
Introduction to Self-Organizing Map
Modelling for Imputation – Techniques

& Technology

Pasi PIELA
Statistics Finland

FIN-00022 STATISTICS FINLAND, FINLAND
e-mail: Pasi.Piela@stat.fi

1. Introduction

The research group on Software Engineering and Computational Intelligence (SECI) of the
University of Jyvaskyla (JyU), Finland, developed a software called the Neural Data
Analysis environment (NDA) with Professor Pasi Koikkalainen as the group leader, and
the NDA is naturally still under heavy development. The software provides a generic
application platform for computational intelligence with many proven examples of real world
applications. The main emphasis of the software is to aid methodological development of
knowledge discovery, data analysis, and modelling in general [2]1. Techniques are mainly

1 Erkki Häkkinen’s doctoral thesis (JyU) is the main reference in this paper, see References.

Abstract: In this paper I will discuss one modern approach to imputation.
Many traditional methods of imputation use some kind of classification trying
to get observations with missing values into as homogenous groups as possible.
Self-organizing map (SOM) is an iterative method for classification and can
thus also be used in finding the imputation classes. Imputations are made
within clusters, located by corresponding neurons, in several ways which can
be based on both traditional and neural methods.
SOM methods are included in the versatile program named NDA, Neural Data
Analysis, which was made by the research group on Software Engineering and
Computational Intelligence of the University of Jyvaskyla, SECI, Finland.
Imputation methods have been implemented into NDA in co-operation with
the research group of Statistics Finland. This paper is based on research work
in the Euredit FP5 project.

Keywords: Kohonen algorithm, tree-structured self-organizing maps, neural

based on neural networks, but the system also includes a large data set of data
manipulation and visualisation techniques, fuzzy sets etc. However, the most important
method used in the NDA is the Tree-Structured Self-Organizing Map [6], usually
abbreviated as TS-SOM. TS-SOM is a modification of the Self-Organizing Maps (SOM) [3].

During the development of the NDA it was noticed that one of the main problems with the
use of neural networks in practice is incomplete data with missing and erroneous units.
Modern neural oriented methods for error localization and imputation are under research
and development especially in the EU/FP5 project EUREDIT2 (The Development and
Evaluation of New Methods for Editing and Imputation) in which JyU and Statistics
Finland are working together to develop SOM based techniques for editing and imputation.

This paper gives a rough introduction to the TS-SOM methodology for imputation.
Practical example, in which the data are derived from the Euredit project, is also presented.

2. Tree-Structured Self-Organizing Map Modelling

The basic SOM defines a mapping from the input data space Rn onto a latent space
consisted typically of a two-dimensional array of nodes or neurons [3]. A parametric
reference or weight vector wi is chosen for each neuron i from the discrete set i = {1, 2, …,
N}. Now, let x∈Rn be a stochastic, random data vector. Usually the smallest of the
Euclidean distances ||x – wi|| is made to define the best matching unit (BMU) for the vector
x, denoted by the subscript b, that is, b = argmin{||x – wi||}. Then SOM algorithm updates
the weight vectors of the BMU and in its neighbouring neurons i as follows:

[])()()()()1(i ttthtt ibii wxww −+=+

where ()σα ibHtthbi
vv −=)()(defines the neighbourhood kernel)(⋅H over the lattice points

and the learning rate)1)(0(<< tα at iteration step t. One common, Gaussian, kernel

function is)()(||||expvH v−= . Thus, each iteration starts with the new random sample.

The idea is to start with large neigbourhood and reduce it along with the value of the
learning rate parameter. Specifically, the SOM algorithm can be interpreted as an discretized
approximation procedure for computation of principal curves or surfaces [7].

The map is usually created in a non-stochastic way by using the so-called batch algorithm
in which all the data points are associated with their BMUs in each iteration, and then all
the prototypes are updated at a time.

The Tree-Structured Self-Organizing Map is made of several SOMs arranged to a tree
structure (see Figure 1). The topmost layer (L = 0) has one neuron. Layer 1 has four
neurons in two-dimensional and two neurons in one-dimensional case. Thus, each neuron
has its own associated subgroup of data, four subgroups on layer 1 but one group, the
data set itself on layer 0. The subgroup forms the cluster of which centroid is the weight

2 For more information about the project Euredit: http://www.cs.york.ac.uk/euredit/ .

vector of the best matching unit b, wb. Furthermore, the centroid on layer 0 defines the mean
of all data.

The training is repeated layer by layer using knowledge about the BMU of the frozen layer
l–1 in the search of the BMU on next layer l. That is, the search of the BMU for the layer
l is restricted into a small set of neurons: sons and sons of neighbours of the BMU of the
previous layer. This reduces clearly the computational complexity when compared to the
basic SOM. We will discuss this later.

Figure 1. Illustrations of one and two-dimensional TS-SOM structures.

The training is usually made with the batch algorithm [4]. During each epoch the BMUs are
searched for all data vectors using the tree search, and then new centroids)(tim are the

weight vectors)(tiw computed using the rule:











+

+
=+ ∑∑ ∈∈)()(

)()(
1

)1(
bNi

iibb

bNi ib
b

cc

tNatmN
NaN

t mw

where Nc(b) is a set of indices of neighbours of b, and Ni is the number of data records in
the Voronoi region (cluster) i. The smoothing is partially controlled through the parameter

∈α [0..1]. One side advantage here is that the size of the neighbourhood can be kept
constant, and the usual problem with the basic SOM, namely, relation between
neighbourhood size and the learning rate parameter during each epoch, does not exist.

3. TS-SOM Based Imputation

A natural approach to the missingness problem is now imputation within the clusters
located by associated neurons. A simple starting point is to derive analogous processes
from the classical imputation methods. Nearest neighbour imputation can be made by filling
missing components of the data vector from the nearest data vector within the same cluster.
Group means imputation (replacing the missing value by the average value of the
observations belonging to the same class/subgroup) can be made by taking the centroid
of the cluster, mb, and replacing the missing component j of the data vector xi by
corresponding mb(j), which is actually the fastest way to impute.

Layer 0
(root)

Layer 1
2-node SOM

Layer 2
4-node SOM

Layer 0
(root)

Layer 1
4-node SOM

Layer 2
16-node SOM

Besides previous simple imputation models, it is obvious that more complex, regression
based, imputation modelling should be taken under consideration when trying to take
advantage of TS-SOM mapping, and thus take values for missing components from these
models which are generalizations of the local distributions of each data cluster. The MLP
network with the backpropagation algorithm is often used to model the relationship
between complete and imputation variables (MLP theory and methodology, see [1]). From
the SOM mapping point of view, the MLP networks can be trained separately in each
cluster of the final TS-SOM layer. Thus, we have as many local MLP models as we have
neurons on the last TS-SOM layer.

However, MLP training as presented above only takes into account the resulting condition
of the TS-SOM mapping. But Koikkalainen [5] has shown that the TS-SOM can be seen as
a hierarchical Gaussian mixture model where each neuron is a Gaussian generator. It is thus
possible to use this idea in creating an imputation model by observing the posterior
probabilities of the neurons. Häkkinen [2] presents imputation methods based on this idea,
calling them iterative methods with probabilistic imputation. We will not discuss these
methods here any further, just state that new methods applying the idea of probabilistic
distributions of building TS-SOM into imputation are being tested and developed.

4. TS-SOM Based Imputation in the Danish Labour Force Survey Data Set

One of the data sets for the evaluation and development of imputation methods in the
project Euredit is the Danish Labour Force Survey (1996), consisting of Danish population
register records for individuals selected for interview. The very carefully created synthetic
version of this data set was given as training and development data for imputation
methods. It is structurally very simple and will be used here. The data consist of only 14
variables with little information, four relating to type of response. Annual income (DKK)
is the only variable needed to impute, the missingness rate being 26.8 %. The data are at
person level having 200,000 observations, information about households is not available
here. These 13 auxiliary variables are categorical, except person’s age. They have 2-4
classes, except AREA (area of living), BUSINESS (last employment) and EDUCATION, for
example, have 4 classes:

 1 = Private Industry 1 = Primary school only

 2 = Other private business 2 = Craftsman, Skilled labour, High school only

 3 = Government employed 3 = Long education, school teacher, university, etc.

-9 = Not applicable -9 = No information

The complete data vectors are used here as training data. That is, we select all 146,323
observations with known value of income. Another alternative would be selecting all the
observations and training TS-SOM for these without the variable INCOME, but this is not
necessarily appropriate in this simple case due to losing information of the relationship
between INCOME and explanatory variables.

First we make data analysis by building TS-SOM for our training data set by NDA software
and viewing its different layers. For example, it is easy to observe graphically the basic

statistics of INCOME for different clusters and comparing them to the statistics of
background variables.
Variables are scaled for nearest neighbour imputation (this thus assumes that each variable
has the same weight), where for the missing component xi(j) that belongs to a cluster b

 ||), (||argmin),()(kiclkni b
njj xxxx −== ∈ (4.1)

so that all categorical variables are binarized. Thus, for variable l of m classes we have
corresponding m (0/1)-variables. The continuous background variable, AGE, is scaled to
[0, 1] based on min/max ranges:

)()(
)(

xx
xx

x
minmax

min
'

−
−

= .

However, in the case of several skewed distributed continuous variables there are naturally
other appropriate methods for equalization. Also, when missingness of several components
occurs the distances in (4.1) can be weighted by simply comparing the number of missing
components and the number of variables for every data vector.

An obvious problem in this kind of hot-deck type of imputation is its computational
complexity (related to computation time) that is (O N2) due to the full search among N data

vectors. By using the above method and TS-SOM the complexity can be reduced to
(O Nlogp M + N2/M) where the complexity of the TS-SOM algorithm is (O Nlogp M) [6], p

being the number of sons of each node (in two dimensional case: p = 4), and for the
imputation within M clusters it is (O N2/M). In practice, this was clearly observed for the

example in question as follows:

Nearest Neighbour Imputation Computation Time, Pentium® II Processor (500)

without TS-SOM mapping (layer = 0) > 12 hours

layer 2 as imputation layer (16 neurons) 59 minutes

layer 3 as imputation layer (64 neurons) 20 minutes

Table 1. Computation time of the nearest neighbour imputation in practice. Synthetic
Danish Labour Force Data set, N = 200,000.

As shown in Figure 2, the imputation does not give good results at the unit level, which
was expected because of lack of background information. But for this case the method
really seems to work at the aggregate (or data) levels. Specifically, the line for observations
with Ŷ = 0 and Y* > 0 is quite similar to the line for observations with Ŷ > 0 and Y* = 0, but
the lines are long including several wrong imputed values. Furthermore, the linear
regression model (y = true income, x = imputed income) has surprisingly high estimate of
the intercept parameter (102034) but when modelling without intercept quite a good model
with high R-square is observed.

As Häkkinen [2] points out, there are some obvious problems in this kind of traditional
method together with TS-SOM. There might be clusters having only missing values and
there is a risk to lose the nearest data vector to another cluster, which might be a problem
here too (see Table 2).
Figure 2. Scatterplot of imputed INCOME (Ŷ) and corresponding true values (Y*) from
nearest neighbour imputation on the 3rd TS-SOM layer.

True
value

Centroid,
4th layer

Lin.
Regression

Nearest
Neighbour,

0th layer

Nearest
Neighbour,

1st layer

Nearest
Neighbour,

2nd layer

Nearest
Neighbour,

3rd layer
Mean 158108 169177 170287 158068 158094 159799 159408
Stddv 107193 56806 61498 107856 107855 108380 108253

95% 362639 259743 272202 363148 362674 363374 363712
Q3 221423 204815 215989 220904 221534 224541 223804
Md 140971 173937 168978 140105 139715 141657 141616
Q1 76691 122951 122344 77004 76869 77914 77779

Q3-Q1 144732 81864 93645 143900 144666 146627 146025
DL1 0 73079 73678 90865 91072 91593 91639

DLmax 0 564345 520718 664950 664950 671202 664950

True
value

MLP,
method I

MLP,
method II

Mean 158108 167354 166806
Stddv 107193 69143 68920

95% 362639 280030 277061
MLP

Method
1st Hidden

Layer
2nd Hidden

Layer
TS-SOM
Imp. layer

Q3 221423 225255 219764 I 4 neurons 6 neurons 1 (4 clus.)
Md 140971 173607 162920 II 10 neurons 10 neurons 3 (64 clus.)
Q1 76691 107494 109096 Activation functions are sigmoidal.

Q3-Q2 144732 117762 110668
DL1 0 67109 67279

DLmax 0 508255 518621

Table 2. Results for Linear Regression (using SOLAS 3.0TM3), Nearest Neighbour, Cluster
Centroid and MLP imputations of INCOME variable. Note, true mean / standard deviation
of the missing incomes is 158,108/107,193 and true mean / standard deviation of the

3 Solas™ and Solas 3.0™ are trademarks of Statistical Solutions LTD.

whole data set is 181,724/116,064.

.iwwYŶw,ˆd i

n

i
i

n

i

*
iii

*
L NYY ∈∀=−= ∑∑

==
1:here,)(

11
1

Cluster centroid imputation, which replaces the missing values with corresponding values
of the centroid of the same cluster, is not appropriate in this case. Totals are clearly over-
estimated and variances under-estimated. On the other hand, the structure of TS-SOM
gives possibilities to solve problematic situations: the centroid can be interpolated from a
parent neuron of the upper TS-SOM layer or it is possible to use neighbour clusters and
neurons as well in finding the appropriate donor or the centroid needed.

There are, naturally, a number of ways to impute by MLP models. Table 2 presents results
for two structurally different groups of local backpropagation MLP imputation models for
modelling dependencies between background and INCOME variables. In method I, for
example, we first build TS-SOM and on its first level we use the backpropagation algorithm
to create four local MLP models with two hidden layers of four and six neurons connected
sequentially by logistic sigmoid units, one for each neuron (see Table 2). But these kinds
of MLP models are clearly problematic for the case in question; they do not give any 0s as
estimates of INCOME, and variances are under-estimated.

5. Conclusions

Self-organizing mapping is widely used and a known method for many kinds of data
analyses. Efficient tree-structured self-organizing mapping is implemented to the NDA
software that gives a powerful tool for data analysis, missingness analysis and imputation
with graphical presentation facilities. Classical imputation methods can be used on different
levels of the TS-SOM structure, but also regression based and more complex methods
applying the mathematical idea behind TS-SOM can be utilised. In the imputation example,
TS-SOM can also be useful after imputation tests in trying to find some specific subgroups
of high differences between imputed and corresponding true values or other abnormalities,
in other words, trying to get the zone in Figure 2 narrower by keeping the fitted regression
line (for imputed and their true values) close to ŷ = y*. These modern methods as well as

software tools are under intensive further development.

References

[1] Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford University Press, Oxford, United
Kingdom.

[2] Häkkinen, E. (2001). Design, Implementation and Evaluation of the Neural Data Analysis Environment.
PhD thesis. Jyväskylä University Library, Jyväskylä, Finland.

[3] Kohonen, T. (1997). Self-Organizing Maps. Springer, Berlin, Heidelberg.
[4] Koikkalainen, P. (1995). Fast Deterministic Self-Organizing Maps. In Fogelman-Soulié, F. and Gallinari,

P., eds., Proc. ICANN’95, Int. Conf. on Artificial Neural Networks , volume II, pages 63-68, Nanterre,
France. EC2.

[5] Koikkalainen, P. (1999). Tree Structured Self-Organizing Maps. In Oja, E. and Kaski, S., eds., Kohonen
Maps, pages 121-130. Elsevier, The Netherlands.

[6] Koikkalainen, P. and Oja, E. (1990). Self-Organizing Hierarchical Feature Maps. In Proc. IJCNN-90-Wash-
DC, Int. Joint Conf. on Neural Networks , volume II, pages 279-285, Piscataway, NJ., IEEE Service
Center.

[7] Ritter, H., Martinez, T., and Schulten, K. (1992). Neural Computation and Self-Organizing Maps: An
Introduction. Addison-Wesley, Reading, MA.

