¢
I

Laboratory of Data Analysis
University of Jyvaskyla

EUREDIT - WP4.5, WP5.5 Internal reports

A DLL-library for the TS-SOM Based
Editing and Imputation Software.

Ismo Horppu - University of Jyvaskyla
Pasi P. Koikkalainen - University of Jyvaskyla

EUrReDIT REPORT NO D4.5&D5.5: JYU SOFTWARE (1. Nov. 2002)

Contents
1 Introduction to Neural Data Analysis DLL Library (NDA-DLL)

2 Transfering data
2.1 Transfering data to the NDA namespace
2.1.1 Uploading example: 32-bit float data transfer to the NDA namespace
2.2 Getting data from the namespace

2.2.1 Downloading example from the NDA

3 The execution of TS-SOM based editing and imputation routines
3.1 The sfr data: editing and imputing options for data variables

3.2 The commandline parameters

4 NDA/DLL distribution CD.
4.1 Helper functions in ndadll.cpp 0L
4.2 Visual C example project: ndaexample

4.3 NDA DLL functions e e e e

[S =

o

(=]

o N 9~

EUureDIT REPORT No D4.5&D5.5: JYU SOFTWARE (1. Nov. 2002)

Summary

This document specifies a programming interface for a library version of the TS-SOM based editing
and imputation system. The software is implemented with the Neural Data Analysis (NDA)! software
platform, including a NDA library, example macros and a sample C-program.

The interface has been tested and used under several host programs, including Delph/Kylix,
VisualBasic, Exel, Matlab, and X11/R4. This document explains how NDA routines can be used
from the Microsoft Visual C programming language.

The document is organized as follows. Section 1 is a brief introduction to NDA. In section 2
the principles of data transfer between NDA and an external programs are described. Actual
procedures for editing and imputation are explained in section 3, including definitions for data and
algorithm specific parameters. System spefific files are described in the section 4, including installing
instructions and NDA DLL interface on-line documentation. Finally an example of a Visual C project
is described in the appendix 4.2.

1 Introduction to Neural Data Analysis DLL Library
(NDA-DLL)

The NDA is a software that implements applications. Is consists of five layers:

A data layer, which provides memory management routines for the NDA data structures. It also
implements several error prevention and grabage collection mechanisms.

Operation layer, which is a collecion of commands and algorithms. These are groupped under several
modules that can be compiled and included into the NDA distribution separately.

Interface layer, which provides function entry points for NDA routines. It also allows one to access
NDA data structures and to execute application level macros.

Application layer, which is a macro language intepreter for NDA commands. All the functionality
of NDA applications is implemented this way.

End-user layer, which implements the user interface or host programs for the NDA application.

The NDA/DLL is a library that implements the first four layer of the NDA software. Thus it allows
the execution of NDA macros and the manipulation of NDA data structures from external programs.
Typical usage of the NDA/DLL starts with the uploading of data into NDA namespace, which is
followed by the execution of NDA macros. Finally the results are loaded from the NDA to the host
application. This is summarized in Fig. 1.

1. upload data (= input) to NDA’s namespace,
2. run NDA macro command(s)

3. download data (= output) from NDA’s namespace.
Figure 1: The steps of the usage of NDA/DLL from application programs.

The Windows compatible NDA /DLL provides a set of functions that operate with three types of data
values: float (32-bit), signed integer (32-bit), and string (8-bit characters).

'©NDA Software is under Copyright of the Laboratory of Data Analysis/Univeristy of Jyviiskyli, Finland

EUrReDIT REPORT NO D4.5&D5.5: JYU SOFTWARE (1. Nov. 2002)

2 Transfering data

The data uploading and loading routines for the NDA /DLL interface are introduced in this section.

2.1 Transfering data to the NDA namespace

In the NDA terminology data is a structure of one or more tt fields (variables). Since also fields
are NDA structures the data transfer from an external program is done in two steps.

1. Before data can be transferred to the namespace, a data frame must be created using function
nda_create new_dataframe.

2. Next all variables must be inserted into the created data frame. The insertion can be done
using functions
nda_insert_ifield,
nda_insert_ffield, or
nda_insert_sfield.

The uploading functions correspond to 32-bit signed integer, 32-bit float and 8-bit string types, respec-
tively. The functions make a copy of the given data, and thus the original data set can be deallocated
after the call (if possible).

NOTES:
a) data frames and variables (= fields) names in the NDA’s namespace may not contain special
characters, like space or 7 /” etc, therefore it is best to use simple names.

b) old data frame named "data" can be deleted using
run_nda_command ("rm data");

2.1.1 Uploading example: 32-bit float data transfer to the NDA namespace

Example 1 creates a new data frame named data, and inserts a 32-bit float variable into NDA’s
namespace.

int Status; /* function call errorcode */
float *myVar; /* pointer to data, which
has 1000 entries) */

/* allocate and fill myVar here */

Status = nda_create_new_frame('"data"); /* create new data frame */
if (Status != OPERATION_OK) return -1; /* failure? */

/* create variable "varl" into data frame '"data" */
Status = nda_insert_ffield("data", "varil", 1000, myVar);
if (Status != OPERATION_OK) return -1; /* failure? */

2.2 Getting data from the namespace

The data transfer from the NDA namespace is done using function
nda get_field ptr.

The information is assingned to the position, provided by a given (void **) pointer. For integers
and floats it expect int* and float* types, whereas for a string the data type is char*x.

EUureDIT REPORT No D4.5&D5.5: JYU SOFTWARE (1. Nov. 2002)

2.2.1 Downloading example from the NDA

The following retrieves pointer to 32-bit float variable which was created in the previous example

int Status; /* function call errorcode */
float *fvect; /* float data */
long records; /* amount of records */

/* retrieve first variable, whose index is 0, in data frame data */
Status = nda_get_field_ptr("data", 0, (void **)&fvect, &records);
if (Status != OPERATION_OK) return -1; /* failure? */

/* access data via fvect ... *x/

3 The execution of TS-SOM based editing and imputation
routines

The NDA macros for editing and imputation include several options, which define the functionality
of the procedures as well as the given output data sets.

For a given incomplete and erroneous data set one can do either:

a) Imputation, which gives as an output a completed data set
b) Editing (outlier detection), which gives are matrix of error probabilities.

c) Both editing and imputation, in which case bout a complete data and the probabilitys matrix is
given as an output.

To make the use of the editing and imputation routines simple, two pre-programmed macros are
provided with the NDA/DLL package:

1. impute.cmd is a NDA marco to impute missing values in a given data set.

2. edit.cmd is a NDA macro to edit (detect outliers) of a given data set. This routine can also do
imputation of both the missing values as well as the found outliers.

The macros are executed using the run nda_command ("macro options"); command.

Both macros expect similar type of input file with a predefined name (data) and they understand the
same set of parameters, which are provided via sixteen (16) of commandline parameters (global for
all variables) and a special parameter file (sfr) that specifies variable dependent options.

For example, the missingness is indicated via a special missing value, which is given when calling the
macros (edit.cmd and impute.cmd). An example of this is included the attached Visual C program.

The NDA /DLL editing and imputation interface requires that the input data and variable parameters
data are set before a call.

The input data, named as data, and the variable specific options, named as sfr, must be uploaded
to the NDA namespace before calling editing or imputation routines.

After the operation is executed the new (clean) data will be named as output data frame in the NDA
namespace. Similarly the error probabilities (if used) are named as a errors data frame. The output
contains imputed and/or edited records only, and error probabilities data contain only probabilities
for the erroneous records.

EUrReDIT REPORT NO D4.5&D5.5: JYU SOFTWARE (1. Nov. 2002)

To summarize, the steps for the imputation, and editing operations through the NDA /DLL interface
are:

Imputation :

create data data and attach variables to it,
build the variable spesific options data sfr,
call macro impute.cmd with commandline options, and

s

read result from a data frame output.
Editing :

1. create data data and attach variables to it,

2. build the variable spesific options data sfr,

3. call macro edit.cmd with commandline options, and
4. read results from a data frame errors.

Both editing and imputation steps :

1. create data data and attach variables to it,

2. build the variable spesific options data sfr,

3. call macro edit.cmd with commandline options, and
4. read results from data frames output and errors.

The implementation of various steps can be examined from the source code of included Visual C
example project.

3.1 The sfr data: editing and imputing options for data variables

Before calling the editing and imputation macros, the special data frame sfr that includes variable
specific optins must be set. The data consists of 4 item string variables which are:

1. row: (flag) the imputation action, which can be
IMP_NONE (no imputation),
IMP_MEAN (mean imputation),
IMP_URAND (uniform distribution random imputation)
IMP_NRAND (gaussian distribution random imputation).

2. row: (flag) the editing action, which can be
EDIT_NONE (no edit),
EDIT_CONTINUOQUS (continuous variable edit)
EDIT_CATEGORIAL (categorial variable edit).

3. row: (float) edit cut probability, which is between 0.0 and 1.0.

4. row: (float) the sigmal parameter for robust training. In the case of continuous data it is the
deviation related influence (factor) of the Huber estimator. Its default value is 3.0. In the
case of categorial variables it is prior cut probability of the estimator, which must be between
0 and 1.

3.2 The commandline parameters

In addition to input data and variable specific options the macros require a set of commandline
parameters, which are listed in detail in table 1. Parameters 13-15 are required only by the editing.
Note also that an increase of parameter 14 decreases the error probabilities.

EUureDIT REPORT No D4.5&D5.5: JYU SOFTWARE (1. Nov. 2002)

Parameter | Range | Description default

0 >0 TS-SOM dimension 2

1 >0 TS-SOM layer

2 0,1,2 TS-SOM topology: 0=lattice, 1=ring, 2=TS-VQ | 0

3 integer | missing data value

4 >0 lower limit for cluster record count when 5
classifying incomplete records

) >0.0 weighting of neighbours 0.5

6 epsilon | stopping criteria 0.001

7 >0 maximum number of iterations 20

8 >0 number of corrected layers 3

9 0,1 training rule: 0=VQ, 1=spread 0

10 0,1 use lookup table: 0=no,l1=yes 1

11 0,1 use fullsearch: 0=no, 1=yes 0

12 0,1 use Huber estimator: 0=no,l=yes

13 0,1 do outlier imputation: 0=no,l1=yes

14 >0.0 Sigma2, affects to continuous variables’ 1.0
error probabilities

15 >0.0 Sigmal, training robustness parameter 3.0

Table 1: The commandline parameters for the macros

4 NDA/DLL distribution CD.

This section is the contents of the NDA/DLL distribution. Table 2 is a list of files required to compile
NDA DLL with other programs (or DLLs).

The DLL functions’ return 0 (= OPERATION_OK, defined in errors.h) or -10000 (= IGNORE, defined
in errors.h) on success. Any other return value is an error.

File Description

nda.h DLL functions’ and helper functions declarations
ndadll.h DLL function type declarations

ndadll.cpp | C interface for the DLL

errors.h general errors

hdr.h som errors

nda.dll the NDA dll (binary)

Table 2: Required files

4.1 Helper functions in ndadll.cpp

A couple of helper functions have been defined in ndadll.cpp. Function init_nda_dll initializes the
NDA/DLL interface, it returns 0 on success, and it must be called at first. Function run nda_command
can be called, as other NDA/DLL functions, after the NDA/DLL interface has been initialized.
This function executes a NDA macro command (or a macro file). Function free nda d11 releases
NDA/DLL from memory, and it must be called when exiting from the program (but note that there
are memory leaks in the current Beta level implemtation).

4.2 \Visual C example project: ndaexample

The included example Visual C project, ndaexample, is a demonstration how NDA DLL can be used.
The project is a 32-bit Windows console application. It includes main file ndaexample. cpp, files listed
in table 2, and files StdAfx.cpp and StdAfx.h, which are both generated by Visual C. Two external

EUrReDIT REPORT NO D4.5&D5.5: JYU SOFTWARE (1. Nov. 2002)

NDA macro files, impute.cmd and edit.cmd, are required. The files must be placed in the program’s
working directory.

The function generate_data shows how to create a new data frame into NDA namespace and how to
attach variables to it. It also creates 5 missing data values and 5 obvious errors in the data. Function
display output retrieves changed (= edited or/and imputed) data from NDA’s namespace. Edit
error probabilities are read by function display_error _probabilities. Function do_edit does error
detection, and it only creates error probabilities, whereas do_imputation does imputation and creates
only imputed data. Edit and imputation are done by function do_edit_and_imputation which created
edited data and error probabilities.

The actual editing is done by running NDA macro edit.cmd, whereas impute.cmd does imputing.

4.3 NDA DLL functions

Table 3 contains list of six necessary DLL functions for data creating, data reading, data writing, and
executing NDA macros. The return value of DLL function is 0=0PERATION_OK or -10000=IGNORE on
success, otherwise function call failed.

Function and description
int nda run_command(char *command, char *ret_space, long int len)
executes NDA macro command and returns output to ret_space.

long nda create new_frame(char *framename)
creates a new data frame named framename.

long nda insert ffield(char *frame,char *name, long len,float *vect)
inserts 32-bit float variable to frame frame and names the variable as name,
variable’s length is len and its data is pointed by pointer vect.

long nda insert_ifield(char *frame,char *name, long len,long *vect)
inserts 32-bit signed integer variable to frame frame and names the variable
as name, variable’s length is len and its data is pointed by pointer vect.

long nda insert sfield(char *frame,char *name, long len,char **vect)
inserts 8-bit string variable to frame frame and names the variable as name,
variable’s length is 1len and its data is pointed by pointer vect.

long nda get_field ptr(char *name, long index, void **ptr,long *nof)
gets data pointer (int*, float* or char**) for index:th variable in data frame name
to pointer ptr. The length of data is stored to nof.

Table 3: Exported DLL functions

