isPininput{ String pinName)
\ public boclean isPinutput{ int pinNumber)
[E PowerPin \ public boolean isPinOutput; String pinName)
Attributes \ public beolean isPininputOutput{ int pinNumber)
Operations public boolean isPininputQutputf String pinName)
public PowerPin(int pinNumber, String pinName \ public beolean isPinPower int pinNumber)

\ public baolean isPinPower String pinName }
public boolean isPinNotConnected(int pinNumber)
public boolean isPinNotCannected(Sting pinHame)
\ public boolean isPinOpenCallector int pinNumber)

\ public boolean isPinOpentollectar Sting pinName)
=lNotConnectedPin public boslean isPinTotemPole(int pinNumber)
attrivites X\ public boslean isPinTotemPole(String pinhame)
o public boolean isPinTriState(int pinNumber)
erations
i blic bool PinTriState(Str N
public NetCannectedPing int pinHumber, String pinham: Fpin P”blf° b”‘“" ffpf“D'f 3(‘{((”"i P'“b 5’;9)
publie NotConnestedPin{ int pinNumber) Attrivutes GRL-UALELEOR] AT S AT 2
protected int pinHumber public boslean isPinDriven String pinName)
protected String pinName public baolean isPinClockOutput] int pinNumber)
e pins public boslean isPinClockOutputf String pinName)
erations

public int getPinlndex int pinNumber)

protected Pin(int pinNumber, String pinName | 0-." el ! LT
public int getPinindex(String pintame)

public int getPinNumber

E nputPin //"V sublic String getPinNamef) public String getPinindexName(int pinindex
Attributes public PinState getPinStatel) public int getPinindexNumber int pinindex)
Operations public vold setPinState(PinState state) public boolean isPinindexinput(int pinindesx)

public InputPin{ int pinNumber, String pinName] public boolean isPinindexOutput{ int pinindex)
public baolean isPinindexinputOutput int pinindex)
public baclean isPinindexPower int pinindex)
public boolean isPinindexNotConnected(int pinindex)
JoutputPin public boalean isPinindexOpenCollectorf int pinindex)
T public boolean isPinindexTatemPole(int pinindex)
protected int tplh = 1 public baolean isPinindexTriStatef int pinindex)
protected int tph! = 1 public boalean isPinindexDriven int pinindes)
public int getPinOffset. String pinName)
Operations

public intl0."] getPinOffsets(Stiing pinName)
public baolean isPinOffsetinput{ int pinOffset)

public boolean isPinOffsetOutput int pinOffset)

public boolean isPinOffsetinputOutput int pinOffset)
public baolzan isPinOffsetP ower int pinOffset)

public boolean isPinOffsetNotCannectedl int pinOffset)
public boolean isPinOffsetOpentallector int pinOffset)
public boalean isPinOffsetClockOutputl int pinOffset)
public baolean isPinOffsetTotemPale(int pinOffset)
public boolean isPinOffsetT iState(int pinOffset)
public boalean isPinOffsetDriven(int pinOffset)

public boolean isPawered()

public baolean isHigh String input)

public OutputPin(int pinumber, String pinName, PinDriver pinDriver, int pinDelayTplh, int pinDelayT
public OutputPin(int pinNumber, String pinName, PinDriver pinDriver, int pinDelay)
public OutputPin(int pinNumber, String pinName, int pinDelayTplh, int pinDelayTphl)
public QutputPin(int pinlumber, String pinName. int pinDelay)

public OutputPin(int pinNumber, String pinName }

public PinDriver getPinDiiver)

public int getPinbelayTphl()

public int getPinDelayTplh()

public vaid setPinDriver| PinDriver pinDriver)

public vaid setPinDelayTphl{ int tphl)

public vaid setPinDelayTpIh(inttplh)

public vaid setPinDelay(inttplh, inttphl)

public boalean isLow String input)
public boalean isStateHigh(Stiing input)
public baolean isStateLow(String input)

Ecluckoutputpin public PinState getPinState(String input)
Attributes public boolean isRisingEdge(String input)
Dyeration= public baolean isFallingEdge(String input)
publie ClockOutputPing int pinNumber, String pinName) public wvoid setPin{ String output, PinState state)
public ClockOutputPin{ int pinNumber, String pinName, int pinDelayTplh, int pinDelayTf public void setPin{ String output, PinState state, int delay

Figure 21: class hierarchy

7400 NAND gate will be used as a case study. Most |Cs will contain a family of
functionally comparable variants e.g. different manufactures, timings etc. A key
design goa when implementing a new design isto capture and encapsulate the IC's
core functionality as a generic class, refining this model in subclasses to match

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board 25

specific device timings, as shown in figure 23. Therefore, minimising the amount of
new code that needs to be written and modifications to existing tested code.

El IntegratedCircuit

pinsIU..*

EllnputPin EPin ElNotConnectedPin
— <
= PowerPin = QutputPin
-l InputOutputPin £l ClockOutputPin

Figure 22: integratedCircuit.java class

1 ChipAccess =] IntegratedCircuit <<interface>>
chip o ChipModel
e [R ——— £
£/ Gen7400
=l sN74AC00 =i sN74F00 =] sN74LS00

Figure 23: expanding an integrated circuit family

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board

o Figure 24 : Gen7400.java class
* Gen7400, java
L

package intergratedCircuits.ttl.logic:

import intergratedCircuits.*;

public class Gen7400 extends IntegratedCircuit {

public Gen?7400 (){
thiz.initialisze();

pins.add(new Outpuckin (3, “1¥7));
pins.add(new OutputPin (&6, "2¥7)):
pins.add(new OutputPin (&, “3¥7));
pinsg.add (new OutputPin (11, "4%¥7));

public Gen7400 (int tplh, int tphl j{
thiz.initialise():

pins.add(new OQutputPin (3, "1¥", tplh, tphl)):
ping.add (new OutputPin (&, “2Z¥", tplh, tphl)):
pins.add(new Outpuckin (&, “3¥", tplh, tphl));
pins.add(new OutputPin (11, "4%¥", tplh, tphl)):

private woid initialize(){

description = "QOuadruple Z-Input Fositive-NAND Gates™;
warfacturer = "Generic TTL gate™;

diagram = "images',7400. gif";

wide = falze;

pins.add(new InputPin (1, "L4"));
pins.addinew InputPin (2, "1E")):
pins.add(new InputPin (4, "2Z47));
pins.add(new InpucPin (5, "zZEB")):
pins.addinew PowerPin (7, “GHD7)):
pins.add(new InputPin (9, "347));
pins.add(new InputPin (10, "3B7)):
pins.add(new InputPin (12, "447)):
pins.add(new InputPin (13, "4B7));
pins.add(new PowerPin (14, "VCC™)):

private void updateGate| String A, String B, String ¥V) throws InwalidPinException{
Aif({ isHigh{ 4) && isHigh{ B) J{
setPinf ¥, Pin.Pinitate,.LOW);

}
else{

setPini ¥, Pin.PinState HIGH |:
}

public wvoid reset(){

}

public woid simulate(){
try{
if(isPowered()){
updateGate("14", "1B", “1Y");
updateFate("2A4", "ZB", "2¥7):
updateGate{ "3A7, "3BT, "3Y"):
updateGate("4a7, "4B7, "4Y7);

}
else
{
for({ Pin pin : pins){
ifjisPinDriven| pin.getPinflane())
setPin(pin.getPinflane (), Pin,Pin3tate.NOT_CONNECTED) :
}
}
}
catch [InvalidPinException el j{ System.out.printlng "0PFS: InvalidPinException”); }

H

¥:
A new integrated circuit will typically contain five methods as shown in figure 24:

THE UNWERSlTvW

Department of Computer Science

Mike Freeman 09/03/2010

26

Java Bread Board 27

Constructor
Initialise
UpdateGate
Reset
Simulate

Different class constructors allow a user to pass specific timing datato each
instantiated object. In this example the Gen7400 has two constructors, the default with
no parameters instantiates an object using the default parameters specified in
IntegratedCircuit.java. Where as the second constructor alows output rise and fall
times to be specified. Common to both of these constructor isani ni ti al i se()
method defining the | C’'s description and common input, not connected and power
pins. To allow a new IC to be integrated into the Java bread board simulator the
methodsr eset () and si mul at e() must be supported. Asthisdevice isapurely
combinational logic design i.e. has no state information, the reset function contains no
functionality. For synchronous devices this method would be used to reset all ICsto
their default initial conditions at the start of a simulation. During a simulation if the
simulator detectsthat an IC’ s input state has changed the si mul at e() method is
called. This method first determines if this specific instance is powered i.e. VCC pin
connected to +5V and GND pin is connected to Ov. If it is not then all pinsare set to a
not_connected state i.e. effectively removing the IC from the circuit. If it is powered
each output is updated using the updat eGat e() method. Using this approach
means that the software structure can be used to implement a number of different |Cs
e.g. Gen7400, Gen7408, Gen7432 etc.

Once an I Cs core functionality has been defined specific derivatives can be
added. Asthese devices are functionality equivalent very little additional code needs
to be defined. An example of a 74LS00 is shown in figure 26. In this example the
package' s foot print are identical, however, the IC’ s timing data is manufacturer
dependent. Therefore, the user only needs to extend the Gen7400 class passing this
new data. There arethree different options in how this can be implemented as shown
in figure 26. Once anew | C class has been design the user just needs to copy the
.classfile to the integrated circuit directory hierarchy, as shown in figure 25, the Java
bread board software will automatically detect this IC the next time an I1C is added.

=l) JavaBreadBoard
= | build
=l) classes
I chiplib
+ |} designtools
) images
SRl intergratedCircuits
|2 asic
|0 cpu
+ |) oscillakar
|2 ram
&) kel

Figure 25: IC directory hierarchy

THE UNIVERSITY 0f o7k

Department of Computer Science

Mike Freeman 09/03/2010

Java Bread Board

A YL

* GNT4LE00. java * SNTALEZ00. java
* *

* [Fauthor mif * [author wif
"y */

package intergratedCircuits.ttl.logic: package intergratedCircuits.ttl.logic:

import intergratedCircuits.=; import intergratedCircuits.*;

public class 3N74L300 extends Gen7400 { public class 3N74L300 extends Gen7400 {

/_,/‘ FEEEREEETEESHNNS // FEEEEEEER T LT FES
44 %% ATTRIEBUTES *+ S %% RTTRIEUTES *#
)"j‘ FEEEREEETEESHNNS)")" FEEEEEEENTRRTFTS
Ff FEEEEEEERTEETARLE
J FEEEEREREEEERRR AT A4 %% CONSTREUCTOR **
¢/ *% CONSTRUCTOR *+ S TEEERETEETRERANAE
S EEEEEREEEEEERRAAE
/4 OPTION 3
44 OFTION L
public 3N74L300 ()14
public SN74L500 (){ description = "Quadruple Z-Input Poszitive-Nand Gates":
super(i, 3): manufacturer = "Texus Instruments”;
panufacturer = “Texus Instruments"; diasgram = "images’7400. gif";
' wide = false:
1 FEEERREETEE pins. add (mew InputPin (1, "L4"))
i/ % METHODS + pins.add (new InputPin (2, “1E7));:
/] FERRREEERAE pins.add (new outputPin (3, “LT", Z, 211!
pins. add (mew InputPin (4, “2Z47)):

} pins. add (mew InputPin (5, "ZL7))
pins. add (new OutputPin (&6, "2¥", 2, 2)):
pins.add (new PowerPin (7, “GHD"));

pr pins.add (mew OutputPin (3, 377, 2, 21):

+ SH74LE00. java pins. add (mew InputPin (9, "3L7))
+ pins. add (new InputPin (10, "3E7)):

pins.add (new OutputPin (11, "4Y", 2, 2)):
pins.add (mew InputPin (12, "447)):
pins. add (new InputPin (13, "4E")):
pins. add (new PowerPin (14, "VCC7));

* [author mif

i
packaye intergratedCircuits.ttl.logic;
import intergratedCircuits.*;

FF O REEEEEEEETE
A4 % METHODE +

public class SN74L300 extends Gen7400 {
Jf EEEEEETEETE

S REREEEEERRREEELS

A4 %% ATTRIBUTES *%
FF RTEREREERRERETAL

i TETERERETRRREETET

S % CONSTRUCTOR *%

S EEEEEEEERRRRE R R A

i/

-

OPTION 2

public SH74L500 [){

super();
marufacturer = "Texus Tnstruments™:
tryf

({OutputPin) this.gecPin("1T")).setPinbelay(2, Z 12
}catch (InvalidPinException e){}

try{
{(OutputPin) this.getPin("2¥")). setPinbelay(2, 2)
}catch(InvalidPinException e){}

tryf
{(OutputPin) this.getPin("3¥")). setPinbelay(2, 2):
lcatch(InwvalidPinException e){}

tryf
({OutputPin) this.gecPin("47")).setPinbelay(2, 2 12
}catch(InvalidPinException e){}

i EEEEEE R Ew

A4 % METHODS +

FF EEEEERERTEEE

Figure 25: SN74LS00.java class

THE UNIVERSITYW

Department of Computer Sci

Mike Freeman 09/03/2010

nce

