
Getting Started With Java Bread
Board In Windows

Java Bread Board 2

Mike Freeman 09/03/2010

Table of Contents
Introduction... 3
Bread boards ... 5
Components .. 5
Wires..10
Simulation..11
Saving and Loading Circuits...13
Custom Integrated Circuits ...14
User defined Integrated Circuits ...23

Java Bread Board 3

Mike Freeman 09/03/2010

Introduction

The aim of this document is to introduce the main functionality of the Java bread
board (JBB) simulator. The document’s layout has been constructed to support JBB
laboratory 1, explaining the required software tools and steps involved to accomplish
each task. The Java bread board software is a simulation tool that replicates the
hardware development environment you will be using in the laboratory sessions,
allowing you to test out ideas and develop designs in the software labs or at home.
The software can be downloaded from:

http://www.cs.york.ac.uk/~mjf/CSA/APPS/JavaBreadBoard.zip

This zip file contains all the files you require and some additional documentation on
this simulation tool. Using your preferred web browser download the file
JavaBreadBoard.zip to c:\temp. Double click on this file to unzip it. Note, you can not
run this software from your home directory owing to the expanded directory name
used by this remote directory.

To execute this Java program you must have a Java runtime environment and virtual
machine installed on your computer. Note, for software and hardware lab machines
within the department this has already been pre-installed. For home machines this
software may not and can be downloaded from:

http://java.com/en/download/manual.jsp

At the time of writing this document the current Java runtime environment for the
Windows operating system is: Jre-6u17-windows-i586-iftw-rv.exe. If required
download and install this software onto your home PC. Note, you will require
administrator rights to do this.

The simulation software can be started at the command prompt or by double clicking
on the supplied batch file. To launch this program at the command line you first need
to open a command prompt:

Start -> Programs -> Accessories -> Command Prompt

At the command prompt type:

c:
cd c:\temp\JavaBreadBoard

This will move you to the directory containing the simulator’s class file directory
hierarchy. To launch the simulator at the command prompt type:

go.bat

Alternatively you can double left click on this batch file from the file browser. This
will launch the Java bread board main interface as shown in figure 1.

Java Bread Board 4

Mike Freeman 09/03/2010

Figure 1 : Java bread board main interface

Figure 2 : Virtual bread board

Figure 3 : Virtual bread board internal construction

Pull down menus Quick launch icons Simulation speed

Information panel Virtual circuit drawing area

Java Bread Board 5

Mike Freeman 09/03/2010

Bread boards
To assemble your virtual circuit you need at least one bread board. These can be
added to the simulator by either clicking the bread board icon or click on the pull
down:

Insert -> BreadBoard

This will add a bread board to the simulator as shown in figure 2 onto which
integrated circuits, wires and other electronic components can be added. The bread
boards internal construction is illustrated in figure 3. Horizontal rows A and L run the
continuous length of the board, whilst rows B – K are divided into 47 vertical
columns spanning each half of the board. Following tradition the top horizontal row
of holes (row A) is connected to VCC and the bottom horizontal row of holes (row L)
is connected to GND.

Note, more bread boards can be added to the simulator as the complexity of your
virtual circuit increases. To delete a bread board left click on an empty area of the
desired board, this will update the information panel. The selected board can be
deleted by pressing the DEL button, clicking on the Delete object icon or click on
the pull down:

Edit -> Delete

Note, if the bread board contains components a warning popup will appear asking to
confirm this action. If you press OK all circuit elements on this board will be deleted.

Components
To add an integrated circuit to your virtual circuit either click on the ‘Select and Add
Chip’ icon or click on the pull down:

Insert -> Chip

This will open the ‘Select a Chip’ window as shown in figure 3, allowing you to select
from a range of pre-defined, custom or user defined integrated circuits. To help
organise these ICs a common directory structure is used, classifying each IC by its
type and then function. To navigate down through this directory hierarchy double left
click on the desired IC type within the selection panel. To move back up this directory
hierarchy double right click on an empty region within the selection panel. The
example shown in figure 3 are the directory levels involved in selecting a simple
Boolean logic function IC.

ttl -> logic

Note, if the required IC can not be found please refer to the sections on custom or user
defined integrated circuits. To one of the listed integrated circuits single left click on
the required IC. In figure 3 a generic 7400 dual input NAND gate has been selected.
Single clicking on one of the listed ICs will update the right hand side information
panel of this window, giving you a brief description and the integrated circuit and its
pinout diagram.

Java Bread Board 6

Mike Freeman 09/03/2010

To minimise the number of different ICs presented to the user at one time only the top
level generic IC type is displayed in the selection panel. If available you may select a
specific derivative of this generic integrated circuit i.e. a particular manufacturer or
silicon implementation, using the ‘Derivatives’ pull down box as shown in the bottom
right frame of figure 3. Note, different derivatives will implement the same logical
function, but could have different timing characteristics i.e. switching speeds as
defined in their datasheets.

Figure 3 : Select a Chip (top left) top level chip hierarchy, (top right) TTL
subdirectory, (bottom left) logic subdirectory, (bottom right) Gen7400 derivatives list

To confirm your selection left click on the OK button. This will add the selected IC to
your bread board as shown in figure 4.

If required the IC can now be moved by performing a left click and hold on the ‘chip’
graphic. This will allow you to drag the IC to the required position, as shown in figure
5. Note, the IC can only be moved to positions where there are enough unused holes
which do not invalidate the systems design rules e.g. connecting an output to an

Type / IC selection panel

Derivatives pull down

Available integrated circuits Select IC details

Information panel

Java Bread Board 7

Mike Freeman 09/03/2010

Figure 4 : added 7400 integrated IC

output or a power supply rail etc. This limits the IC’s position to the central row of the
bread board e.g. rows F and G. Left clicking on an IC will update the IC information
panel on the left hand side of the main window.

Figure 5 : repositioned 7400 IC and information panel

To allow user defined test signals to be applied to a virtual circuit dual in-line package
(DIP) switches can be used. To add a DIP switch either click on the ‘Add DIP
Switches’ icon or click on the pull down:

Insert -> Dip Switches -> Single
-> Double
-> Triple
-> Quad

Java Bread Board 8

Mike Freeman 09/03/2010

If required the DIP switch can be moved by performing a left click, hold and drag as
previously described. Note, the default DIP switch package size used by the quick
launch icon is triple, this being updated to the most recent pull down menu selection.
Owing to the passive nature and size, DIP switches can be placed on a larger range of
rows than ICs, as shown in figure 6. However, design rule checks still apply e.g. the
three DIP switch banks starting at column 14 in figure 6 could be configured to short
out the power supply. To prevent this the simulator will prevent all three switches in
that column being switched on. The default switch position of each switch in the DIP
is off i.e. open circuit. To change the state of a switch to on i.e. closed circuit, left
click on the dark blue square above the selected switch element. This will move the
white switch bar up, turning that switch on e.g. the DIP switch bank starting at
column 30 in figure 6 has been set to OFF – ON – OFF. To change the state of a
switch to off, again click on the lower blue square below the selected switch element.
This will move the white switch bar down, turning that switch off.

To allow a user to view the state of an input or an output light emitting diodes (LED)
can be used. To add a LED either click on the ‘Add LED’ icon or click on the
pull down:

Insert -> LED -> Red
-> Yellow
-> Green

If required the LED can be moved by performing a left click, hold and drag as
previously described. Note, the default LED colour used by the quick launch icon is
red, this being updated to the most recent pull down menu selection. Owing to the
passive nature and size, LEDs can be placed on a larger range of rows than ICs, as
shown in figure 7. However, design rule checks still apply e.g. an LED can not be
placed between rows G and K as the anode and cathode would be shorted out. A LED
is always orientated with the anode top and cathode bottom. To illuminate a LED, a
positive voltage (VCC or DIP switch / IC output) must be connected to the anode
whilst the cathode is connected to GND. Note, the Java bread board simulator only
simulates discrete signal states i.e. logic 1, logic 0 and high impedance. Therefore, the
red, yellow and green LED network shown in figure 7 which would be illuminated in
a real circuit will not be illuminated during a simulation as the simulator can not
simulate the potential divider formed by these three LEDs.

WARNING : when constructing a real implementation of your virtual circuit in the
hardware remember to add a current limiting resister in series with each LED. Failure
to do this will damage the LED and the IC. The value of the resister used is dependent
on the LED, typically start with 1KΩ, if the LED is not very bright the resister can be
reduced in value to 470Ω.

To delete a component left click on the component’s graphic and press the DEL
button, click on the Delete object icon or click on the pull down:

Edit -> Delete

If you can not select the desired component you may need to switch to ‘Select Mode’,

Java Bread Board 9

Mike Freeman 09/03/2010

Figure 6 : four triple DIP switch banks

Figure 7 : four light emitting diodes

Figure 8 : wiring a virtual circuit

Java Bread Board 10

Mike Freeman 09/03/2010

this can be achieved by click on the ‘Selector’ icon or click on the pull down:

Edit -> Selection Mode

Wires
To add wire interconnects to your virtual circuit either click on the ‘Wiring Mode’
icon or click on the pull down:

Wire -> Add Wire

Note, to allow an IC’s functionality to be simulated its power supply lines must be
connected using wires to VCC (top horizontal row A) and GND (bottom horizontal
row L). To connect a wire between two points single left click on the starting bread
board hole and double left click on the destination hole. To route a wire around
components i.e. turn through a 90 degree bend, single left click on the bread at the
point you wish to create the bend. If an anytime you wish to un-route a wire segment
you have laid down press the ESC key or click on the pull down:

Wire -> Cancel Wire Segment

This will sequentially remove each segment back to and including the initial starting
hole. Note, the default wire colour used by the quick launch icon is red, this being
updated to the most recent pull down menu selection.

Wire -> White
-> Black
-> Red
-> Orange
-> Yellow
-> Green
-> Blue

Typically different colours are used to indicate the different roles within a circuit, as
shown in figure 8. This circuit has been constructed to allow the truth table for a 7400
two input NAND gate to be tested. Traditionally red is used to signify VCC and black
GND. Input and output colours are user defined, in this example inputs have been
colour coded as yellow and outputs in blue.

To delete a wire once laid, left click on the wire and press the DEL key, click on the
Delete object icon or click on the pull down:

Edit -> Delete

To allow you to select a wire you may need to switch from ‘Wiring Mode’ to ‘Select
Mode’, this can be achieved by click on the ‘Selector’ icon or click on the pull
down:

Edit -> Selection Mode

Java Bread Board 11

Mike Freeman 09/03/2010

Simulation
When a virtual circuit has been designed its functionality can be confirmed through
simulation. Test inputs to the circuit are applied using DIP switches. To view the state
of specific test points the user can either add LEDs or test probes. Multiple test probes
can be added to a design allowing the user to capture the state of the circuit at a
specific time. To add a probe click on the pull down:

Trace -> Insert Probe

This will add a test probe to your circuit , the default position being row B, column
1. To move a test probe left click, hold and drag the probe graphic to the bread board
hole you wish to monitor. If you can not select the desired probe you may need to
switch to ‘Select Mode’, this can be achieved by click on the ‘Selector’ icon or
click on the pull down:

Edit -> Selection Mode

Due to their size a test probe can be place in any bread board hole, as shown in figure
9 i.e. probe 1 row A VCC, probe 2 row F unconnected and probe 3 row L GND. Note,
if you are unsure of a probe’s ID single left click on the probe, this will update the
information panel.

Figure 9 : test probe icon

To delete a probe once placed, left click on the probe and press the DEL key, click on
the Delete object icon or click on the pull down:

Edit -> Delete

If you can not select the desired probe you may need to switch to ‘Select Mode’ as
previously described.

Java Bread Board 12

Mike Freeman 09/03/2010

To simulate a circuit either click on the ‘Run Simulation’ icon or click on the pull
down:

Simulation -> Run

The speed of the simulation will be determined by the processing performance of the
computer the Java bread board software is being executed upon on and the complexity
of the circuit. To enable the user to view individual gate transitions it is sometimes
useful to intentionally slow down the simulation speed. This can be achieved by
moving the simulation speed slider in the top right of the main interface window.

At anytime during a simulation DIP switch positions may be changed, however, no
additional components or wires may be added to or removed from the circuit.

To pause a simulation either click on the ‘Pause Simulation’ icon or click on the
pull down:

Simulation -> Pause

A simulation is also paused when the circuit’s probe state is saved. To save the
circuits state click on the pull down:

Trace -> Save Probe

This will open a new window ‘Save’ allowing the user to specify the text file this data
should be written to. To restart the simulation click on the ‘Run Simulation’ icon as
previously described. The state of the circuit can be saved multiple times during a
simulation. If this data is written to the same file it will be automatically concatenated
onto its end, as shown in figure 10.

Figure 10 : trace text file

This is the simulation trace for the test probes shown in figure 9, for which the
circuit’s state was recorded four times. Note, the state of the circuit at time zero is
always automatically added. Each save operation adds a new line to the specified file,
containing the current time and probe values separated by commas. Probe values may
be true ‘1’, false ‘0’ or unknown ‘-1’.

Java Bread Board 13

Mike Freeman 09/03/2010

The simulation can be reset i.e. set to simulation time zero, by either pressing the
BACK SPACE key, clicking on the ‘Reset Simulation’ icon or click on the pull
down:

Simulation -> Reset Simulation

An alternative approach to enable the user to view individual gate transitions is to
single step through the circuits simulation events. A simulation is event driven. When
a components input is updated a timed event is created for its associated outputs based
on the logic relationship and its transport delay. These events are stored in a queue
and can be stepped through sequentially rather than continuously as previously
described.

To step to the next timed event either press the ENTER key, click on the ‘Step
Simulation’ icon or click on the pull down

Simulation -> Step Simulation

Saving and Loading Circuits
To save a virtual circuit so that the user can continue working on a design at a later
time click on the ‘Save’ icon or click on the pull down:

File -> Save

This will open a ‘Save’ window allowing the user to specify an output file (.cir
extension). Enter a file name and left click on the Save button.

To load a virtual circuit to continue to develop an existing design click on the ‘Open’
icon or click on the pull down:

File -> Open

This will open the ‘Open’ window allowing the user to specify an input file (.cir
extension). Browse to and highlight the desired file and left click on the Open button.
Note, if there is a bread board already open an warning window will open information
you that all circuits currently present will be deleted.

In situation where a number of identical or very similar bread boards need to be
created a previously saved circuit can be inserted into a design i.e. additional bread
boards containing the desired circuit can be repeatably added to a design. To insert an
existing virtual circuit click on the pull down:

File -> Insert Circuit

To start a new design i.e. delete all previous circuits currently open click on the ‘New’
icon or click on the pull down:

File -> New

Java Bread Board 14

Mike Freeman 09/03/2010

Custom Integrated Circuits
If the required integrated circuit is not included in the pre-installed catalogue, or if the
desired functionality is not available in a commercial IC the Java bread board
software allows you to define a custom IC. There are two types of custom integrated
circuit supported, ‘logic’ and ‘state machine’. Purely combinational logic based
circuits e.g. SOP networks, should use the ‘logic’ custom IC and those with an
internal state e.g. binary counter, the state machine custom IC. Each custom IC has a
fixed package layout with n inputs and m outputs as shown in figure 11. Note, inputs
are always on the left hand side of the IC and outputs on the right hand side.

Figure 11 : logic IC (left), state machine IC (right)

To define the truth table for a logic custom IC the user can either use the truth table
editor, or the schematic capture editor. To open the truth table editor click on the pull
down:

Tools -> Truth Table Editor

This will open the initial Truth Table Editor window allowing the user to specify the
required number of inputs and outputs using the associated pull down boxes, as shown
in figure 12. The maximum number of inputs and outputs is currently limited to 8 and
16 respectively, in this example 4 inputs and 1 output have been selected. Note, any
combination of inputs and outputs are allowed. Where required ‘not connected’ (NC)
pins will be automatically inserted to pad out unused pin positions within the package
foot print.

Figure 12: initial input and output pin selection

Left click the Continue button to proceed. This will launch the main Truth Table
Editor window, allowing you to define the IC’s input to output relationship, as shown
in figure 13. To change an output of a specific input state to the required value single
left click on that output’s column bit i.e. the light green column. This will toggle the

Java Bread Board 15

Mike Freeman 09/03/2010

bit value from 0→1, or 1→0. The user may also edit the input and output names by
double left clicking on the default names e.g. In1, In2, Out1 etc, at the top of each
column.

Figure 13: truth table editor of a four input OR gate

The name and a description of this IC can be entered in the bottom panel of this
window. A common propagation delay or Chip Delay i.e. the delay from an input
changing to an output being updated, is used for all outputs and can be specified in
nano seconds. One final option available to the user is to specify if this IC should use
a .600 (Wide) or .300 (Default) package size. This is option is purely to allow the user
to match the ICs profile to aid in routing design of real implementations.

Once the truth table and other details have been entered this data can be stored to a
file. This can be accessed by clicking on the pull down:

File -> Create Chip File

This will open a ‘Save’ window allowing the user to specify an output file (.chp
extention). Enter a file name and left click on the Save button. This will open the
‘Chip File Created’ window, you may either continue i.e. enter another truth table or
exit back to the main interface. If you select continue you may re-edit the current truth
table and save it under a different name. To change the number of inputs and output
click on the pull down:

File -> New

Java Bread Board 16

Mike Freeman 09/03/2010

Figure 14: inserting a custom logic IC

To instantiate this new custom IC on a bread board click on the ‘Select and Add Chip’
icon or click on the pull down:

Insert -> Chip

Navigate down the directory hierarchy

ttl -> generic : Logic

selecting the generic Logic component as previously described. Click on OK. This
will open the ‘Open’ window allowing the user to select a .chp file that will configure
this generic logic IC. Using this file an IC of the correct size will be instantiated, as
shown in figure 14. This example is of a four input OR as defined in figure 13. Note,
as there are more inputs than outputs some of the output pin positions are defined as
NC i.e. pins 7, 8 and 9. VCC and GND being assigned pins 5 and 10 respectively.

An alternative method to defining a logic custom IC’s truth table is to use the
schematic capture editor. To open the schematic capture editor click on the pull down:

Tools -> Schematic Capture Editor

This will open the Circuit Diagram Editor window allowing the user to specify the
required logic function as a circuit diagram, as shown in figure 15. Note, the
schematic capture editor only supports combinational logic circuits implemented from
AND, OR and NOT gates.

Java Bread Board 17

Mike Freeman 09/03/2010

Figure 15: schematic capture editor of a four input OR gate

To add an input pin either click on the ‘Add Chip Input Pin’ icon or click on the
pull down:

Insert -> Input Pin

This will open the ‘Pin Label’ window, allowing the user to assign a name to this pin.
Maximum size 12 characters. Enter a name and click OK. The user can now position
this input pin on the schematic by moving the mouse pointer to the desired position
and performing a single left click. To move a pin once position left click, hold and
drag the pin to the new position. To delete a pin left click the pin and press the DEL
key or click on the pull down:

Edit -> Delete

If you can not select the desired component you may need to switch to ‘Select Mode’,
this can be achieved by click on the ‘Selector’ icon .

To add an output pin either click on the ‘Add Chip Output Pin’ icon or click on
the pull down:

Insert -> Output Pin

Java Bread Board 18

Mike Freeman 09/03/2010

Operations as for input pin. The combinational logic linking the input and output pins
is constructed from a network of AND, OR, NOT gates and constants. To add one of
these components to a schematic either click on the pull down:

Insert -> AND Gate

-> OR Gate

-> NOT Gate

-> Ground

-> VCC

or its associated icon. Operations as for pins. To add wire interconnects to a circuit
either click on the ‘Wiring Mode’ icon or click on the pull down:

Wire -> Entering Wiring Mode

To connect a wire between two points single left click on the starting grid position and
double left click on the destination grid position. To route a wire around components
i.e. turn through a 90 degree bend, single left click on the grid at the point you wish to
create the bend. If an anytime you wish to un-route a wire segment you have laid
down press the ESC key or click on the pull down:

Wire -> Cancel Wire Segment

This will sequentially remove each segment back to and including the initial starting
point. Note, the default wire colour used by the quick launch icon is black, this being
updated to the most recent pull down menu selection.

Wire -> Black
-> Red
-> Orange
-> Yellow
-> Green
-> Blue
-> Custom

To delete a wire once laid, left click on the wire and press the DEL key, or click on
the pull down:

Edit -> Delete

To allow you to select a wire you may need to switch from ‘Wiring Mode’ to ‘Select
Mode’, this can be achieved by click on the ‘Selector’ icon or click on the pull
down:

Wire -> Exit Wiring Mode

Note, moving a component e.g. an AND gate will automatically delete its attached
wires. The name and a description of the IC using this schematic can be entered in the

Java Bread Board 19

Mike Freeman 09/03/2010

bottom panel of this window. Saving and instantiating a logic custom IC based on this
circuit is the same as for the truth table editor.

The truth table editor and schematic entry tools allow the user to produce custom
combinational logic blocks e.g. address decoders and constant bit patterns e.g.
initialisation data, they can not be used to design synchronous logic components.
Small synchronous logic ICs can be designed using the state table editor, however, as
the user has to manually enter all state information it is not suitable for large circuits.
The state machine custom IC package has two additional pins: CLK and CLR, as
shown in figure 11. The CLR pin is a synchronous clear resetting the ICs state back to
its default initial conditions. The CLK pin is rising edge sensitive clock driving the
internal D-type state flip-flops.

To open the state table editor click on the pull down:

Tools -> State Table Editor

This will open the initial State Table Editor window allowing the user to specify the
required number of inputs, outputs and states using the associated pull down boxes, as
shown in figure 16. The maximum number of inputs, outputs and states is currently
limited to 8, 16 and 16 respectively, in this example 1 input, 4 outputs and 16 states
have been selected. Note, any combination of inputs and outputs are allowed. Where
required ‘not connected’ (NC) pins will be automatically inserted to pad out unused
pin positions within the package foot print.

Left click the Continue button to proceed. This will launch the main State Table
Editor window, allowing you to define the IC’s present state, next state relationship,
as shown in figure 17. To change the output state of a specific input state to the
required value single left click on that output’s column bit i.e. the light green column.

Figure 16: initial input pin, output pin and state selection

This will toggle the bit value from 0→1, or 1→0. To change the next state of a
specific input state to the required value single left click on that next state’s column
bit i.e. the white column. This will open a pull down menu from which you can select
the desired next state. Note, the initial starting state of this IC can be selected from the
right hand side Starting State panel. The user may also edit the input and output
names by double left clicking on the default names e.g. In1, In2, Out1 etc, at the top
of each column.

Java Bread Board 20

Mike Freeman 09/03/2010

Figure 17: state table editor for a four bit binary counter

The design example shown in figure 17 is for a four bit binary counter with an input
enable EN (in1). This line is sampled on the rising edge of the CLK. If the CLR is
high the counter is reset to its initial state, state 0, otherwise the EN is tested:

1) EN low: counter not incremented. Next state set to present state.
Output value maintained.

2) EN high: counter incremented. Present state set to Next state i.e. the
next count state. Output value updated to the next binary value i.e.
current value + 1.

The name and a description of this IC can be entered in the bottom panel of this
window. A common propagation delay or Chip Delay i.e. the delay from an input
changing to an output being updated, is used for all outputs and can be specified in
nano seconds. One final option available to the user is to specify if this IC should use
a .600 (Wide) or .300 (Default) package size. This is option is purely to allow the user
to match the ICs profile to aid in routing design of real implementations.

Java Bread Board 21

Mike Freeman 09/03/2010

Once the truth table and other details have been entered this data can be stored to a
file. This can be accessed by clicking on the pull down:

File -> Create Chip File

This will open a ‘Save’ window allowing the user to specify an output file (.chp
extention). Enter a file name and left click on the Save button. This will open the
‘Chip File Created’ window, you may either continue i.e. enter another truth table or
exit back to the main interface. If you select continue you may re-edit the current truth
table and save it under a different name. To change the number of inputs, outputs or
states click on the pull down:

File -> New

Figure 18: inserting a custom state machine IC

To instantiate this new custom IC on a bread board click on the ‘Select and Add Chip’
icon or click on the pull down:

Insert -> Chip

Navigate down the directory hierarchy

ttl -> generic : StateMachine

selecting the generic State Machine component as previously described. Click on OK.
This will open the ‘Open’ window allowing the user to select a .chp file that will
configure this generic state machine IC. Using this file an IC of the correct size will
be instantiated, as shown in figure 18. This example is of a four bit counter as defined

Java Bread Board 22

Mike Freeman 09/03/2010

in figure 17. Note, as there are more outputs than inputs one of the input pin positions
is defined as NC i.e. pins 4. VCC and GND being assigned pins 5 and 10 respectively.
This example shows a fully functional test circuit with the CLK line driven by an
oscillator IC, inputs CLR and EN controlled by a DIP switch and the outputs
displayed on a bank of five LEDS.

Figure 19: .chp for a four input OR gate

At present there is now software support to allow you to edit .chp files. However,
these text files can be manually edited using a standard text editor. Both the custom
logic and state machine ICs use the same file format as shown in figure 19 and 20
respectively. Lines 1 – 9 contain data relating to the name and description of the IC.
The remaining line contains a semicolon delimited present state / next state table
defining the IC’s functionality. The row format is:

Input state; Present internal state; Output state; Next internal state; Delay

The internal state information contained in a custom logic IC .chp file is not used as it
does not contain any memory elements. Note, to update these manual changes into the
simulator the virtual circuit must be reloaded into the Java bread board.

Java Bread Board 23

Mike Freeman 09/03/2010

Figure 20: .chp for a four bit Counter

User defined Integrated Circuits
If the required integrated circuit is not included in the pre-installed catalogue and can
not be implemented using custom ICs, the user can define their own components. All
ICs used in the Java bread board simulator are coded in the Java programming
language and are based on a common superclass: IntegratedCircuit.java, as shown in
figure 21. An integrated circuit is defined as a component with zero or more pins.
Each pin associated with an IC is based on a common superclass: Pin.java, these
defining the role of that pin and its functionality as shown in figures 21 and 22. The
IntegratedCircuit class has been designed to support the most common functionality
found in an integrated circuit e.g. identifying a pins position on a package, or its
logical state. To illustrate how the user can develop a new integrated circuit the

Java Bread Board 24

Mike Freeman 09/03/2010

Figure 21: class hierarchy

7400 NAND gate will be used as a case study. Most ICs will contain a family of
functionally comparable variants e.g. different manufactures, timings etc. A key
design goal when implementing a new design is to capture and encapsulate the IC’s
core functionality as a generic class, refining this model in subclasses to match

Java Bread Board 25

Mike Freeman 09/03/2010

specific device timings, as shown in figure 23. Therefore, minimising the amount of
new code that needs to be written and modifications to existing tested code.

Figure 22: integratedCircuit.java class

Figure 23: expanding an integrated circuit family

Java Bread Board 26

Mike Freeman 09/03/2010

A new integrated circuit will typically contain five methods as shown in figure 24:

Figure 24 : Gen7400.java class

Java Bread Board 27

Mike Freeman 09/03/2010

 Constructor
 Initialise
 UpdateGate
 Reset
 Simulate

Different class constructors allow a user to pass specific timing data to each
instantiated object. In this example the Gen7400 has two constructors, the default with
no parameters instantiates an object using the default parameters specified in
IntegratedCircuit.java. Where as the second constructor allows output rise and fall
times to be specified. Common to both of these constructor is an initialise()
method defining the IC’s description and common input, not connected and power
pins. To allow a new IC to be integrated into the Java bread board simulator the
methods reset() and simulate() must be supported. As this device is a purely
combinational logic design i.e. has no state information, the reset function contains no
functionality. For synchronous devices this method would be used to reset all ICs to
their default initial conditions at the start of a simulation. During a simulation if the
simulator detects that an IC’s input state has changed the simulate() method is
called. This method first determines if this specific instance is powered i.e. VCC pin
connected to +5V and GND pin is connected to 0v. If it is not then all pins are set to a
not_connected state i.e. effectively removing the IC from the circuit. If it is powered
each output is updated using the updateGate() method. Using this approach
means that the software structure can be used to implement a number of different ICs
e.g. Gen7400, Gen7408, Gen7432 etc.

Once an ICs core functionality has been defined specific derivatives can be
added. As these devices are functionality equivalent very little additional code needs
to be defined. An example of a 74LS00 is shown in figure 26. In this example the
package’s foot print are identical, however, the IC’s timing data is manufacturer
dependent. Therefore, the user only needs to extend the Gen7400 class passing this
new data. There are three different options in how this can be implemented as shown
in figure 26. Once a new IC class has been design the user just needs to copy the
.class file to the integrated circuit directory hierarchy, as shown in figure 25, the Java
bread board software will automatically detect this IC the next time an IC is added.

Figure 25: IC directory hierarchy

Java Bread Board 28

Mike Freeman 09/03/2010

Figure 25: SN74LS00.java class

