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1. Framework for Editing and Imputation Research in EUREDIT

The basic ideas underpinning editing and imputation were discussed in Chapter 1. In this Chapter we provide an overview of the specific methods for editing and imputation that were investigated within the EUREDIT project.

The research on edit and imputation methods that was carried out within EUREDIT can be classified into three strands. The first strand was concerned with traditional methods for edit and imputation. These methods are typically based on available software and focus on error localisation based on a given set of edit rules followed by imputation of detected errors using a variety of standard statistical methods. These range from sophisticated model-based imputation methods to nonparametric imputation methods like nearest neighbour and hot deck. The second strand was concerned with methods for outlier and error detection and robust imputation. The research work in this area largely focussed on application of modern robust inference methods to statistical editing and imputation. The final strand considered the use of modern computer intensive methodologies, typically developed for pattern recognition, for editing and imputation. The actual methodologies investigated were neural nets, tree structured self organising maps and support vector machines.

Although these methods differ widely in terms of the way their underlying theory and operation, the “non-traditional” methods (i.e. strands 2 and 3 above) share a common framework in terms of how they “view” the editing and imputation problem. In each case a data value in the data set being edited is compared with its expected value conditional on an agreed set of “clean” values in the data set. Edit failures are defined as those observed values that are too far from this expected value. In the same way, imputed values are selected (for the values failing the edits) by means of a function that predicts the underlying unknown values conditional again on the clean data values. The main distinction between the different approaches is typically in the choice of the metric used to identify “closeness”, the model used to calculate the expected value and the way the prediction function is defined. In the latter case there is usually a distinction drawn between random and non-random imputation. A classic example of non-random imputation is where the imputed value is the expected value. This has certain advantages, particularly in terms of reducing the variability of inferences about means and totals. However, depending on the complexity of the underlying model used to generate these expected values, this approach can lead to biased inferences about the distributional characteristics of the imputed data.

In contrast, the more traditional methods of editing and imputation (strand 1) do not fit into this framework. For these methods agreement with the set of pre-defined edit rules defines “closeness”, while imputation may be by a pre-defined rule, or more often, by some type of nearest neighbour imputation. Although it is possible that these edit rules are derived from the data set at hand, it is more usual that they are based on external considerations, e.g. subject matter knowledge or “experience”. There is no explicit attempt to model the data.

2. Current Methods of Editing and Imputation

Editing and imputation methods used by official statistical agencies are typically based on the application of the optimal editing approach described in Fellegi and Holt (1976) and either hot-deck or random/deterministic versions of nearest neighbour imputation methods. In some case model-based imputation is used, but this remains an exception. In almost all cases these methods are “defined” by the operation of a computer program developed for a particular application, but subsequently extended and generalised in terms of its capabilities. Consequently, the EUREDIT project defined traditional methods for editing and imputation in terms of available computer programs that are used by national statistical agencies for this purpose. Some of these programs were then identified as “representative” of the traditional approach to edit and imputation and were evaluated. Below we briefly describe the capabilities and the general edit and imputation philosophy of these programs in turn.

2.1 Editing via Cherry Pie with Regression/Hot Deck Imputation

Cherry Pie is a prototype computer program that determines implausible values in a data set based on the Fellegi-Holt paradigm. This corresponds to requiring that the data in a record should satisfy the specified edits by changing the fewest number of fields. The program can handle a mix of categorical and continuous data. As input Cherry Pie requires the raw data set to be edited, appropriate metadata, a set of edits, and a maximum for the number of fields that may be changed. Any record that requires more changes than the specified maximum is not automatically edited.

Output of Cherry Pie consists of a file that contains for each edited record a list of all optimal (in the Fellegi-Holt sense) solutions to the error localisation problem. Each such solution itself consists of a list of all variables that should be modified. One of these optimal solutions is then selected. The variables involved in this list are then set to missing and imputed. Cherry Pie also generates a file with records for which it could not find a solution, because more fields in these records have to be modified than the specified maximum allows. These records either need to be edited in another way, or have to be discarded. For more details see De Waal and Pannekoek (2002) and De Waal (2002).

Since the most suitable method of imputation depends on the characteristics of the variable being imputed, the imputation strategy used with this approach applies a combination of several standard imputation methods: deductive, multivariate regression and hot-deck imputation methods. Furthermore, since the imputed values produced by these methods are not necessarily consistent with all edit rules, a post-imputation adjustment step is carried out. This combined regression/hot-deck imputation strategy is defined by the following four steps:

Deductive imputation. If the value of a missing variable in a record can be derived unambiguously from the edit rules, the missing variable is then imputed using that derived value.

Multivariate (simultaneous) regression imputation. This method uses the EM algorithm (see section 3.1) to estimate the mean vector and variance-covariance matrix of groups of variables containing missing data (possibly after preliminary transformation). Under an assumption of joint normality, these estimated parameters can then be used to define a joint multivariate regression model for the variables to be imputed by conditioning on the available (i.e. non-missing) data in any particular record. The regression imputations for the missing values in a record are then the predicted values generated by this model.

Hot-deck imputation. Many variables are “subtotals” relative to a “total”. Such variables often contain many zero values. Regression imputation is unsuitable for these variables since the resulting imputed values are never zero (and can be negative) and do not add up to the total. In this situation total variables are first imputed by regression or deductively (if required) and the subtotals then imputed by a ratio hot-deck method. This uses ratios of subtotals to total obtained from a donor record to allocate the difference between the total and the non-missing subtotals.

The imputation strategy outlined above can lead to imputations that fail consistency edits. The imputed values are therefore finally adjusted so that they satisfy all fatal edit rules. This adjustment is such that the distance between the adjusted imputed values and the original imputed values is minimised under the constraint that the adjusted imputed values are consistent with the edit rules. See De Waal and Pannekoek (2002) and De Waal (2002).

2.2 Missing Data Imputation via the Donor Imputation System

The Donor Imputation System (DIS) was developed by the Office for National Statistics for missing data imputation in the 2001 UK Censuses. It implements the joint imputation method proposed by Fellegi and Holt (1976). The basic principle underlying this method is that all missing items within a record that fails the edits are imputed using a single clean record as a donor. The DIS is based on a search of candidate donor records from the entire data matrix using a set of matching variables. A candidate record is one that is “close” to the nominated recipient on the basis of a specified distance defined by the matching variables. Once a pool of candidate donor records has been found, the nearest neighbour, based on a measure of statistical closeness, is selected to provide impute values for the recipient record. Current DIS functionality allows selection of a different donor for each missing item should the user so choose. In addition different distance functions are available for categorical and continuous matching variables.

DIS searches for a donor in three stages. In the first instance the algorithm searches for a donor using a criterion of an exact match on set of matching variables. If at the end of this stage a donor has not been found for a recipient, then categories of each categorical matching variable are collapsed and the search is repeated. If a donor still has not been found at the end of this second search then non-significant matching variables are removed in turn until only one matching variable remains. The categories to collapse and removal of non-significant variables are chosen by the user and specified in the options file. If more than one donor is available for a recipient then either the closest donor is selected, or a donor is randomly chosen. Use of the same donor for different recipients is discouraged by the use of a penalty function in the calculation of the statistical distance (Yar, 1998).
2.3 Using CANCEIS, SCIA and GEIS for Editing and Imputation

CANCEIS

The Canadian Census Edit and Imputation System (CANCEIS) was developed to perform editing and imputation for the Canadian Census (Bankier, 2000). The program allows data from a single donor to be used for the simultaneous hot-deck imputation of categorical and numeric variables in a recipient record containing edit failures. Its goal is to minimise the number of changes made to the recipient, given the available donors, while making sure the imputation actions are plausible according to a pre-defined set of user-defined edit rules. These rules are supplied in the form of Decision Logic Tables (DLTs) (Bankier, 2000).

The CANCEIS system is designed to also identify donors for an entire household, not just for individual persons. Searches are restricted to households of the same size, with the system processing data by household size. The system identifies as potential donors those “clean” households that are as similar as possible to the household to be imputed.

The CANCEIS program consists of two parts: the DLT Analyzer, and the Imputation Engine. The DLT Analyzer ensures that the different DLTs are consistent and then creates a “unified DLT”. The Imputation Engine uses nearest-neighbour imputation methodology. The Imputation Engine uses the unified DLT, as well as the actual data to be edited, to find the records that are incomplete or fail the edit rules. The Engine then searches for donor records that resemble a failed record and uses data from those donor records to correct the failed record.

SCIA
The SCIA system was developed by ISTAT and uses Fellegi-Holt methodology for automatic editing and imputation of categorical variables (Fellegi-Holt, 1976). In particular, it minimises the number of changes made while making sure the imputation actions are plausible according to a user-supplied set of edit rules.

Initially, the input edit rules are checked for consistency and a complete set of edit rules constructed. These are then applied to the data set of interest in order to determine the minimal set of variables to be imputed (these are determined by identifying those variables which "cover" all the edits activated by the incorrect record) and to perform the imputation step. In particular, SCIA offers three different imputation techniques:

· Joint imputation

· Sequential imputation

· Forced imputation based on marginal distributions.

Two versions of joint imputation are available:

· Restricted joint imputation: Donors are selected from records that match exactly (on the matching variables) with the incorrect record.

· Relaxed joint imputation: Appropriate ranges are calculated for the matching variables and donors are selected from those records where these variables have values inside these ranges.

Under sequential imputation a range of acceptable values is calculated for each of the variables making up the minimal set that need to be imputed. Taking each of these variables in turn, the data set is then searched to find a donor record with a value within this range. Where it is not possible to identify a suitable donor using either joint or sequential methods, the system uses forced correction, taking as the imputed value a category randomly drawn from the set of acceptable values, with probability proportional to the frequency of occurrence of that category in the marginal distribution of the variable of interest.
GEIS
The GEIS software (Kovar et al, 1988), also developed by Statistics Canada, implements methods for data editing and imputation where variables are numerical, continuous and non-negative, and edits (consistency rules) can be expressed in linear form. GEIS has a modular structure: in each module a particular sub-function of the main data processing phases (definition of data, error localisation, identification of outliers, imputation) is implemented. Error localisation in GEIS is based on the Fellegi-Holt minimum change methodology and carried out using a user supplied set of edit rules. As is known, the Fellegi-Holt algorithm is appropriate for dealing with stochastic errors. For each record failing at least one edit, the algorithm identifies the minimum number of fields that need to be imputed in order to make the record pass all the edits. In addition, GEIS allows a number of edits analyses, e.g. consistency of the supplied edits, edit redundancies, number of time that each single edit is failed, etc. etc. In GEIS the identification of outliers is based on the Hidiroglou and Berthelot methodology.
Once errors (due to inconsistencies, missing values or outliers) have been localised, the imputation process consists of replacing erroneous items with new "plausible" values, using one of the following three imputation strategies:

· Deterministic imputation;

· Nearest-neighbour imputation;

· Estimated value imputation.

Under deterministic imputation an analysis is performed in order to verify if there exists one and only one value that has to be assigned to a variable in order to make the record pass all edits. If such a value exists, it is used as the imputed value. For nearest-neighbour imputation a donor record is identified among the set of potential donors consisting of all units passing all the user-defined edits. A donor is acceptable if it passes all edits and using its values for imputation makes the recipient pass all edits. The selected acceptable donor is then the one that is the minimum distance from the recipient, based on a minmax distance function. Once a donor has been found, all the missing values for a recipient are filled in using the corresponding donor values. Finally, estimated value imputation corresponds to where variables are imputed sequentially by using estimates of their missing values (ratios, means, historical trends) based on relationships derived from external information (e.g. historical or auxiliary information).

3. Editing and Imputation based on Statistical Modelling

The basic idea here is to build a statistical model for the variables of interest. Editing is carried out by identifying records with data values that are inconsistent with this model. Imputation replaces these values with model-based predictions.

In practice, of course, it is usually impossible to build a single “global” model for the data set under investigation. The data structures associated with modern official statistics collections are just too complex. The approach then is to break down the modelling process into a series of “sub-modelling tasks”, typically based on groups of variables all of which are related in some substantial way. The models themselves used in this approach are typically regression models, since data sets often contain a mix of variables that are known to contain errors (which then define the response variables in the regression model) and other “true” or “correct” variables, which are used as regression predictors. In many cases these predictors are register variables, but this does not always have to be the case. Imputation is stochastic if the imputed values are drawn randomly from the conditional distributions defined by these regression models. If the imputed values are predicted values then they are said to be non-stochastic.

A basic problem with this model-based approach to editing and imputation is that there is no guarantee that the different sub-models in the data are all consistent with one another. This can lead to inconsistent editing and imputation. Most techniques that use this approach therefore impose some form of consistency adjustment at the end of the imputation process.

A defining characteristic of this model-based approach is the absence of user-specified edits. In effect these edits are internally generated in the edit process by identifying the characteristics of data values that are “consistent” with the statistical models fitted to the data. Edit failures are then generated automatically by those records with values that do not possess these characteristics. Note that the concept of identifying a “minimal” set of variables that need to be changed in order to pass the edits does not arise. Also, imputation is typically highly structured. For example, nearest neighbour imputation has a model-based interpretation, but only within a metric defined by the model. Thus, a nearest neighbour can be defined as that record that passes all the “edits” (i.e. is consistent with the assumed data model) whose expected values under the model for the variables of interest are closest to the corresponding expected values of the record whose observed data values for these variables are inconsistent with the model. Defining “nearness” with respect to variables that do not appear in the model does not make sense.

By definition, there are no purpose-built computer packages (yet) that implement all of these modern statistical approaches to editing and imputation. However, all the analyses required to implement them can be carried out using one or more of the large number of general purpose statistical packages that are currently available (SAS, SPLUS, BUGS etc). Consequently we focus below on the main statistical ideas for editing and imputation that were investigated in EUREDIT.

3.1 Using the EM Algorithm for Missing Data Imputation

The EM algorithm (Dempster et al, 1977) is a standard statistical technique for maximum likelihood inference in the presence of missing data. Under this approach the complete data score function (the first derivative of the logarithm of the complete data likelihood), which is unavailable because of the missing data, is replaced by its conditional expectation given the observed data. Since this expectation depends on the unknown parameters of interest, the algorithm is iterative, in that initial estimates of these parameters are used to first calculate this conditional expectation. Updated estimates of these parameters are then obtained by substituting this estimate of the complete data score in the ML estimating equation, a new estimate of the conditional expectation obtained, and the process repeated until convergence.

In the context of imputation of missing values the estimates of the model parameters, obtained by the EM algorithm, can be used in order to perform simultaneous model based imputations. In the case of continuous variables, this can be done in two different ways:

· Impute each missing value via its “ best prediction”, defined by its conditional expectation given the observed data and the estimated parameters.

· Impute the missing values by making a random draw from the conditional distribution of the missing data given the observed data and the estimated parameters.

If the data are to be used for estimates other than population totals or means, the latter approach should be chosen, in order to better reproduce the observed variability of the data.

EM imputations are very simple to perform. However, software packages that implement this approach typically assume normality for conditional distributions. Real life applications therefore often need preliminary transformation of variables or ad hoc procedures able to take into account mathematical relationships between variables (balance edits) or semi-continuous variables (for example distributions containing a proportion of zero values).

3.2 Integrated Modelling Approach to Imputation

This approach is mainly aimed at missing data imputation but can be used for error localisation. It is essentially a four-step procedure (cf. Laaksonen, 1991; 2000; 2002a; Chambers et al, 2000; Piela and Laaksonen, 2001; see also Rubin, 1987):

· Selection of training data and auxiliary variables.

· Construction of imputation/editing model based on the training data.

· Choice of criteria for imputation and error localisation.

· Implementation of imputation or error localisation. 

In carrying out this process:

· All potential auxiliary variables (defined as variables with non-missing values) should be considered when selecting the training data (Laaksonen, 2002b).

· Two types of models can be fitted to the training data. For missing/erroneous data imputation the model is for the values of the variable of interest, while for error localisation the model is for a missingness/erroneous indicator for this variable. The actual model fitted may be parametric or non-parametric, and can be estimated from the training data or ‘logically deducted.’ In all cases the idea is to build a model with high predictive power.

· Two types of approaches can be used for imputation: (i) model-based prediction, or (ii) nearest neighbour imputation (NNI). In the case of NNI the metric used to define the nearest neighbour can be based on Euclidean distance, often defined by auxiliary variables which are not present in the model, or can be based on the model itself, as in the case of ‘regression based nearest neighbour’ (RBNN) imputation (Laaksonen, 2000; 2002a). For error localisation, it is necessary to develop appropriate criterion for deciding on a cut-off probability for errors. This may be derived from tests with clean data or using external information.

· If the predicted value under the model (with or without an additional noise term) is used as the imputed value, then the imputation method is referred to as a model-donor method. However, if the model and a metric are used to find a donor from whom an imputed value is obtained, then the method is called a real-donor method.

The IMAI approach has been implemented in Statistics Finland, with the main problem for a user being identification of an optimal approach to take at each step of the IMAI strategy. As with any model-based approach, it is crucial that the data be looked at prior to editing, and that several model specifications be tested.

3.3 Using SOLAS for Random Hot Decking and Group Mean Imputation

In Random Hot Decking the imputed values are randomly selected from corresponding values for respondents who are similar with respect to a set of auxiliary variables. Choice of the auxiliary variables is based on a statistical analysis of a training data set. The best training data set is one that is similar to the data set with the missing values. Alternatively one can split the data set in two parts, depending on whether values are missing or not. The data set with non-missing values can then be used as the training data set. If there are many auxiliary variables, it may be impossible to find a donor that matches on all the auxiliary variables. The user must then order the auxiliary variables in terms of their importance, and carry out a partial matching.

SOLAS 3.0 is a statistical package that allows both Random Hot Deck imputation and Group Mean imputation. In Group Mean imputation the imputed values are predicted using an ordinary least-squares multiple regression algorithm when the variable to be imputed is continuous or ordinal. When the variable to be imputed is a binary or categorical, a discriminant method is used. In addition to these two methods, SOLAS is able to implement other imputation techniques, such as Last Value Carried Forward, Predictive Model Based Multiple Imputation and Propensity Score Based Multiple Imputation. However, in the EUREDIT project only Random Hot Decking and Group Mean Imputation have been tested, using the Danish Labour Force Survey (DLFS) data set.

3.4 Using Outlier Robust Statistical Methods for Editing and Imputation

An important aspect of statistical data editing and imputation is outlier detection and correction. In this context, the focus of this subsection is on methods for identifying outliers and then modifying their values. Reasons for carrying out this modification vary, but basically all are related to the fact that if such values are not modified, then many standard subsequent analyses of the data set can be seriously compromised. A similar philosophy underlies application of the TS-SOM approach described in section 4.3 below.

Note that outliers are not always errors. Chambers (1986) characterises outliers as representative (correct values) and non-representative (incorrect or unique values). Methods for imputing outliers need to take this difference into account, since one would ideally wish to treat these two types of outliers differently. In contrast, the distinction between representative and non-representative outliers (true outliers and large errors) is not of prime importance in outlier detection, because even if an outlier is a correct observation, it is often important to detect it and give it special treatment in analysis. This usually requires some form of manual follow up to determine whether an identified outlier is an error or not. In this case the objective becomes one of maximising the number of large errors identified in the data.

Outlier detection typically requires a metric that measures the "outlyingness" of a data point. There are many metrics for outlier detection described in the statistical literature. See Barnett and Lewis (1994). Typically, the metric arises from some model for the data (for example, a centre or a fitted equation) and some measure of discrepancy for that model. For example, a commonly used metric for continuous data is some form of normalised Euclidean distance from the centre of the data, e.g. the Mahalanobis distance. Unfortunately, calculation of this distance depends on knowing the underlying location and scatter of the process that gave rise to the data set of interest. Estimation of these quantities from outlier-contaminated data can be extremely unstable. One approach therefore is to use various types of robust measures of location and scatter when calculating these distances. However measuring scatter in high dimensions can be extremely challenging because this scatter is not only defined by the scale of each dimension but also by the correlations between them. In other words a multivariate outlier is both outlying in values as well as direction. Given that the calculations associated with robust estimation of multivariate scale can be extremely time consuming, the EUREDIT project has concentrated on the following rather more straightforward methods for outlier detection:

Robust Distance via Transformed Rank Correlations

This approach detects multivariate outliers using a robust distance. The robust covariance structure underlying this distance is calculated using the Transformed Rank Correlations algorithm. This algorithm uses bivariate Spearman rank correlations to build a pseudo covariance matrix. A transformation into the space of the principal axis is then used to obtain a positive definite covariance matrix. Imputed values are obtained using a robust simple linear regression. 

Forward Search Algorithms

In order to avoid the well-known masking problem that can occur when there are multiple outliers in a data set (see Barnett and Lewis, 1994), forward search algorithms start from an initial subset of the overall data set that is chosen to be outlier free (Hadi and Simonoff 1993; Atkinson, 1994; Kosinski, 1999; Riani and Atkinson, 2000; Billor et al, 2000). A model for the variable(s) of interest is estimated from this initial “clean” subset using “standard” (normal theory) methods. The model is either multivariate normal or a linear model defined by “clean” covariates. Fitted values generated by this model are used to generate distances (e.g. Mahalanobis distances) to the actual sample data values. The algorithm then redefines the clean subset to contain those observations corresponding to inliers with respect to these distances and the procedure repeated. The algorithm stops when distances to all observations outside the clean subset are all identified as outliers with respect to the distances generated by the model fitted to the clean subset. Two versions of forward search have been implemented, Atkinson forward search and BACON. The BACON algorithm has been adapted to missing values by connecting it with the EM-algorithm (BACON-EM).

Epidemic Algorithm

This is a simple nonparametric method for outlier detection and is based on the idea that outliers, by definition, should be far from other data values. The idea is to start a simulated random epidemic at the spatial median of the data set and grow it outwards from there. Data values that remain uninfected after a fixed number of steps of the epidemic (chosen by the analyst) or are infected very late in the process are declared to be outliers. Different types of transmission functions can be used, each specifying the probability of infection of one record by another as a (decreasing) function of the distance between these records. The spread of the infection is determined by carrying out independent Bernoulli trials on all non-infected records at each step of the process. An infected point can transmit the epidemic as long as the epidemic lasts.

The Epidemic Algorithm (EA) does not make any assumptions about the data except that the inliers are not divided into well separated clusters. It is based on the intuitive notion of an outlier as an isolated point or group of points. The EA has connections to clustering algorithms and to nearest neighbour methods. By modifying the dynamics of the epidemic, and in particular the definition of the transmission function, it is possible to modify the search to take into account both local and global properties of the outlier contamination of the data set of interest.

Robust Tree Modelling

Regression tree models (Breiman et al, 1984) are now widely used in statistical data analysis, especially in data mining applications. The basic idea is to sequentially divide the original data set into subgroups or nodes that are increasingly more homogeneous with respect to the values of a response variable. The splits themselves are defined in terms of the values of a set of categorical covariates. By definition, this is a nonparametric regression modelling procedure. Outliers are down-weighted when calculating the measure of within node heterogeneity, with the weights used for this purpose based on outlier robust influence functions.

Each time a node is split to create two new nodes a new set of robust weights for the units making up this node is created, with outliers receiving weights close to zero and inliers receiving weights around one. These weights reflect distance from a robust estimate of location for the values in the node. Consequently a value that is not immediately identifiable as an outlier within larger nodes created earlier in the tree building process is more likely to become identified as such as it is classified into smaller and smaller nodes. In effect, the weights associated with such units tend to move towards zero. The tree-based outlier identification algorithm defines an outlier as an observation with an average weight over all node splits less than a specified threshold. This threshold is selected as the value at which the most observations that are "real" errors are identified as outliers and where the least number of error-free observations are classified as outliers.

Robust Imputation

Once a set of outliers has been identified, a variety of techniques can be used to impute more appropriate values for these outliers. One approach is to impute values consistent with inliers in the data set. For example, the robust tree structure used to identify outliers can be used to impute replacement values for these units. Two simple imputation methods used with tree structures that have been investigated under the EUREDIT project are weighted mean imputation and random donor imputation within terminal nodes. Note that the weights discount outliers within the node, so the mean value used is effectively that of the inliers in the node. 

Effectively, a robust tree defines a metric for deciding which inliers are “close” to an identified outlier. In cases where alternative (e.g. forward search, EA) methods are used for outlier detection, a simple method of robust nearest neighbour imputation can be used. This method, referred to as POEM, takes donor values from inliers only, with the donor corresponding to the closest inlier according to a modified Mahalanobis distance that takes into account both the outlyingness of observations as well as the results of plausibility edits.

A problem with inlier-based imputation for outliers is that it is essentially equivalent to treating all the identified outliers as non-representative (i.e. as errors). This means that the imputed values for representative outliers will, by definition, be far from the truth. Whether or not this is a bad thing depends very much on the analyses that are carried out on the imputed data set. If the aim, for example, is to produce standard survey estimates (means, totals, ratios) from this data set, then this imputation strategy will lead to biased (but very stable) estimates. On the other hand, the aim may be to use a robust estimation strategy based on modern outlier robust estimation methods (e.g. trimming, winsorization, M-estimation). See Chambers and Kokic (1993). These strategies effectively reduce the bias implicit in outlier deletion schemes, where all detected outlier values are essentially replaced by inlier values, by reducing, but not completely discounting, the outlier values in estimation. Thus, the POEM imputation method can be “set up” to impute fewer outliers than the number actually detected.

An alternative approach is to use a modified imputation technique called reverse calibration. Suppose a target set of robust population estimates is available. Given a fixed set of estimation weights to be used with the imputed data set, correction factors are derived that can be applied to the identified outlier values to define imputed values. These values have the property that weighted estimates based on them recover the target robust population estimates. This method is based on calibration theory (Deville and Särndal, 1992).

Adapting to sampling weights and missing values

Since the procedures for edit and imputation should be applicable in practice the methods developed here must fulfil two conditions: They must apply also in a situation where the data stems from a sample and they must be applicable even if the data contains missing items. Sampling weights can have a considerable effect on the properties of estimators of location and scatter used in outlier detection. In particular they can invalidate such important properties as the breakdown point of the (unweighted) median. Since we are usually interested in outlyingness with respect to the underlying population, it is clear that sampling weights should be integrated in the methods. However, an observation that seems to be a clear outlier when unweighted methods are used may no longer be one if sampling weights are integrated. Missing values are also a problem in multivariate outlier detection. Very few classical multivariate outlier methods can cope with missing values. The EM algorithm is one way to treat this problem and it is used in one of the Forward Search approaches (BACON-EM or BEM) described above. A basic limitation of this approach, however, is that, by definition, outlyingness can then only be determined on the basis of the observed components of an observation. An observation with observed inlier components and missing outlier components can never be identified by this approach. 

4. Editing and Imputation Using Neural Networks

Neural networks are a highly nonparametric class of regression models. Consequently, use of these models for edit and imputation is based on the same general principles as those set out earlier for application of modern statistical methods in this area. That is, edit failures are records whose values do not fit the regression model defined by the neural net, and imputed values are corresponding predicted values under the neural net model.

Neural networks were first developed within computer science for automatic pattern recognition. However, the links to statistical regression theory are now well recognised (Werbos, 1974; Bishop, 1995). The main distinction between neural net models and standard nonparametric statistical models is that the latter are often locally parametric and hence based on a relatively lower dimensional parameterisation than that implicit in a corresponding neural net model. This high dimensional parameterisation typically means that application of statistical inference techniques to neural network models is difficult.

4.1 Correlation Matrix Memory

Most neural networks require many training cycles or passes through a training pattern data. This is necessary in order to fit a type of non-linear regression model to the data, where implicit relationships between variables are represented in the model. Correlation Matrix Memory (CMM) is a type of neural network that is trained to associate pairs of patterns (comprising an input pattern and an output pattern). In contrast with most neural networks, CMM is fast scalable, and requires only a single pass through the training data in order to learn the association of a pair of patterns (Austin and Lees, 2000). The CMM investigated in EUREDIT was a binary version in which patterns used only binary (‘1’ or ‘0’) elements. Subsequent presentation of an input pattern alone (as a query) then recalled the learned association, leading to recovery of the originally paired output pattern. With CMM neural networks regression-type models are not formed. Instead, an explicit associative mapping between input and output patterns is created.

One important property of CMM is that learned associations possess a degree of robustness against errors and omissions. This means that an incorrect version of an input pattern can be presented to the trained CMM and the correctly paired output pattern is still recalled. Importantly, some additional output patterns are usually recalled due to the same robustness property. Thus an association originally created using one particular input pattern may also be activated by a different input pattern that is similar (in terms of Hamming distance). However, the degree of activation will be less than that produced by the original input pattern.

This robustness property is exploited when applying CMM neural networks to editing and imputation. Each record in the dataset is transformed into a binary input pattern where each variable in the record is represented by a specific sub-field in the pattern. An association is formed between this input pattern and an output pattern representing the location of that particular record in the dataset. When an input pattern is applied after training, the associated output pattern and some additional output patterns (representing near-matching records) are recalled. 

For editing and imputation, CMM is used as a kind of “filter” in the first-stage of processing to find the subset of near-matching records for each query record as described above. Second stage processing varies according to whether editing or imputation is to be carried out. 

For error localisation (editing), the subset of near-matching records is processed to determine the distance from the query record to its Kth neighbour record (for a suitable preset value of K, with records ranked according to distance). The set of all such distances is stored. Records with a larger distance, and the variables in such records which contribute most to this larger distance, are judged more likely to be in error.

For imputation, the subset of near-matching records is processed in a very conventional way to find a suitable value to impute into the query record having missing values. The CMM used in EUREDIT had five possible imputation “modes” at this second stage: nearest-neighbour, random, median, mean and weighted-mean (i.e. Euclidean distance weighting). Thus the imputation could be the corresponding value in the nearest-neighbour record or it could be the mean value computed over corresponding values in the subset of near matching records.

4.2 Multi-Layer Perceptron

Schematically, a neural network is characterised as a set of elementary units (neurones) linked by weighted connections. The processing units are arranged in layers: an input layer with units representing the input fields, one or more hidden layers, and an output layer with a unit or units representing the output field(s). A Multi-Layer Perceptron (MLP) is a network with at least one hidden layer.

The network learns through training by examining individual records, generating a prediction for each record, and making adjustments to the weights whenever it makes an incorrect prediction. Initially, all weights are defined randomly. Examples for which the output is known are repeatedly presented to the network, and the answers (predicted values) it gives are compared to the known outcomes. Information from this comparison is passed back through the network, gradually changing the weights. As training progresses, the network usually becomes increasingly accurate in replicating the known outcomes. Cross-validation methods are typically used to prevent over-training. Once trained, the network can be applied to future cases where the outcome is unknown. 

An MLP can be used for localising errors and for imputing missing values. Error localisation is carried out by defining the target variable for the network as the zero-one indicator denoting presence/absence of errors. Consequently, use of this approach requires access to a clean subset of the dataset of interest containing such an indicator. An MLP can then be trained on this subset and the generated network then applied to the full dataset. Another approach consists in defining as the target variable the variable itself (not the indicator): if the predicted value differs form the actual value then it can be considered erroneous.

In order to use an MLP for imputation, the network is first trained using those records for which the target value is not missing, and with target variable equal to the variable of interest. Imputed values are then obtained by using the network to generate predictions for those records with missing values.

4.3 Tree Structured Self Organising Maps

The Self-Organizing Map (SOM) was originally developed to imitate the formation of orientation specific neural cells in the brain (Kohonen 1982, Kohonen 1997). Nowadays the SOM is best known as computational learning method that is frequently applied in data analysis and computational intelligence. The SOM algorithm and its variants can be characterised and related to other computational and statistical algorithms. The SOM is

· A multivariate algorithm that models the joint distribution of data.

· A projection algorithm that constructs a lower dimensional latent space (or surface) of an n-dimensional data set. Typically the dimension of SOM is two, which allows one to describe n-dimensional data on a two dimensional surface. This characterization also relates SOM closely to principal curves and surfaces (Hastie and Stuetzle 1989, LeBlanc and Tibshirani 1994).

· A clustering algorithm. The implementation of the SOM uses a discrete set (lattice) of nodes (neurons) to construct the surface. These nodes can be interpreted as data clusters that are smoothed (they borrow strength) along the SOM lattice.

Algorithms like the SOM are highly nonlinear, multimodal, mostly nonparametric, and usually not identifiable.

In the EUREDIT project a tree-structured version of the SOM, called TS-SOM (Koikkalainen 1990) was used. The TS-SOM is a computationally fast method that can be used with large data sets and is easier to train than the normal SOM. During the project the algorithm was modified to allow incomplete and erroneous data. The idea was to build a TS-SOM model of true (good) data behaviour from bad training samples. Editing and imputation was then carried out by comparing each observation to its fitted value under the SOM model. If the model did not explain the observation well enough, it was considered to be in error (i.e. an outlier). Although the SOM is a multivariate method, this detection was carried out on a variable by variable basis (i.e. a univariate approach). After detection the errors/outliers were marked as missing and imputed. The subsequent imputation procedures were then SOM assisted, which basically means that the TS-SOM model determined a subset (cluster) of similar observations. The final imputation was then carried out using either via a donor or a model based imputation method in the SOM cluster. Typically these in-cluster imputation methods used the cluster mean value or selected a random donor from within the cluster.

4.4 Support Vector Machines

Although not strictly a neural net, the Support Vector Machines (SVM) method has been included in this group because it shares many features with other neural net-based methods. Thus, the SVM is an algorithm for defining a smooth function that recovers the values of a set of target variables from a set of predictor variables. See Vapnik (1996). As a classifier, SVM can thought of as an extension of Rosenblatt’s perceptron algorithm (Rosenblatt, 1958), but with the added refinements of the use of non-linear decision surfaces and control of overfitting. The first property is achieved by the non-linear projection of the covariate data onto a higher dimensional “feature space” prior to application of linear discriminant analysis, while the second is achieved by the use of penalty (regularising) functions. In the regression context the algorithm replaces the discriminant loss function (which penalises lack of separation in the feature space) by a regression loss function that penalises both lack of smoothness in the approximating regression surface and deviations more than a stipulated distance from the actual data values. As with most nonparametric regression functions, therefore, there is a trade-off between smoothness and accuracy, in terms of recovering the data values being approximated.

Within the EUREDIT project, SVM has only been used for imputation. Since it is essentially a nonparametric regression approach, the approach taken has been relatively straightforward, with predicted values generated by the SVM model used as imputations for missing data.

5 Edit and Imputation Methods for Time Series Data

Time series data have a quite different structure from the cross-sectional data structures underpinning the editing and imputation methodologies considered so far in this chapter. The actual time series data that were used in the EUREDIT project were derived from financial sources, and so the methods for imputing for missing data values in these time series were based on financial models for them. In this context 10 different imputation methods were investigated, ranging from the naïve Last Value Carried Forward method to sophisticated imputation methods based on application of the Black-Scholes pricing model for certain types of financial instruments. In addition, methods based on fitting univariate and multivariate time series models to the data, using the EM algorithm to allow for the missing data structure in parameter estimation, were investigated as well as the use of nonparametric models, including neural net models based on application of a multi-layer perceptron methodology. Full details of the methods used are set out in Chapter 7 of Volume 2 – Methods and Experimental Results from the Euredit Project, on the accompanying CDROM.
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