4.7 Financial Panel/Time Series Data

4.7.1 Introduction

The purpose of this section is to compare and evaluate a range of procedures for imputing missing data in financial panel/time series data. A number of the methods, e.g. MLPs and multivariate regression, are also applicable to cross-sectional data, and have already been examined for their performance in this regard in other sections of this report. Most of the methods considered here are only applicable to time series or panel data, and no counterpart exists for cross-sectional data. With the added benefit of the availability of lagged covariates, potentially better imputations can be performed than with just cross-sectional covariates alone. As will be seen, several of the methods utilise this fact in order to improve imputation performance. The methods applied to the option time series utilise specific relationships and characteristics, e.g. implied volatilities, that are only defined for financial option time series.

4.7.2 Overview of the dataset

The dataset consists of a number of daily time series for financial instruments and indices between the beginning of 1995 and the end of 1999.  It contains prices for various financial instruments of four major financial markets from different countries (USA, United Kingdom, Japan and Germany), as well as a variety of indices.  The information includes UK and US shares, exchange rates, financial indices, UK Options and UK Gilts.  There should be a degree of positive correlation between the instruments and indices that can be utilised for editing or imputation purposes.  The series will have a trend, which is close to the inflation rate (or perhaps slightly higher), although one must observe a long time series to see the upward trend.

Six types of indicator are contained in the data.  Within each indicator there are a number of time series, containing some missing data.  For example in the ‘shares’ indicator there are shares from 15 companies as described below.  For each of the other indicators there is also a large amount of time series information.

Shares

Partial ownership of a corporation is represented by shares which are a claim on the corporation’s earnings and assets.  Shareholders participate in the corporate earnings usually by a yearly paid dividend. Common stocks usually entitle the shareholder to vote in the election of directors and other matters taken up at the shareholder meeting.  Preferred Stocks generally do not confer voting rights, but have a prior claim on assets and earnings.  Dividends must be paid on preferred stocks before any can be paid on common stocks. The shares for a number of USA and UK companies considered in this section are displayed in Tables 2 and 3.

	Table 2: US company shares included in the dataset



	Name
	Symbol
	Sector

	Delta Airline
	DAL
	Airline

	US Airway
	U
	Airline

	United Airlines
	UAL
	Airline

	Bank America
	BAC
	Financial services

	First Union
	FTU
	Financial services

	American Express
	AXP
	Financial services

	Texas Utilities Co
	TXU
	Utility

	Consolidated Edison Inc
	ED
	Utility 

	Columbia Energy Group
	CG
	Utility


	Table 3: UK company shares included in the dataset



	Name
	Symbol
	Sector

	British Airways PLC
	AWS
	Airline

	British Petroleum 
	BP
	Oil

	Cable and Wireless
	CnW
	Telecommunication

	Glaxo Wellcome
	GXO
	Pharmaceuticals

	Lloyds TSB Group PLC
	TSB
	Financial services

	Rolls Royce
	RR
	Automobiles


 

There was a split of shares of BP at 4. Oct 1999 at a ratio of 1:2. The prices before this date have been adjusted by this ratio.  

Currency Exchange Rates

These are rates at which one country’s currency can be converted into another. A wide range of factors influence exchange rates, which change slightly each trading day. Some rates are fixed by agreement.

There are artificial currencies and hence artificial exchange rates as well. The ECU was one of the two international currency substitutes, until 1.1.1999 when the Euro became the official European currency, the other being the Special Drawing Rights (SDRs) of the International Monetary Fund (IMF). Since this date all exchange rates between former EU(European Union) currencies, like the French Franc or German Mark, and non-EU currencies are calculated via the Euro at a fixed conversion rate. These national currencies ceased to exist at the end of 2001 when the last stage of the introduction of the Euro was completed.

The selected exchange rates provided on the dataset are those between the US-Dollar (USD), Japanese Yen (JPY), British Pound (GBP) and the German Mark (DEM). The introduction of the Euro at the 1.1.1999 makes it necessary to transform either the German Mark into Euro or the other way around. As the Euro period is only one fifth of the time range the Euro was transformed into the older currency. 

Indices

These are statistical composites that measure changes in the economy or financial markets. In the case of financial markets they measure value changes in representative financial instrument groupings, in particular stocks, bonds and futures. An average is simply the arithmetic mean of a group of prices (usually weighted by relevancy factors), whereas an Index is an average expressed in relation to an earlier established Base Market Value.

Some indices and averages have Sub-Indices, representing a selected group of the index members of a certain business-sector.

The selection of indices include, for the USA (NYSE Composite, Dow Jones Industrial Index), Japan (Nikkei), Germany (DAX 30) and UK (FTSE 100). There are also some sub-indices for the American market, the NYSE – financial, NYSE – transportation and the NYSE - utility index. The share indicators and exchange rates used in the study are tabulated below.

	Table 4: Indicators and exchange rates.



	Exchange Rates
	 
	Indices

	US$ in German marks
	 
	GB: FTSE 100

	
	
	

	
	
	German: Dax 30

	US$ in Japanese yen 
	 
	USA: Dow Jones Industrial Index

	
	
	

	GB £ in German marks
	 
	USA: NYSE Composite

	
	
	

	GB £ in Japanese yen
	 
	USA: NYSE Transportation

	
	
	

	 
	 
	USA: NYSE Utility

	
	
	USA: NYSE Finance

	 
	 
	Japan: Nikkei

 


Derivatives

The chosen derivatives are Call options traded at the LIFFE (London International Financial Futures and Options Exchange) and have as underlyings the UK Shares from table 3.  Derivatives are not the series of one instrument but a combination of various short series.

For each underlying UK Share, six time series of derivatives were created, divided into three pairs: one with strike prices 10% below, one 10% above and one with strike prices approximately the price of the underlying three months before maturity (e.g. BP_Clow1, BP_Clow2, BP_Cmid1 and so on).

Options at LIFFE are traded in cycles of quarterly years, e.g. Jan-Apr-Jul-Oct. On the third Wednesday of these months an option matures. The pair of time series is constructed in the way that one contains every second cycle, e.g. Jan-Jul and the other the remaining cycles, e.g. Apr-Oct. In this way they overlap to receive some kind of continuous series of observations.

A derivative instrument (short derivative) is a contract whose value is based on the performance of an underlying financial asset, index or other investment. There are different kinds of derivatives like Call Options, Put Options or Future Contracts.

Options

An Option is in general the right to buy or sell property that is granted in exchange for an agreed upon sum. If the right is not exercised within a specified period, the option expires and the option buyer forfeits the money used to purchase the money.  In financial markets the above mentioned property could be any kind of financial instrument like stocks, indices, exchange rates or an other derivative like a future contract. Commodity prices are also a possible underlying for options. Options are traded on many exchanges. There are two main types:

1. A call option gives the buyer the right to buy a certain number of shares of the underlying financial instrument at a fixed price (strike or exercise price) before a specified date in the future (expiration date, exercise date or maturity). For this right, the call option buyer pays the call option seller, called the writer, a fee called a premium, which is forfeited if the buyer does not exercise the option before the agreed-upon date.

2. The opposite of a call option is a put option, which gives the buyer the right to sell a specified number of shares of a financial instrument at a particular price within a specified time period. 

American options can be exercised at any time up to the expiration date. European options can be exercised only on the expiration date itself. The terms American and European do not refer to the location of the option or the exchange. Most options traded are American options.

In practice, most call and put options are rarely exercised. Instead, investors buy and sell options before expiration, trading on the rise and fall of the underlying prices.

In the dataset options are described by their label. An example of the labelling convention used is:

Example: BP_Apri96C500

BP 
- Ticker symbol for British Petroleum (see share table)

Apr96
- Maturity date, third Wednesday of April 1996 (corresponds with the end date in the Option table)

C
- Call option (P for Put)

500
- Strike price 500

 

The label therefore contains important information that could assist the imputation of the hoes in the derivative series.  The derivative time series are not the series of one instrument, but a "puzzle" of short series.

Bonds

These are any interest-bearing or discounted government or corporate security that obligates the issuer to pay the bondholder a specified sum of money (coupon), usually at specified intervals, and to repay the principal amount of the loan (corpus) at maturity. Some bonds are callable, which means they are redeemable by the issuer before the scheduled maturity. The issuer must pay the holder a premium price if such a security is retired early. 

A bond without the payment of coupons is called a Zero-Coupon bond. To compensate for the lack of steady payments, the zero-coupon bond is issued with a deep (large) discount. Sometimes zero-coupon bonds are generated out of coupon bonds by selling the corpus and the coupons separately (Coupon stripping). 

The chosen bonds are also from the UK market, the so-called gilt market. All bonds in the data set are non-callable.  The title of the series also provides information about the series.

Example: UKGB200611070675

UKGB
- United Kingdom Government Bond

2006
- Year of redemption

11
- Month of redemption

07
- Day of redemption

0675
- Coupon of 6.75%

 

Again, the title will be of assistance for imputation.  The coupons of the UK are payable half-yearly on the same dates as the redemption will be.  In the example above, coupons will be paid on 7th of November and 7th of May at a rate of GBP 3.375 per GBP 100 nominal value of stock.

4.7.3 Methods and summary

The methods considered in this section are briefly described in the table below.

	Table 5: Methods and brief description



	Method name
	Brief description

	Shares and bonds (WXY dataset)

	LVCF
	Last value carried forward imputation

	R1
	Multivariate regression imputation using stock market indicators and exchange rates as covariates

	NP100
	Non-parametric multivariate regression imputation using a moving window of length 100, and the same covariates as for R1

	MARX1
	Multivariate autoregression imputation of lag 1, with the same covariates as for R1

	AR5X
	Univariate autoregression imputation of lag1 – lag5, with the same covariates as for R1

	MLP
	Univariate multi-layer perceptron imputation, with the same inputs (covariates) as used for R1

	Options (Z dataset)

	LVCF
	Last value carried forward imputation

	BSBASE
	Black-Scholes pricing with cross-sectional averaging to impute missing volatilities

	BSLVCF
	Black-Scholes pricing with last value carried forward imputation of missing volatilities

	BSEM
	Black-Scholes pricing with EM-algorithm imputation of missing volatilities

	BSMLP
	Black-Scholes pricing with univariate multi-layer perceptron imputation of missing volatilities


A more detailed description of each method is given in chapter 3 of this report. The WXY shares and bond dataset consist of daily closing share and bond prices for 51 time series covering the time period from the beginning of 1995 to the end of 1999. The Z dataset consist of 36 time series of daily closing option prices over the same time period. For a more complete and detailed description of the time series data used in the EUREDIT project refer to the documentation supplied together with the original data.

The standard imputation method for shares and bonds time series is the ‘Last Value Carried Forward’ technique (LVCF), and this method is often used for option time series as well, although the BSBASE method is something used in its place. In any case, our objective is to search for methods that outperform these standard approaches according to the various criteria and associated measures defined in Chambers (2000). In the following sections quite detailed results are given about the performance of each method.

When imputing missing observations in panel data there are two important aspects that must be considered: the cross-sectional relationships between the data, and the temporal relationships. Most of this project deals with the modelling and imputation of cross-sectional data, and so there is no chance to incorporate temporal relationships. One of the most important findings in this section is that the imputation methods that utilise temporal information more so than cross-sectional information generally outperform those methods that rely strongly on the cross-sectional relationships. For example, the very simple LVCF technique, which uses no cross-sectional information to impute missing values, is quite difficult to outperform. One should note that because the generation of holes in the data is essentially random, the chance of long-runs of missing observations is low. If, on the other hand, longer-runs occur frequently in the data, for example as one often observes with panel survey data or even with price data for infrequently traded financial instruments, we may expect to see the imputation methods that utilise cross-sectional information more heavily to outperform other methods which don’t.

Of the six methods that were tested on the shares and bonds data, only the LVCF method was sufficiently reliable to be applied without modification to the options data. When applied to the shares and bonds data the EM algorithm methods (R1, NP100, MARX1 and AR5X) were found to be very reliable and convergence extremely fast, usually requiring less than 5 iterations. Unfortunately, this was not the case for the option price series. The EM algorithm methods, in all cases, required over 100 iterations in this case, and sometimes they did not converge at all. After considerable testing it was found that the most likely cause of this problem is the failure of the linearity assumption between the various log-returns.

The simplest solution was to apply the EM algorithm directly to the missing implied volatility data instead. The practical reasons for doing this is as follows. In financial institutions the Black-Scholes pricing formula is used almost exclusively to price European call and put options, and to be effective this formula requires accurate estimates of the strike-to-underlying ratio, interest rate, and the implied volatility index. The first two terms can be estimated accurately, whereas the third is more problematic. The volatilities are normally estimated by inverting the Black-Scholes pricing formula, but this can only be done when the derivative price is known. Thus, one obtains missing implied volatilities exactly where there are missing derivative prices. Empirical evidence suggested that the volatilities themselves, or more precisely the log-returns of the implied volatilities, are more linearly related to each other than the log-returns of the original option prices. 

4.7.4 Generation of evaluation data

Each method was applied to two versions of the time series data (versions 2 and 3). Version 2 is the original data with ‘holes’ added, while version 3 is the same data with holes, but with additional random errors added on top. Most methods evaluated are not specifically designed to handle the outlier prone data, and the results clearly highlight this fact. The purpose of the version 3 data is to test the robust performance of the methods, and some interesting results are obtained. In this report the version of the dataset is indicated by the number suffix added to its name.

To create the version 3 data, a simple gross error term was added to each of the time series. The values to be perturbed were chosen at random (with probability 1/50). When chosen, their values were multiplied by either 0.1, 0.5, 2, or 10 (this multiplicative factor was also chosen at random).

In each time series holes (missing values) were generated at random according independent Bernoulli trials with the probability of a hole occurring being inversely proportional to the total volume of trading on the particular day. This is fairly consistent with reality. The constant of proportionality was varied across the time series to produce different degrees of missingness (DoM). Three categories of DoM were formed: DoM = ‘L’, where the proportion missing was < 6 %, ‘M’, where the proportion missing was between 6 and 15 %, and DoM = ‘H’ where the proportion missing was > 15%. A summary of the missing rates is given in table 6 below.

The time series were categorised into linear instruments (shares and bonds), i.e. those for which linear pricing tools are often effective, and non-linear instruments (options), i.e. those for which non-linear pricing functions are used for pricing. It would be interesting to compare how the various imputation methods perform for the different instrument categories. However, in most cases no comparison could be performed because any particular method that worked for shares and bonds, could only be adapted to options by utilising a pricing formula (specifically the Black-Scholes formula). Straight application of the technique in most cases did not succeed for technical reasons.

	Table 6: Percentage of missing observations, by variable 



	US Shares
	UK Shares
	UK Options
	UK Gilts

	BAC
	9
	BP
	37
	BP_Clow1
	44
	UKGB199505010300
	5

	FTU
	23
	CnW
	2
	BP_Clow2
	3
	UKGB199506211025
	2

	AXP
	29
	GXO
	15
	BP_Cmid1
	29
	UKGB199511151275
	13

	DAL
	73
	RR
	1
	BP_Cmid2
	14
	UKGB199601221400
	29

	UAL
	5
	TSB
	7
	BP_Chigh1
	73
	UKGB199605031525
	6

	U
	17
	AWS
	7
	BP_Chigh2
	20
	UKGB199605151325
	56

	CG
	1
	 
	 
	CnW_Clow1
	3
	UKGB199611151000
	9

	ED
	15
	 
	 
	CnW_Clow2
	4
	UKGB199701221325
	1

	TXU
	15
	 
	 
	CnW_Cmid1
	18
	UKGB199702211050
	20

	 
	 
	 
	 
	CnW_Cmid2
	2
	UKGB199708060700
	19

	 
	 
	 
	 
	CnW_Chigh1
	13
	UKGB199709010875
	9

	 
	 
	 
	 
	CnW_Chigh2
	9
	UKGB199710271500
	1

	 
	 
	 
	 
	GXO_Clow1
	9
	UKGB199801190975
	0

	 
	 
	 
	 
	GXO_Clow2
	8
	UKGB199803300725
	11

	 
	 
	 
	 
	GXO_Cmid1
	9
	UKGB199809301550
	9

	 
	 
	 
	 
	GXO_Cmid2
	6
	UKGB199811201200
	12

	 
	 
	 
	 
	GXO_Chigh1
	12
	UKGB199901150950
	2

	 
	 
	 
	 
	GXO_Chigh2
	6
	UKGB199903261225
	10

	 
	 
	 
	 
	AWS_Clow1
	10
	UKGB199905191050
	34

	 
	 
	 
	 
	AWS_Clow2
	10
	UKGB199908100600
	31

	 
	 
	 
	 
	AWS_Cmid1
	1
	UKGB199911221025
	68

	 
	 
	 
	 
	AWS_Cmid2
	4
	UKGB200001280850
	3

	 
	 
	 
	 
	AWS_Chigh1
	20
	UKGB200003030900
	3

	 
	 
	 
	 
	AWS_Chigh2
	9
	UKGB200007141300
	61

	 
	 
	 
	 
	RR_Clow1
	35
	UKGB200012070800
	27

	 
	 
	 
	 
	RR_Clow2
	24
	UKGB200102261000
	6

	 
	 
	 
	 
	RR_Cmid1
	3
	UKGB200107120950
	1

	 
	 
	 
	 
	RR_Cmid2
	6
	UKGB200108100975
	0

	 
	 
	 
	 
	RR_Chigh1
	74
	UKGB200111060700
	1

	 
	 
	 
	 
	RR_Chigh2
	10
	UKGB200204111000
	85

	 
	 
	 
	 
	TSB_Clow1
	12
	UKGB200206070700
	1

	 
	 
	 
	 
	TSB_Clow2
	1
	UKGB200206140950
	4

	 
	 
	 
	 
	TSB_Cmid1
	21
	UKGB200208270975
	4

	 
	 
	 
	 
	TSB_Cmid2
	46
	UKGB200211190900
	8

	 
	 
	 
	 
	TSB_Chigh1
	13
	UKGB200305070975
	32

	 
	 
	 
	 
	TSB_Chigh2
	1
	UKGB200306100800
	1


 

In all cases pre-transformation of the time series data was performed by taking the log-returns of each individual time series.

4.7.5 Evaluation statistics and interpretation of results

Numerous evaluation criteria were produced for each time series (32 in total) according to the definitions presented in Chambers (2000), for each of the 11 experiments, and for each of versions 2 and 3 of the datasets. This resulted in a huge amount of statistical output which was far too unwieldy to interpret. Fortunately, the number of statistics that need to be examined can be reduced, and the method of examination can be simplified considerably. Refer to chapter 7 of the report on the evaluation of all methods (D 6.1). It was possible to narrow the evaluation of the time series imputation procedures down to 6 key statistics, R2, dL1, K-S, m1, m2 and MSE, which will cover most of the key features of the comparisons we wish to perform. In summary, R2 is for assessing the predictive power of the imputed values; dL1 is for assessing the preservation of true value by the imputed value; K-S (Kolmogorov-Smirnov distance) is for assessing the preservation of distribution of the imputed values; m1 is for assessing preservation of the mean; m2 is for assessing preservation of second moment, and MSE is for evaluation of outlier robustness of the imputation method.

The standard box plots produced by MatLab (The Mathworks, 1999) are used in this section. They display a box showing the median, and upper and lower quartiles, and two whiskers at each end extending to a maximum of 1.5 ( the inter-quartile range (the length of each whisker is often reduced to less than this depending on the distribution of the data itself). Data values beyond the extremes of each whisker are plotted as crosses. It has been noted elsewhere that the values used to produce the box plots are potentially correlated, but since the box plots are based on estimates of the empirical distribution function of the data, this correlation will not effect the bias of the quantile estimates, only their precision.

The ideal distribution for the K-S statistics is difficult to determine since too small values would indicate suspiciously good results. However, one can argue that due to positive correlation between the imputed and true data, the K-S statistic is likely to have much smaller values than indicated by its null distribution under the assumption of independence. For all other statistics under consideration it is clear what the ideal situation is. For reasons of clarity and consistency of interpretation the raw statistic themselves are not always presented in the box plots, but often transformed values of these. For all box plots, the best results are indicated by the smallest values on the vertical axis.

4.7.6 Relative Strengths & Weaknesses of the Imputation Methods in General

There are several ways that we can make relative comparisons of the imputation methods. We begin by considering each of the 6 evaluation criteria for the clean data only, then consider the additional impact of the data with errors. These analyses were performed across DoM categories. For the best methods we also consider the effect of degree-of-missingness. We then consider softer criteria like evaluation run times, and human intervention and skills required. Evaluation run times should only be used as a guide because the code has been developed with the objective of testing the methods against the evaluation criteria. Efficiency was a minor consideration.

4.7.6.1 Shares and bonds

Original data: WXY2

Referring to figure 1 below, in terms of predictive power the LVCF method performs the worst, NP100 is slightly better than the rest, and there is little difference between the other methods. There is virtually no difference between the six methods against the preservation of value criteria. For preserving distribution, the LVCF method is the worse, and the other methods are about as good as each other. Against the 3 remaining criteria, i.e. the preservation of first and second moments and robust performance, there is little or no difference between the methods.

Figure 1: Box plots for WXY2 data. Assessment results in order from left to right, top to bottom are as follows: predictive power; preservation of true value; preservation of distribution; preservation of the mean; preservation of second moment, and outlier robustness.
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Data with errors: WXY3

As one would expect, the effectiveness of all methods is reduced to a greater or smaller degree when applied to data with errors (figure 2). This is certainly the case overall, but in particular it has a much greater impact on the R1, NP100, MARX1 and MLP methods than on the LVCF and AR5X methods.

The LVCF is now the best in terms of predictive power; the other methods are all equally poor. This is the exact opposite of the situation for the data without errors. The AR5X and LVCF methods preserve values the best of all, the NP100 method is the worst, and the other methods are intermediate in performance. For preserving distribution, AR5X is the best, and the other methods are worse and about equal to each other. Against the 3 remaining criteria there is little or no difference between the methods.

The LVCF method is the only one for which unknown parameters do not need to be estimated. In this sense it is the only true non-parametric procedure in the study and because of this it is more outlier-robust than the other procedures. However, although this was not done, it is relatively straight-forward to make all the other procedures outlier robust (e.g. through the use of M-estimation methods). If this was done, one would expect to see results much more similar to those for the WXY2 data.

Figure 2: Box plots for WXY3 data. Assessment results in order from left to right, top to bottom are as follows: predictive power; preservation of true value; preservation of distribution; preservation of the mean; preservation of second moment, and outlier robustness.
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Evaluation against DoM

The two best methods from above are clearly the simple LVCF method and the AR5X method. These were compared against degree-of-missingness (DoM) categories for the clean data only
. We see some evidence that the AR5X method maintains better predictive power for medium and high degrees of missingness (figure 3), although unfortunately this is not reflected in the preservation of value results. The big advantage of the AR5X method is that its preservation of distribution performance actually improves for medium and high degrees of missingness. This does not happen for the LVCF method.

Both these methods utilise temporal information to a much greater degree than the other methods, while the AR5X method has the additional advantage that it can adjust the amount of cross-sectional information used depending on the DoM. These results indicate that for financial panel data temporal relationships in the data are much strong than cross-sectional relationships, and so methods that utilise the temporal relationships tend to perform better.

Figure 3: Box plots for WXY2 data. Assessment results in order from left to right, top to bottom are as follows: predictive power; preservation of true value, and preservation of distribution.

[image: image13.jpg]0.9

0.8

0.7

1-R2

0.3

0.2

0.1

I
1 I R
i i
4
-
| | | | | |
LVCF, L LVCF, M LVCF, H ARSX, L ARSX, M ARSX, H

Method by Degree of Missingness




[image: image14.jpg]vdL1

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

1
! —— :

|
LVCF, L

| | | |
LVCF, M LVCF, H ARSX, L AR5X, M
Method by Degree of Missingness

|
ARS5X, H





[image: image15.jpg]K-S

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

|
LVCF, L

| |
LVCF, M LVCF, H ARSX, L ARSX, M

Method by Degree of Missingness

|
ARS5X, H





Other criteria

As one would expect, the evaluation run times were the best for the LVCF method (table 7). Extremely long run times were observed for the NP100 technique, to the extent that this method would probably be impractical. The other approaches have run times ranging from about 2000 s. for the R1 method to 6000 s. for the MARX1 method. Bearing in mind that these times could be substantially improved by more efficient programming techniques, and they are for imputing a whole 2 years of the panel data, they are probably acceptable in practice. For the data with errors, other than the LVCF method, the evaluation times increase by a factor of about 2 to 7 compared to the data without errors. This is because the algorithms in these methods take more iterations to converge, which may be due to the fact that the assumption of normality underlying the models no longer holds for these data.

With regard to the subjective criteria (tables 8 and 9), it is clear that the LVCF method has the advantage that it requires little or no human intervention or expert knowledge to implement and produce successful results. All the model-based methods require a substantial amount of human intervention and expert knowledge to succeed. The ARX5 and MLP methods are definitely easier to use in an operating environment because they are univariate and hence, unlike the other model based procedures, do not require the choice of how to sub-categorise the shares and bonds instruments. All the model based procedures will benefit from prior exploratory analysis to identify good covariates, and to check modelling assumptions.

	Table 7: Evaluation run times (s.)



	Experiment
	Missings only
	Missings and errors 

	Shares and bonds

	1(LVCF)
	120
	120

	2(R1)
	1,800
	2,700

	3(NP100)
	106,800
	757,560

	4(MARX1)
	5,580
	48,660

	5(AR5X)
	4,020
	13,800

	6(MLP)
	5,040
	9,240

	Options

	1(LVCF)
	60
	60

	2(BSBASE)
	2,520
	2,580

	3(BSLVCF)
	2,520
	2,520

	4(BSEM)
	2,880
	2,940

	5(BSMLP)
	2,940
	4,260


	Table 8: Evaluation assessments



	Method
	Level of human 

intervention required
	Level of knowledge 

required 

	Shares and bonds

	LVCF
	None
	Low

	R1
	High
	High

	NP100
	High
	High

	MARX1
	High
	High

	AR5X
	Moderate
	High

	MLP
	Moderate
	High

	Options

	LVCF
	None
	Low

	BSBASE
	Low
	Moderate

	BSLVCF
	Low
	Moderate

	BSEM
	Moderate
	High

	BSMLP
	Moderate
	High


	Table 9: Evaluation assessments continued.



	Method
	Relationship between skill, knowledge and experience of the operator and statistical quality of the output
	Relationship between time spent setting up the system e.g. exploratory analysis, pre-processing, training and final quality of the output

	Shares and bonds

	LVCF
	None
	None

	R1
	Moderate
	Moderate

	NP100
	Moderate
	Moderate

	MARX1
	Moderate
	Moderate

	AR5X
	Moderate
	Moderate

	MLP
	Moderate
	Moderate

	Options

	LVCF
	None
	None

	BSBASE
	Moderate
	Moderate

	BSLVCF
	Low
	Low

	BSEM
	Moderate
	Moderate

	BSMLP
	Moderate
	Moderate


4.7.6.2 Options

Original data: Z2

The BSLVCF and BSMLP methods are the best methods for imputing missing options data, and are about as effective as each other (figure 4). For the preservation of first and second moments and robust performance, the LVCF method performs best overall, but both the BSLVCF and BSEM methods are almost as good. Against the first three criteria, i.e. predictive power, preservation of value and preservation of distribution, the LVCF method is clearly the worst. For these same criteria, the BSBASE and BSEM are intermediate in performance compared to the other methods, while these two methods are the worst performers against the final three criteria.

Figure 4: Box plots for Z2 data. Assessment results in order from left to right, top to bottom are as follows: predictive power; preservation of true value; preservation of distribution; preservation of the mean; preservation of second moment, and outlier robustness.
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Data with errors: Z3

The results for the data with errors is almost identical to those for the Z2 data (figure 5). There is some slight improvement in the preservation of mean and second moment results for the BSBASE and BSEM methods, but the ordering is essentially the same as mentioned above. It appears to be the case that pre-transforming the data by taking implied volatilities also removes or significantly reduces the impact of outliers.

Figure 5: Box plots for Z2 data. Assessment results in order from left to right, top to bottom are as follows: predictive power; preservation of true value; preservation of distribution; preservation of the mean; preservation of second moment, and outlier robustness.
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Evaluation against DoM

The strength of the BSMLP method compared to the BSLVCF method is well illustrated in the degree of missingness (figures 6). One immediately sees that the BSMLP is superior overall for preservation of distribution, and significantly better than the BSLVCF method for preserving values when there is a high degree of missingness. Distributions are considerably better preserved by the BSMLP method for low and high degrees of missingness.

Figure 6: Box plots for WXY2 data. Assessment results in order from left to right, top to bottom are as follows: predictive power; preservation of true value, and preservation of distribution.
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Other criteria

In terms of evaluation run times, the LVCF method is extremely fast compared to all other methods studied (table 7). However, the other methods are also quite fast with run times ranging from about 2500 s. to 3000 s. The effect of introducing errors in the data only had minor influence on the run times overall. The worst case was for the BSMLP method with a 45 % increase in run time to 4260 s., but in practice this is still quite acceptable. Further significant improvements in run time performance can be expected if the code is redesigned for improved efficiency.

Of all methods studied the LVCF method is the simplest to implement and run (tables 8 and 9). BSBASE and BSLVCF are also quite simple but requires the user to have some knowledge of the use of the Black-Scholes pricing formula. The BSEM and BSMLP methods are both quite difficult to implement and require appropriate statistical and financial expert knowledge to operate successfully. Of particular difficulty here is setting up appropriate covariates (or equivalently dependent variable vectors for the BSEM method). This involves forming sub-categories of the options.

4.7.7 Discussion

Many practitioners would consider the LVCF method as a non-model-based procedure because no modelling assumptions are made and it applies to all types of panel or time series data. For this reason we refer to the other procedures as model-based. On top of this, the method is very simple to implement and appears to work quite well for preserving values, at least when only small clusters of missing values occur. Given these facts there is little wonder why the LVCF method is used as a standard in practice for imputing missing values in financial time series. However, as will be discussed below, if one is willing to go to the effort of implementing more sophisticated model-based procedures, significant improvements in imputation performance can be achieved.

Methods used on the shares and bonds data

Given that the LVCF method works so well at preserving values; in fact equally well compared to the more sophisticated model-based approaches, this suggests that the lagged variables are more powerful predictors of the missing values than the cross-sectional variables. It is not surprising, then, that the model-based method which performs best for both data with and without errors, is the method which uses the greatest amount of lagged information for prediction, i.e. the AR5X method. For financial panel data temporal relationships in the data are much strong than cross-sectional relationships, and so methods that utilise the temporal relationships tend to outperform those that just use cross-sectional relationships.

A possible reason why the AR5X method continues to perform well for data with errors is that it includes 5 lagged observations for prediction, so the influence of any one outlier is considerably less than for the other methods where fewer lagged observations are included. It should be noted that all the model-based methods can be outlier-robustified by simply using an M-estimation approach. If this was done then one would expect that the AR5X method to considerably outperform the LVCF method for the data with errors.

Even if it is known that outliers are a problem, the AR5X method is an excellent one to use. Against all evaluation criteria it performed the best or close to the best. In addition its predictive power is much better than the LVCF method, which means it is better to use when the degree of missingness is moderate or high (>5%). Another situation where it would strongly outperform the weaker method is when missing values tend to occur in clumps. Such a situation is not uncommon with financial price data. Other types of panel data also display this type of missingness pattern, e.g. panel survey data.

Methods used on the options data

A simple competitor for the imputation of missing options prices is the BSLVCF method. It performs well over all 6 evaluation criteria, and it is straightforward and simple to implement.

If one is willing to go to the extra effort of implementing a more complicated approach, the BSMLP method does provide some significant benefits over the BSLVCF method. In particular, it is considerably better than the BSLVCF method for preserving values when the degree of missingness is high, and its preservation of distribution performance is excellent, even when the degree of missingness is low.
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� The implicit assumption is that a reliable method for treating outliers can be implemented.
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