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Motivation



Small Scope Hypothesis

Common Observation
If a program fails to meet its specification in some cases,
it almost always fails in some simple case.

Contrapositive Corollary

If a program does not fail in any simple case,
it hardly ever fails in any case.
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Success of QuickCheck

QuickCheck (Claessen & Hughes, ICFP’00):

I A combinator library for random testing.

I Exploits type classes to generate test values.

I Checks universally quantified properties.

I Reports counter-example if found, or N tests OK.

I Widely used; often reported effective.



Drawbacks of QuickCheck

Principally:

I If failing cases are rare, none may be tested even though some
of them are very simple.

Also:

I Counter-examples are random not minimal.

I Some properties have conditions hard to satisfy.

I Writing good custom generators can be tricky.

I No assurance of test-space coverage.

I No support for existential properties.

I Counter-examples that are functions are not displayed.



Property-based Testing and QuickCheck

I Arbitrary types have random-value generators.

I Testable types represent properties.

instance Testable Bool
instance (Arbitrary a, Show a, Testable b)
=> Testable (a -> b)

I Any Testable property can be tested automatically for some
pre-assigned number of random values using

quickCheck :: Testable a => a -> IO ()

a class-polymorphic test-driver.



Example

I Consider a function:

isPrefix :: Eq a => [a] -> [a] -> Bool

I Specify an expected property:

prop_isPrefix :: [Int] -> [Int] -> Bool
prop_isPrefix xs xs’ = isPrefix xs (xs++xs’)

I Test it automatically:

> quickCheck prop_isPrefix
OK, passed 100 tests.

Or if isPrefix interprets arguments the other way round:

Falsifiable, after 1 tests:
[1]
[2]
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Arbitrary User-defined Types

data Prop = Var Name | Not Prop | Or Prop Prop

Defining a generator for such a recursive data type requires careful
use of controlling numeric parameters.

instance Arbitrary Prop where
arbitrary = sized arbProp
where arbProp 0 = liftM Var arbitrary

arbProp n = frequency
[ (1,liftM Var arbitrary)
, (2,liftM Not (arbProp (n-1)))
, (4,liftM2 Or (arbProp (n ‘div‘ 2))

(arbProp (n ‘div‘ 2))) ]



Conditional Properties and Custom Generators

I QuickCheck defines an implication operator

(==>) :: Testable a => Bool -> a -> Property

where Property is a new Testable type.

I For example:

type Set a = [a]
insert :: Ord a => a -> Set a -> Set a

prop_insertSet :: Char -> Set Char -> Property
prop_insertSet c s =
ordered s ==> ordered (insert c s)

I To avoid useless unordered lists, use a custom generator. But
there are drawbacks: (1) defining it; (2) verifying it.



SmallCheck



Small Data Values

Algebraic data types

I Small bound on the depth of constructor nesting.
Eg. Or (Not (Var P)) (Var Q) has depth 3.

Tuples

I Depth is the maximum component depth.

Numbers

I The depth of an integer i is its absolute value.
(cf. Succi Zero).

I The depth of a floating point number s× 2e is the depth of
the integer pair (s,e). Eg. the floating point numbers of
depth <= 2 are -4.0, -2.0, -1.0, -0.5, -0.25, 0.0, 0.25,
0.5, 1.0, 2.0 and 4.0.



Small Functions

Functions with data arguments

I Bound the depth of the body — treating case like a
constructor with its alternatives as components.
Eg. The Bool->Bool functions of depth 1 are:

\b -> case b of {True -> True ; False -> True }
\b -> case b of {True -> True ; False -> False}
\b -> case b of {True -> False ; False -> True }
\b -> case b of {True -> False ; False -> False}

Functions with functional arguments

I Defined generically — thank you Ralf!



Serial Types

I A series is a function from depths to finite value-lists.

type Series a = Int -> [a]

I A Serial type is one with a series method.

class Serial a where
series :: Series a

I Sums and products are simply defined (no diagonalisation):

(\/) :: Series a -> Series a -> Series a
s1 \/ s2 = \d -> s1 d ++ s2 d

(><) :: Series a -> Series b -> Series (a, b)
s1 >< s2 = \d -> [(x,y) | x <- s1 d, y <- s2 d]



Defining Serial Instances

I Instances are predefined for Prelude types.

I Instances for new algebraic types follow a simple pattern. The
series method uses generic \/ and cons<N> combinators.

instance Serial Prop where
series = cons1 Var \/ cons1 Not \/ cons2 Or

I The coseries method, generating functions, uses generic
alts<N> combinators to generate case alternatives.

I The Derive tool automates instance definition — thank you
Neil and Stefan!



Partial Extensions of Functional Values

I Are all binary operations on Bool associative?

prop_assoc op = \x y z ->
(x ‘op‘ y) ‘op‘ z == x ‘op‘ (y ‘op‘ z)
where typeInfo = op :: Bool -> Bool -> Bool

I Testing finds and displays a failing case:

Main> smallCheckI prop_assoc
Depth 0:
Failed test no. 22. Test values follow.
{True->{True->True;False->True};
False->{True->False;False->True}}
False
True
False
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Existential Properties

I Testing exists f succeeds if for some small argument x
testing f x succeeds.

exists :: (Show a, Serial a, Testable b) =>
(a -> b) -> Property

Uniqueness

I Properties written using the translation
(∃!x(P x)) ⇐⇒ (∃x(P x)) ∧ (∀y(P y⇒ y = x))
are awkward to write & read, inefficient to test and limited to
Eq types. A variant exists1 requires a unique witness.

Depth

I A universal property may pass shallow tests but fail deeper
ones. An existential property may fail shallow tests but pass
deeper ones. The variant existsDeeperBy dt specifies in
dt::Int->Int a depth transformer.



Example Revisited

I Consider the isPrefix specification:
∀xs∀ys(isPrefix xs ys⇐⇒ ∃xs’(xs++xs’ = ys))

I prop_isPrefix captures the ⇐= direction, but what about
the =⇒ direction?

prop_isPrefixSound xs ys =
isPrefix xs ys ==>
exists $ \xs’ -> xs++xs’ == ys

I A QuickCheck user could write

prop_isPrefixSound’ xs ys =
isPrefix xs ys ==> xs ++ skolem xs ys == ys

where skolem = drop . length

but skolem has to be invented and defined — rarely so simple.



Dealing with Large Test Spaces

Depth-Adjustment and Filtering

I Generators of type Int -> [t] compose with depth
adjustment functions of type Int -> Int, or with filtering
functions of type [t] -> [t]. Eg:

instance Serial Prop where
series = take 2 . cons1 Var

\/ cons1 Not
\/ cons2 Or . depth 2

Bijective Representations

I Impose data invariants by using testable bijections from a
shallower representation. Eg:

instance Serial OrdNats where
series = map (OrdNats . scanl1 plus) . series
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Lazy SmallCheck



Partial Values and Refinements

ordered [] = True
ordered [x] = True
ordered (x:y:zs) = x <= y && ordered (y:zs)

I If we evaluate ordered 1:0:⊥ it reduces to False. We
conclude that ordered 1:0:xs is False for every xs.

I By applying a function to a single partially-defined input, we
deduce its result over many fully-defined ones.

I If a property holds for some a partially-defined argument value
then it holds for all refinements of it.

I Lazy SmallCheck uses this fact to prune the test space for
first-order, universal properties.



Example Revisited

prop_insertSet c s =
ordered s ==> ordered (insert c s)

I Testing with SmallCheck:

Main> depthCheck 7 prop_insertSet
Depth 7:
Completed 109600 test(s) without failure.
But 108576 did not meet ==> condition.

I Testing with Lazy SmallCheck

Main> depthCheck 7 prop_insertSet
OK, required 1716 tests at depth 7



Laziness is Delicate

I A stronger invariant for ordered lists as sets:

isSet s = ordered s && allDiff s

I Redefining prop_insertSet accordingly, the number of tests
almost halves:

prop_insertSet c s = isSet s ==> isSet (insert c s)
Main> depthCheck 7 prop_insertSet
OK, required 964 tests at depth 7

I But if isSet conjuncts are switched, the number of tests
increases 20-fold:

isSet s = allDiff s && ordered s
Main> depthCheck 7 prop_insertSet
OK, required 20408 tests at depth 7

I Standard && evaluates its left-hand argument first, and
allDiff is less restrictive than ordered.
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Parallel Conjunction

I The solution is parallel refinement of conjuncts.

isSet :: Ord a => Set a -> Property
isSet s = lift (ordered s) *&* lift (allDiff s)

prop_insertSet :: Char -> Set Char -> Property
prop_insertSet c s =
isSet s *=>* isSet (insert c s)

I Testing this version of the property requires fewer tests than
either of the sequential ones

Main> depthCheck 7 prop_insertSet
OK, required 653 tests at depth 7

I Lists such as 1:0:⊥ falsify ordered but not allDiff; lists
such as 0:0:⊥ falsify allDiff but not ordered.
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Serial Types Redefined

I Standard instances of a Serial class can be written just as in
SmallCheck, using \/ and the cons<N> family.

I Underneath, the implementation is quite different.

type Series a = Int -> Cons a

I Values of type Cons a describe how to construct and refine
(partial) values of type a.

data Cons a = Type :*: [[Term] -> a]
data Type = SumOfProd [[Type]]
data Term = Ctr Int [Term] | Hole [Int] Type

I If a test evaluation reaches a Hole, a position-carrying
exception is raised.

I By using a universal Term type, machinery such as refinement
can be defined generically:

refine :: Term -> Pos -> [Term]
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Comparative Evaluation



Red-black Trees (Okasaki)

data Colour = R | B
data Tree a = E | T Colour (Tree a) a (Tree a)

redBlack :: Ord a => Tree a -> Bool
redBlack t = ord t && black t && red t

With a fault injected into rebalancing, we test whether insertion
preserves the redBlack data invariant:

prop_insertRB :: Int -> Tree Int -> Bool
prop_insertRB x t =
redBlack t ==> redBlack (insert x t)

QC no counter-example after 100,000 batches of 1000 tests.

SC still testing at depth 4 after 20 minutes.

LSC level 4 counter-example after a fraction of a second.
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Huffman Compression (Bird)

prop_decEnc cs =
length ft > 1 ==> decode t (encode t cs) == cs
where ft = collate cs; t = mkHuff ft

This property is hyperstrict.

SC Verifies to depth 10 in 1 min 30 sec.

LSC Verifies to depth 10 in 5 min 16 sec.

prop_optimal cs t =
isHuff t cs ==> cost ft t >= cost ft (mkHuff ft)
where ft = collate cs

Condition can be falsified for partially-defined arguments.

SC Verifies to depth 5 in 8 sec; still testing depth 6 after 20 min.

LSC Verifies to depth 6 in 23 sec.
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Mate Chess Solver

Conjecture: king and pawn alone cannot give checkmate

prop_checkmate b@(Board ws bs) =
( length ws == 2
&& Pawn ‘elem‘ map fst ws
&& validBoard b ) ==> not (checkmate Black b)

QC finds no counter-example after 100,000 batches of 1000
random tests.

SC is still searching at depth 4 after 20 minutes.

LSC in under 30 seconds finds a counter-example at depth 5:
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Conclusions and Future Work

Overall Conclusions

I SmallCheck, Lazy SmallCheck and QuickCheck are
complementary approaches to property-based testing in
Haskell.

I Each tool has strengths and weaknesses making it effective for
some kinds of properties but ineffective for others.

To-do List Top Three

I Refine SmallCheck’s treatment of functional values.

I Extend Lazy SmallCheck for higher-order and existential
properties.

I Increase the genericity of the property language to enable free
combinations of testing by different methods.



Availability

I SmallCheck and Lazy SmallCheck are freely available from
http://hackage.haskell.org/.
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