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New material

This version contains all the texts written by SFSO up to 06.03.2002 and updated at
28.03.2002. The numbering of the different parts/sections has changed, we therefore
indicate the new material added to the last version of the report (31.08.01). Other slight
changes have been made to the pre-existing parts/sections.

The following parts/sections have been added to the last version (31.08.01):

• Part I, Section 4

• Part V

• Part VI
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Foreword
This report describes the work of the Swiss Federal Statistical Office (SFSO) for EU-
REDIT project workpackages 4.2 and 5.2 under the Information Society Technology Pro-
gram (IST) of Framework Program 5 of the European Union. The participation of SFSO
to EUREDIT is financed by the Swiss Federal Office of Education and Science.

EUREDIT workpackages 4.2 and 5.2 have been unified into workpackage x.2, now called
”Develop and evaluate new methods for statistical outlier detection and outlier robust mul-
tivariate imputation”. The main effort of SFSO for EUREDIT goes into this workpackage
and SFSO is the leader of it.

This draft of 31 August 2001 describes the outlier detection methods that SFSO has ex-
plored or developed until that date. These methods have been tested with real and artificial
data sets and they have been adapted to cope with sampling weights.

Future updates of the report will describe the adaption of the outlier detection methods to
missing values and the development of imputation methods based on the outlier detection
methods. The evaluation with the data sets and in the formal frame work established in
EUREDIT workpackages 2 and 6 will also be added.

We would like to thank Werner Stahel, Ali Hadi and Yves Tillé as well as our partners in
workpackage x.2 and in EUREDIT overall for fruitful discussions on multivariate outlier
detection. We would like to thank our colleagues from the Statistical Methods Unit of
SFSO for their support and understanding.
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Summary
EUREDIT will develop, evaluate and disseminate new tools aimed at improving the qual-
ity of statistical data through improved data editing and imputation. In EUREDIT the term
editing means error localization, i.e. identifying doubtful or erroneous data values. In this
report we are looking at a particular type of error, namely outliers. Error localization is
usually achieved via the calculation of indices that measure the potential for particular
data values to be in error. In our case such an index is a measure of outlyingness. Pre-
viously, in many cases these indices have been based on strong assumptions about the
nature of the population from which the data values were obtained. For example, with
univariate continuous data one can apply an outlier test based on the standard deviation.
Such tests typically assume that the data are generated from a low dimensional symmetric
distribution (e.g. the bivariate normal). This is at odds with the high dimensional mixed
categoric-continuous nature of modern data sets. EUREDIT will evaluate and compare
a range of both currently used as well as new methods for outlier detection and robust
imputation.

The objectives of the EUREDIT project as a whole are described in six different points.

1. To establish a standard collection of datasets.

2. To develop a methodological evaluation framework.

3. To evaluate current ”in-use” methods for data editing and imputation and to de-
velop and evaluate a selected range of new or recent techniques for data editing and
imputation.

4. To compare all methods tested and develop a strategy for users of edit and impu-
tation leading to a ”best practice guide”. This evaluation is made using criteria
developed in 2. applied to the results given by the methods selected in 3. acting on
the data sets chosen in 1.

5. To disseminate selected methods on a project-wide basis by developing prototype
software.

6. To exploit the results of the project by developing planned routes to exploitation.

This report will concentrate on points 3 and 4 and editing is interpreted as outlier detection
while imputation is interpreted as robust imputation. In order to avoid excessive ”tuning”
of methods to a particular situation (one of the major concerns in EUREDIT) SFSO’s
strategy is to clearly separate these two phases. Therefore all methods selected for the
project are developed totally independently of the two datasets on which they will be
evaluated. The first chapters are concerned with the development phase (point 3). Future
updates of this report will describe the evaluation phase (point 4).

After a short introduction recalling the classical knowledge and well known concepts of
outlier detection and introducing the notations used in this report, the second part will ex-
plain how the different multivariate outlier detection methods chosen for EUREDIT were
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selected. Five methods are emphasized, one classical method (minimization of scale), two
modified existing methods (forward search and projection pursuit) and two new methods
(simple and nonparametric). The third part will show a comparison of these methods ap-
plied to development data sets (none of the evaluation datasets of EUREDIT). The fourth
part will describe how these methods have to be modified to account for sampling weights.
The fifth part adds the problem of missing values, but by lack of resources and time only
three methods are modified to cope with missing value. Finally the sixth part will in-
troduce an imputation method that takes into account outliers, edit failures and missing
values.
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Part I

Introduction
A very important aspect of statistical data editing is outlier detection. Besides graphical
tools, robust mathematical algorithms can be used to detect outliers. Imputation in the
presence of outliers has to control the influence of the outliers on the imputation model
and must prevent from imputing (non-representative) outliers. Dealing with outliers is
considered an essential part of the edit and imputation process. Most outlier-detection
and imputation methods are univariate or bivariate in nature and can handle only contin-
uous data. However, real errors in data are usually multivariate and consist of a mix of
categorical and highly skewed continuous variables. Furthermore real data usually have
missing values. Often the data stem from sample surveys, therefore the sample design
should be taken into account by outlier-detection methods and by imputation methods.
The idea here is to concentrate on the outlier-detection methods and then to develop rel-
atively simple imputation methods based on the outlier-detection methods. The aim of
the combination of outlier-detection and imputation will be to develop procedures that
preserve the distributional structure as far as possible while remaining robust to outliers
in the data.

The problem of outliers becomes much more difficult in two or more dimensions than
in only one dimension. While an outlier can only be very small or very large in one
dimension (at least for unimodal distributions) in higher dimensions the ”direction” of
the outlier becomes more and more difficult because there are infinitely many directions.
Outliers may be quite close to the bulk of the data or to a model if the distance is measured
in a Euclidean metric. However, if a metric appropriate to the distribution of the bulk of
the data is used it may immediately show up. Thus in higher dimensions the form of the
point cloud of the bulk of the data must be well represented in the metric used to detect
outliers.

In what concerns sampling the approach of SFSO is mainly design-based. However,
models are inherently necessary for a meaningful discussion of outliers. Even if the model
can be as vague as ”outliers are far from a center of the data” the definition of what ”far”
and ”center” mean needs a model.

An important aspect of the models used for outlier-detection is the sub-population that it
applies to. For larger data sets one usually has to subdivide the data set in order to obtain
a meaningful model for the bulk of the data and then to detect outliers. We call such a
sub-population areference population. In other words usually our model is a mixture of
models for the different reference populations. The definition of the reference populations
is a crucial point in outlier-detection and robust imputation. In this version of the report
we shall only treat the case where the reference population is fixed beforehand.

For finite population sampling in addition to the problem of accounting for the sample
design, and related to the problem of the modelling of the bulk of the data, we face the
question ofrepresentativeandnon-representativeoutliers (Chambers, 1986). In fact,
we may have outliers in the population with respect to a model for an infinite underlying
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super-population. For the purpose of outlier-detection the distinction between representa-
tive and non-representative outliers is not of prime importance because even if an outlier
is a correct observation belonging to the finite population, we would like to detect it be-
cause we will have to check it, it may be influential and we may want to treat it specially
in the estimation procedure. Anyway, in the face of a detected outlier one usually is not
sure whether it is representative or not. The nice thing would be to have a measure of the
degree of belief we can have that the outlier is a good observation, some sort of a value
of representativity. However, usually we do not have such a value on a continuous scale
and we have to take a dichotomous decision: representative or not. Thus after checking
an outlier to a certain extent one often assumes that an outlier is representative. Neverthe-
less, when it comes to imputation and estimation, one treats these representative outliers
specially. For example in imputation one would not impute representative outliers in the
same way as normal observations because they probably are rare in the population.

For our outlier-detection methods we do not distinguish between representative and non-
representative outliers at all. We will introduce some flexibility to consider the ”represen-
tativity” of an outlier for the imputation phase.

When selecting outlier-detection methods for this study we had four guiding principles in
mind:

Good detection capability: Ideally all outliers are detected but no good observations
declared outliers.

Sufficient speed: The algorithmic complexity should make the methods feasible also for
large data sets. The computing time should be at most moderate.

High versatility: The assumptions on the data (how much missingness, categoric and
continuous variables) should be low, adaption to sampling and missing values
should be feasible.

Simplicity: The methods should be simple to teach and apply. Few tuning should be
necessary, the know-how needed by users should be limited and simple to explain.

For robust imputation methods the first principle is replaced by

High preservation capability: Ideally the imputed data should be as close as possible to
the true data.

1 Definitions and notations

This section will set up a list of the definitions and notations that will be used throughout
all this report. The reader should be able to refer to it whenever he’ll need it.

General notations All matrices will be denoted by capital letters, e.g.A, while vectors
will always be column vectors and denoted by small letters, e.g.ai. Ip will denote the
identity matrix in dimensionp and1p the vector of1’s in the same dimension.
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Usual distributions The univariate normal distribution with meanµ and varianceσ2

will be denoted byN(µ, σ2). Similarly the multivariate normal distribution will be de-
noted byN(µ, Σ) where this timeµ is the vector mean andΣ the covariance matrix. The
chi square distribution withp degrees of freedom will be denoted byχ2

p and its1 − α
percentile byχ2

p,α.

Data The data will be encoded in an × p matrix X. Then lines ofX denoted byxi

will correspond to then observations of the dataset and thep columns denoted byxj to
thep variables observed.

Equivariances Let x1, ..., xn be a set of observations inIRp, let b ∈ IRp be any point in
the Euclidean space and letA be any non singularp×p matrix. Lety1, ...yn be the images
of thexi’s through the affine transformation

IRp −→ IRp

x 7−→ y = Ax + b.

Let M be some estimator of location and letS be some estimator of scatter. ThenM and
S are said to beaffine equivariant if

M(y1, ..., yn) = A ·M(x1, ...xn) + b andS(y1, ..., yn) = A · S(x1, ...xn) · At.

If the property is true when restricted to orthogonal transformation (A orthogonal and
b = 0) the estimators are said to beorthogonal equivariant.

If the property is true when restricted to scale transformation (A = aIp a non zero scalar
times the identity matrix andb = 0) the estimators are said to bescale equivariant.

If the property is true when restricted to shift transformation (A = 0) the estimators are
said to beshift or location equivariant .

2 Robust editing

Outlier detection requires a ”metric” that somehow measures the ”outlyingness” of a data
point. Typically, the metric arises from some model for the data (for example, a center
or a fitted equation) and some measure of discrepancy for that model. A classical way of
computing a measure of discrepancy and identifying multivariate outliers is to calculate
the Mahalanobis distance. Recall that this distance uses estimatorsM of location andS
of scatter of a set of observations and is defined for an observationx by:

MDM,S(x) = (x−M)tS−1(x−M).

Unfortunately both estimators of location and scatter are very sensitive to outlying ob-
servations. Therefore robust estimators of both location and scatter have to be used to
remedy that problem. Several methods have been reported in the literature for a number
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of different approaches always with their advantages and disadvantages. Smooth esti-
mators such as maximum likelihood andM estimators (Huber, 1981), (Maronna, 1976)
have the advantage of being relatively simple to compute with a straightforward itera-
tion from a good starting point (Rocke and Woodruff, 1993). But on the other hand
their breakdown point - i.e. the smallest fraction of the data whose arbitrary modifi-
cation can carry an estimator beyond all bounds - is at most1/(p + 1) wherep is the
dimension of the data (Donoho, 1982), (Maronna, 1976), (Stahel, 1981). This handicap is
almost eliminatory when dealing with official statistics, most of them being high dimen-
sional data.M -estimators were therefore not considered further in this study. Many other
affine equivariant estimators were studied by Donoho (Donoho, 1982) but all have break-
down points at most1/(p + 1). Other approaches ended up with affine equivariant high
breakdown point estimators but had the disadvantage of being computationally expensive.
The first of these approaches was related to the projection pursuit principle: the Stahel-
Donoho (SD) estimator (Stahel, 1981), (Donoho, 1982). Other approaches followed like
the ones based on the minimization of a robust scale like the Minimum Volume Ellipsoid
(MVE), the Minimum Covariance Determinant (MCD) estimators (Rousseeuw, 1985),
(Rousseeuw and Leroy, 1987) andS estimators (Davies, 1987). The affine equivariance
and high-breakdown point properties seem clearly to imply very high or even infinite com-
puter costs, therefore a robust outlier detection must either approximate the solution, like
the ”Fast MCD” (FMCD) (Rousseeuw and van Driessen, 1999) or the Modified Stahel-
Donoho (MSD) (Patak, 1990) (both methods will be part of this study in section 8 and
7) or sacrifice affine equivariance. Different ideas for the second solution can already be
found in (Gnanadesikan and Kettenring, 1972). Two approaches of Gnanadesikan and
Kettenring will be further developed in this study. The first one is based on the fact that
each component of a covariance matrix can be computed as the covariance between two
variables. Gnanadesikan and Kettenring proposed to robustify this component by com-
ponent computation and then use a final transformation of the obtained matrix to ensure
positive definiteness. We used this idea to define new simple robust estimators of location
and covariance in section 5. Note that Maronna and Zamar have also worked in the same
direction re-actualizing the ideas of Gnanadesikan and Kettenring, see (Maronna and Za-
mar, 2001). Another idea found in (Gnanadesikan and Kettenring, 1972) gave birth to the
so-called forward search methods (Hadi, 1992), (Atkinson, 1993). The two most recent
forward search methods (Kosinski, 1999) and (Billor et al., 2000) are studied in section 6,
and a slightly modified version of the BACON (Billor et al., 2000) algorithm is selected
for the rest of the study.

The methods based on the Mahalanobis distance will be adapted to cope with missing
values by an EM-algorithm. For the MCD-method this has been done by Cheng and
Victoria-Feser (Cheng and Victoria-Feser, 2000). The adaption to sampling is relatively
easy for these methods.

Nonparametric or semi-parametric approaches of outlier detection like data depth (Liu
et al., 1999) or multivariate quantiles seem also very attractive and promising, but unfor-
tunately due to the lack of resources these methods were not included in SFSO’s work
for EUREDIT. Nevertheless an alternative nonparametric method that seems to be new is
introduced in section 9 (Hulliger and Béguin, 2001). The idea is to start an epidemic in

14



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

the population at some well chosen point and let it grow. The last infected points should
be outliers.

Some authors do think that only hybrid methods using elements from the different ap-
proaches quoted above will have a chance to extend the practical boundaries of outlier
detection capabilities. Trying to combine the different methods was not an option chosen
for this study because it runs contrary to the guiding principles above, in particular sim-
plicity. the reader who’s willing to measure the effect of a hybrid method is advised to
read (Rocke and Woodruff, 1996). Note that Kosinsky has compared the method proposed
by Rocke and Woodruff with his algorithm (see Section 6).

3 Robust imputation

The idea is to use the outlier-detection methods for the purpose of ”outlier”-imputation
as well. Since we have a division of the data in outliers and good data we will impute
good data for the outliers. If we think that some of the outliers might be representative
then we might relax the boundary of the good data somewhat compared with the outlier-
detection phase. Missing values will have to be imputed for observations which are not
considered outliers. We will not use any sophisticated method like logistic regression or
neural networks here. Obviously these could be applied once the outliers are imputed.

The methods that end up with a robust estimate of the center and the covariance of the
data lead to two simple ways of imputation for outliers. The first method is to take a limit
of the good data described by an ellipsoid of equal Mahalanobis distance and to project
an outlier to the closest point of the ellipsoid. In other word we censor the outliers or
still in other words we winsorize the outliers metrically. The second imputation method
would be to impute (may be with probability proportional to the distance) an observation
from the good (non-outlying) observations which is close to the outlier. Thus this is a
nearest neighbour imputation with a restriction on the donors. The limiting distance for
winsorizing or the border of good data for nearest neighbour imputation is a parameter
that can be used to adapt for representative outliers.

The missing values of observations which ar not declared outliers can be imputed ran-
domly by a Nearest Neighbour from the good data.

The Epidemic Algorithm can be run backwards starting from a detected outlier until the
epidemic infects one or several good and complete observations. Then among these in-
fected good observations we may select one at random for imputation. The same process
may be used for non-outlying observations with missing values. Thus the epidemic al-
gorithm run backwards is a nearest-neighbour imputation method with a very particular
type of distance.
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4 A modular system for data preparation

The treatment of data from raw input to data which is of defined quality is very complex.
Usually several phases interact and there are loops which individual data or the whole of
the data go through several times. Ideally the system would be completely automated but
in practice manual controls and corrections often must occur. Also the integration of true
values due to call backs is possible. Every survey has its own specialities and therefore
there cannot be a system which covers all of the tasks in the sequence needed. The only
way to make the building of such a system easier is to have modules at hand, which do
specific subtasks, which are parameterised and which can be built easily into a system.
A simple example of such a modular system is shown here. It is merely developed for
the purposes of the EUREDIT project. But of course the modules may be used in a more
complex system.

4.1 The system

We first describe the system in general terms and then look closer at the modules it con-
tains. Modules we may consider are

E: A control module which flags missing values and applies edit rules that control which
of the values of a record might be in error.

C: A correction module which corrects failing items or missing items which fulfill spe-
cific conditions in a deterministic way. For example we may fill in a missing total
if all subtotals are given by just summing the subtotals. Or we may recalculate the
age from the year of birth if there is a contradiction between the given age and the
year of birth.

L: An error localisation module which narrows down the set of values which might be in
error.

D: An outlier detection module which flags possible outliers or calculates a robustness
weight.

I: An imputation module which imputes for missing values, outliers and failing items.

M: A manual correction module which allows correction and imputations by human in-
tervention.

The data that should be treated may be composed of observations on categorical (ordered
and unordered) and continuous variables.

Each of these modules should have a defined standard input and output, a defined set of
parameters and a defined set of informations for the user to judge its performance. Of
course there may be several different possible methods and algorithms for a module. For
example imputation may be done with the help of linear models or with a nearest neighbor
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method. Outlier detection may use non-parametric or parametric methods. The point is
that the input and output of each module should be defined in such a way that different
methods can be chained as modules to form a system.

A system like NIM from Statistics Canada resolves the tasks of several of the above
modules in a more interconnected way. E.g. NIM does a check on whether a possible
imputation actually resolves all edit failures at the very moment of the imputation. Thus
the E and I module of NIM are intimately connected. The disadvantage is that NIM cannot
be combined easily with other modules like a D module or an M module.

The system we use for EUREDIT consists of the following sequence: DEIE or EDIE.
A system like EDIE checks only after imputation whether the edit failures actually have
been resolved. In other words, after applying the system EDIE we cannot be sure to obtain
failure free records! We then may have to add a manual correction module followed by
the E module again. This would amount to a EDIEME system. Of course we might also
change certain parameters of the E, D, I modules and rerun the EDIE system in the hope
to get a result we can live with.

The main effort for this report is concentrated on a set of D modules. The I module is
needed to have at least a minimum output to be evaluated with the EUREDIT criteria.

4.2 The modules

4.2.1 Module E

Module E is the module that controls the correctness of data with edit rules.

Input: Then× p matrix of DataX. Then vector of weightsw.

Parameters: A set of rulesCk, k = 1, . . . , K.

Output: Then× p matrixR of response indicatorsrij. Then× p matrixE of indicators
eij of edit passes.

Each ruleCk is a function which mapsxi to 0 or 1. If an observation fails the rule, its
result is1, if it passes its result is0. Let Jk be the sub-set of variables on which the
functionCk depends. We define ap vectorckj(xi) as follows:

ckj(xi) =





1 if j ∈ Jk andCk(xi) = 1

0 if j ∈ Jk andCk(xi) = 0,

0 if j /∈ Jk.

(1)

In other words theckj(xi) = 1 if the observation fails rulek and rulek involves variable
j. Of course a rule cannot be applied to an observation if

∏
Jk

rij = 0, i.e. if it depends
on a missing observation. We then setckj(xi) = 0.
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The entries of the matrixE are calculated as

eij = 1{
K∑

k=1

ckj(xi) = 0} =

{
1 if

∑K
k=1 ckj(xi) = 0,

0 otherwise.
. (2)

Another measure which might be useful as output would be

ẽij =

∑K
k=1 ckj(xi)∑K

k=1 1{j ∈ Jk}rij

. (3)

Thus ẽij is the proportion of rules that fail and contain itemxij among the rules that
actually can fail for this item. Thus̃eij might be useful for error localisation or later on in
the distances.

4.2.2 Module D

Module D is the module for outlier detection.

Input: The dataX, the weightsw. The matrix of edit passesE.

Parameters: Tuning constants for the severity of outlier detection. Type of weighting
functions. Number of iterations or convergence criterion.

Output: The vector of robustness weightsu.

4.2.3 Module I

Module I is the module for imputation.

Input The dataX, the sampling weightsw, the robustness weightsu, the matrix of edit
passesE, the matrix of response indicatorsR.

Parameters Tuning constants for severity of outlier imputation. Tuning constants for
conditions on donors.

Output The imputed datãX.

18
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Part II

Selected methods for multivariate
outlier detection
As described in the introduction the first four sections of this chapters furnish outlier
detection methods based on robust Mahalanobis distances. Recall that for an estimateM
of location and an estimateS of scatter the Mahalanobis distance of an observationx is
computed as

MDM,S(x) = (x−M)tS−1(x−M).

The first section will introduce new simple robust estimators of location and scatter based
on ideas of Gnanadesikan and Kettenring (Gnanadesikan and Kettenring, 1972). The
second one will report the selection made between the two most recent forward search
method, namely Kosinski algorithm (Kosinski, 1999) and BACON algorithm (Billor
et al., 2000). The third one will describe a modified version of the first high breakdown
point affine equivariant method related to the projection pursuit principle (Stahel, 1981),
(Donoho, 1982). The fourth one will recall one of the most popular and well used high
breakdown point affine equivariant method based on the minimization of a robust scale
of Mahalanobis distances (Rousseeuw, 1985), (Rousseeuw and Leroy, 1987). Finally the
last section will introduce a nonparametric method based on an approach that seems to be
new, the epidemic algorithm.

5 A simple method

In order to evaluate sophisticated methods used to detect multivariate outliers we try to
find simple estimators of the mean and the covariance matrix. We seek computationally
non-expensive estimators that are suitable for detection in large and high dimensional
datasets. In other sections we shall study and compare sophisticated methods with high
breakdown point but also with heavy computation needs: methods based on the minimiza-
tion of a robust scale (Minimum Covariance Determinant, MCD), based on projections
(Modified Stahel-Donoho, MSD) or based on an epidemic spread through the data (Epi-
demic Algorithm, EA). Only one of the studied methods seems to be computationally
economic: the forward search method (BACON). Here the idea is to define estimators
of mean and scatter that do not need any fancy algorithm to be computed and that retain
some direct statistical meaning.

A first step in this direction was made by Gnanadesikan and Kettenring (Gnanadesikan
and Kettenring, 1972). The authors used the fact that the components of the covariance
matrix can be written as:

cov(x, y) =
1

4

(
σ2(x + y)− σ2(x− y)

)
,
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wherex andy are two univariare random variables. Using a robust estimator of univariate
varianceσ∗ (they used trimmed or Winsorized variance) they replaced the usual variance
σ by σ∗ in the above formula. Doing so they obtained some ”covariance” or ”correlation”
matrix that is not necessarily positive definite. They then used some transformation to
ensure positive definiteness and obtain an estimator of the covariance matrix; such trans-
formations are detailed in (Rousseeuw and Molenberghs, 1993).

We develop here quite similar ideas. We use rank statistics as robust estimate of correla-
tion between variables and we do a different transformation to ensure positive definiteness
using principal components. Then we propose to add one reweighting M-step to improve
performance.

5.1 Approximation of correlation coefficients

Our idea is to use the Spearman rank correlationR to approximate the usual correlation
ρ. We use the following proposition; see (van der Waerden, 1971)§70.

Proposition 1 Let X, Y be two normal variables, letρ be the correlation coefficient
betweenX andY , let x andy be two samples ofX andY , let R(x, y) be the Spearman
Rank correlation of the two samples. The following estimator is consistent forρ:

R̃(x, y) = 2 sin
(π

6
R(x, y)

)

This estimator will be used to construct the correlation matrix coefficient by coefficient.

5.2 Construction of the estimators (SMP and RSMP)

Our construction of simple robust estimators of the mean and the covariance matrix is as
follows:

Let X be then × p matrix of the data, withn observations andp variables.
All vectors will be written in column. Denote byxi, i = 1, .., n, the ith line
(observation) of the matrixX and byxj, j = 1, .., p, thejth column (variable).
Let µ̃ andσ̃2 be robust estimators of the mean and variance for univariate data.

(i) Construct thep× p symmetric matrixS̃1 = Σ̃R̃Σ̃ where
Σ̃ = diag(σ̃(xj)) andR̃jk = R̃(xj, xk).

(ii) Let B be the orthogonal matrix such thatS̃1 = BΛBt, with Λ diagonal.
Definem with mj = µ̃((XB)j) andΞ = diag(σ̃2((XB)j)).

(iii) The simple robust estimators (SMP) for the mean and covariance matrix
arem̃ = Bm andS̃ = BΞBt.
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In other words this algorithm computes in (i) some robust but not necessarily positive
definite estimation of the covariance matrix. The ”principal components” of this matrix
are then used in (ii) to robustly estimate univariate location and scatter in these directions.
The SMP estimators are eventually constructed from the estimates of location and scatter
obtained on these robust estimates of the principal components by a back transformation
into the original basis.

Remarks:

a) If besides outlier detection variance problematic is of interest we could possibly add
one reweighting step to improve efficiency. Denote bydi = (xi−m̃)tS̃(xi−m̃) the
Mahalanobis distances and letu be a weight function, the new estimators (RSMP)
would then just be weighted mean and covariance:

m̃u =

∑n
i=1 u(di)xi∑n
i=1 u(di)

S̃u =

∑n
i=1 u(di)(xi − m̃w)(xi − m̃w)t

∑n
i=1 u(di)

As a weight function we may use Huber weightsu : IR+ → IR+, d 7→ u(d) ={
d if d ≤ k

k if d > k
, wherek is chosen to give an estimator with reasonable perfor-

mance, or other redescending weights function.

b) In our simulations we usẽµ = median and σ̃ = mad with the mad scaled by
a multiplicative constant to be a consistent estimator of the standard deviation at
the Gaussian model. These particular simple (resp. reweighted) estimators will be
denoted bymSMP (resp. mRSMP ) andSSMP (resp. SRSMP ) in the next sections.
Other SMP estimators defined for example with trimmed or Winzorised mean and
variance would have to be explored.

5.3 Properties of the estimators

Lemma 5.1 Suppose that̃µ and σ̃2 are shift and scale equivariant then the SMP estima-
tors are shift and scale equivariant.

Proof 1. Shift equivariance
Denote byyi = xi+b the shifted observations withb = (b1, ..., bp) ∈ IRp, i.eY = X+1nbt

where1n is the n-vector with all components equal to1. By definition we have that
R̃(Y ) = R̃(X). As σ̃2 is shift equivariant we also have thatΣ̃(Y ) = Σ̃(X). Therefore
S̃1(Y ) = S̃1(X) implying B(Y ) = B(X). Finally using the assumptions oñµ andσ̃ we
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have

mj(Y ) = µ̃((Y B(Y ))j) = µ̃(((X + 1nbt)B(X))j)

= µ̃((XB(X) + 1nbtB(X))j) = µ̃(XB(X))j) + (Bt(X)b)j

= mj(X) + (Bt(X)b)j

=⇒
m(Y ) = m(X) + Bt(X)b

=⇒
m̃(Y ) = B(Y )m(Y ) = B(X)(m(X) + Bt(X)b) = m̃(X) + b

and

Ξ(Y ) = diag(σ̃2((Y B(Y ))j)) = diag(σ̃2(((X + 1nb
t)B(X))j))

= diag(σ̃2((XB(X) + 1nb
tB(X))j)) = diag(σ̃2((XB(X))j)) = Ξ(X)

=⇒
S̃(Y ) = B(Y )Ξ(Y )Bt(Y ) = B(X)Ξ(X)Bt(X) = S̃(X)

2. Scale equivariance
Denote byyi = axi the scaled observations witha ∈ IR\{0}, i.eY = aX. By definition
we have that̃R(Y ) = R̃(X). As σ̃2 is scale equivariant we also have thatΣ̃(Y ) = aΣ̃(X).
ThereforeS̃1(Y ) = a2S̃1(X) implying B(Y ) = B(X). Finally using the assumptions on
µ̃ andσ̃ we have

mj(Y ) = µ̃((Y B(Y ))j) = µ̃((aXB(X))j)

= aµ̃(XB(X))j) = amj(X)

=⇒
m(Y ) = am(X)

=⇒
m̃(Y ) = B(Y )m(Y ) = B(X)(am(X)) = am̃(X)

and
Ξ(Y ) = diag(σ̃2((Y B(Y ))j)) = diag(σ̃2(aXB(X))j))

= diag(a2σ̃2((XB(X))j)) = a2Ξ(X)

=⇒
S̃(Y ) = B(Y )Ξ(Y )Bt(Y ) = B(X)a2Ξ(X)Bt(X) = a2S̃(X)

Remark However as the rank statistics do change when the data are rotated, the SMP
estimators are neither orthogonal nor affine equivariant.

The construction was made to make the estimators consistent at the multivariate normal
model:
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Lemma 5.2 If µ̃ and σ̃ are consistent estimators for resp. the location and the scale
at the univariate normal modelN(µ, σ2) then the SMP estimators are consistent for the
location and the shape at the multivariate normal modelN(µ, Σ2).

Proof By proposition 1 and the fact that̃σ is consistent, we have that̃S1 is a consistent
estimator for the covariance matrix under multivariate normal distribution. By continuity
of the eigenvectors of a matrix, the estimated principal components will be consistent for
true real principal components. ThereforeB will be a consistent estimator of the matrix
that orthogonally diagonalizes the covariance matrix. The assumption thatµ̃ and σ̃ are
consistent concludes the proof.

6 A forward search method

In this section we deal with methods based on the concept of ”growing a good subset
of observations”. By ”good subset” we mean a subset free of outliers. The idea is to
start with a small subset of the data and then add non-outlying observations until no more
non-outliers are available.

The first criterion to check the outlyingness of one single point in multivariate data can be
tracked back to the article of Wilks in 1963 (Wilks, 1963). The author used the so called
one-outlier scatter ratio as a measure of outlyingness. This ratio is defined as a ratio of
determinants of sample covariance matrices in the following way. Letx1, ..., xn be a set
of points inIRp, denote bȳx = 1

n

∑n
i=1 xi andS = 1

n−1

∑n
i=1(xi − x̄)(xi − x̄)t the usual

sample mean and covariance matrix. Let’s addy ∈ IRp to the set of points and denote by
x̄y andSy the new sample mean and covariance matrix. The one-outlier scatter ratio of
Wilks is defined as

Ry =
|Sy|
|S|

where| · | is the determinant function. Wilks studied this criterion and extended it to two
or three added points but did not include any iterating process in his article. The idea of
a forward search algorithm was suggested by Wilks and Gnanadesikan in 1964 (Wilks
and Gnanadesikan, 1964). We report here the description made in (Gnanadesikan and
Kettenring, 1972).

The first step in the procedure is to rank the multiresponse observationsx1, ..., xn in term
of their Euclidean distance‖ xi − x∗ ‖ from some robust estimator of locationx∗. A
subsetG0 of the observations whose ranks are the smallest100(1 − β0)% is then chosen
and used to compute a sum-of-product matrix

AG0 =
∑
i∈G0

(xi − x∗)(xi − x∗)t.

The size ofG0 is chosen big enough in order to ensure thatAG0 is not singular. Then alln
observations are ranked in terms of the values of the quadratic form(xi−x∗)A−1

G0
(xi−x∗)t.

A new subsetG1 of the observations whose ranks are the smallest100(1−β1)% is chosen.
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The steps are then repeated with newβi andGi. The process is iterated until a ”stable”
estimator of the covariance matrix is obtained :

S∗Gi
=

k

n(1− βi)

∑
i∈Gi

(xi − x∗)(xi − x∗)t,

wherek is some constant chosen to make the estimator unbiased.

Probably due to the lack of computer resources these ideas were not developed any further
by Wilks and Gnanadesikan. Let us remark here that to grow the good subset we need
some ranking of all the observations based on the good ones. It would seem possible
here to use either the Wilks one outlier scatter ratio or the Mahalanobis distances type
criterion. These two rankings are actually equivalent. This result is very well known to
all specialists but we felt that it was worthwhile to write it once in details.

Lemma 6.1 Let G = {x1, ..., xn} ⊂ IRp and B = {y1, ..., ym} ⊂ IRp be two sets of

observations, letRyi
=

|SG,yi
|

|SG| , yi ∈ B, be the one outlier scatter ratios of the elements

of B based onG, let d2
i = MD2

x̄G,SG
(yi), yi ∈ B, be the Mahalanobis distances of the

elements ofB based onG, then

Ryi
=

(
n− 1

n

)p (
1 +

n

n2 − 1
d2

i

)

in particular the rankings of the observations inB associated toRyi
anddi are the same.

Proof To simplify the notations, let us denotēx = x̄G = 1
n

∑n
i=1 xi and

S = SG = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)t.

Similarly for y ∈ B denotex̄y = 1
n+1

(
∑n

i=1 xi + y) and

Sy = 1
n

(
∑n

i=1(xi − x̄y)(xi − x̄y)
t + (y − x̄y)(y − x̄y)

t) .

We have the trivial relations̄xy = n
n+1

x̄+ 1
n+1

y = x̄+ 1
n+1

(y−x̄) and withε = 1
n+1

(y−x̄)

nSy =
∑n

i=1(xi − x̄− ε)(xi − x̄− ε)t + (y − x̄− ε)(y − x̄− ε)t

= (n− 1)S − ε
∑n

i=1(xi − x̄)t −∑n
i=1(xi − x̄)εt + nεεt

+(y − x̄)(y − x̄)t − ε(y − x̄)t − (y − x̄)εt + εεt

= (n− 1)S − 0− 0 + nεεt

+(n + 1)2εεt − (n + 1)εεt − (n + 1)εεt + εεt

= (n− 1)S + n(n + 1)εεt

i.e.

Sy = n−1
n

S + 1
n+1

(y − x̄)(y − x̄)t
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A classical result of determinants computation states that for anyn × n square matrixA
and anyn vectorb we have

|A + bbt| = |A|(1 + btA−1b).

Applying this result to the last equality gives

|Sy| =
∣∣n−1

n
S
∣∣ (

1 + 1
n+1

(y − x̄)t n
n−1

S−1(y − x̄)
)

=
(

n−1
n

)p |S| (1 + n
n2−1

(y − x̄)tS−1(y − x̄)
)
.

And finally

Ryi
=

|Syi|
|S| =

(
n−1

n

)p (
1 + n

n2−1
(yi − x̄)tS−1(yi − x̄)

)

=
(

n−1
n

)p (
1 + n

n2−1
d2

i

)
.

After the articles of Wilks and Gnanadesikan almost 30 years will pass before the interest
for a forward search algorithm grew up again. Articles by Hadi (Hadi, 1992) and Atkinson
(Atkinson, 1993) will start to demonstrate the efficiency of such methods. In both articles
the growth of the ”good subset” is one point at a time using Mahalanobis distances to rank
the observations. Several articles will follow developing faster and more sophisticated
methods based on the same idea. The last two and most efficient were developed by
Billor, Hadi and Velleman (Billor et al., 2000) and Kosinski (Kosinski, 1999). Both will
be presented in the next two subsections. The third subsection will present a comparison
that was made to select the most efficient one for our purpose.

6.1 BACON algorithm

The BACON algorithm is presented in (Billor et al., 2000). Two versions are included:
one for multivariate data in general and one for regression data. Our interest here will
be the first case. The BACON acronym (Blocked Adaptative Computationally-efficient
Outlier Nominators) was chosen after the last name of Sir Francis Bacon who wrote in
1620:

”Whoever knows the ways of Nature will more easily notice her devia-
tions; and, on the other hand, whoever knows her deviations will more
accurately describe her ways.”

The idea of the algorithm is similar to the ones presented above. We shall present the
detailed algorithm and some properties underlined by Billor et al.

The algorithm The first step will be the choice of an initial basic subset of ”good data”.
Two versions are proposed. Let us first describe these two initializations and then state
the steps of the algorithm.

The data are stocked in a matrixX of n rows (observations) andp columns (variables).
The assumption on the data is that they should be unimodal and roughly elliptical sym-
metric.
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Version 1 (V1) (Initial subset selection based on Mahalanobis distances)
For i = 1, ..., n compute the Mahalanobis distances

di(x̄, S) =
√

(xi − x̄)tS−1(xi − x̄), i = 1, ..., n

wherex̄ andS are the mean and covariance matrix of then observations. Identify
them = cp observations with the smallest values ofdi. Nominate these as a po-
tential basic subset.c is an integer chosen by the data analyst and set by default to
3.

Version 2 (V2) (Initial subset selection based on distances from the medians)
For i = 1, ..., n compute‖xi −med‖, wheremed is a vector containing the coor-
dinatewise median,xi is the ith row ofX and‖ · ‖ is the Euclidean norm. Identify
them = cp observations with the smallest values of‖xi −med‖. Nominate these
as a potential basic subset.

In both versions ifSG (the covariance matrix of the selected data) is singular then increase
the basic subset by adding observations with smallest distances untilSG has full rank.

6.1.1 Steps of the algorithm

Step 1 Select an initial basic subsetG of sizem using either V1 or V2.

Step 2 Compute the discrepancies

di(x̄G, SG) =
√

(xi − x̄G)tS−1
G (xi − x̄G), i = 1, ..., n

wherex̄G andSG are the mean and covariance matrix of the observations inG.

Step 3 Set a new subsetG to all points with discrepancy less thancnprχp,α/n, whereχ2
p,β

is the1 − β percentile of the chi square distribution withp degrees of freedom,
cnpr = cnp + chr is a correction factor with

chr = max{0, (h− r)/(h + r)}, h = d(n + p + 1)/2e, r = |G|

cnp = 1 +
p + 1

n− p
+

1

n− h− p
= 1 +

p + 1

n− p
+

2

n− 1− 3p
.

Step 4 The stopping rule:Iterate Steps 2 and 3 until the size of the basic subset no longer
changes.

Step 5 Nominate the observations excluded by the finalG as outliers.
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6.1.2 Properties of the algorithm

We report here properties of the methods presented in (Billor et al., 2000).

This outlier detection method is computationally efficient. The version with starting point
V1 is affine equivariant but less robust. Nevertheless simulations show that it has an
empirical breakdown point near20%. It has a lower computational cost than the other
version. The second one with starting point V2 is more robust but only nearly affine
equivariant. In simulation trials it offered a breakdown point in excess of40%.

The small computing effort required by the BACON algorithm, and in particular the fact
that this effort grows slowly with increasing sample size, makes this method particularly
well-suited for large datasets.

6.1.3 Remark and modification of the step 3 selection criteria

The selection criteria of step 3 is designed for a multivariate normal distribution. In fact
under normality it is well known that the Mahalanobis distances follow asymptotically a
χ2 distribution withp degrees of freedom. Suppose all points are derived from a multivari-
ate normal distribution and that the Mahalanobis distance is computed using the all sample
mean and covariance matrix, therefore testing the number of points withMD(xi) > χ2

p,α

should end up with about100α percents of points detected. The test defined in step 3 is
designed in a different way, testing the number of points withMD(xi) > χ2

p,α/n. Us-
ing Bonferroni inequalities we can show that under normality this test will not detect any
point with probability1 − α (i.e. P (MD(xi) < χ2

p,α/n, ∀i ∈ {1, ..., n}) = 1 − α). Now
if this test defined this way detects very rarely points that are not outliers it also reduces
its sensitivity to close outliers whenn becomes large. As we shall have to deal with very
large datasets and we are worrying about contamination close to the ”good data” we shall
prefer a test usingχ2

p,α instead ofχ2
p,α/n. This solution decreases the number of non de-

tected outliers but accepts that under normality about100α percents of good points are
detected as outliers. As BACON algorithm is computationally cheap the analyst should
always have the possibility to run the method with both tests and compare the results.

6.2 Kosinski algorithm

In 1999 Kosinski tried to push further the ideas of Hadi and Atkinson to create a method
that could cope with high contamination (Kosinski, 1999). We shall present the algo-
rithm in detail after having given several new notations and definitions required for it’s
understanding. Finally we shall report some conclusion drawn by Kosinski.

Definitions and notations As usualn observationsx1, ..., xn ∈ IRp are considered. For
anyE ⊆ D = {1, ..., n} the number of element inE will be denoted by|E|. A partition-
based Mahalanobis distance of elements ofD is given by a partition(G,B) of D and the
distances

MDi(G,B) = (xi − x̄G)t(c2
|G|pSG)−1(xi − x̄G).
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where the constantc|G|p is defined as in BACON and was originally suggested by Hadi in
(Hadi, 1994). Anα-partition ofD is a partition ofD such that

1. |G| ≥ h = b(n + p + 1)/2c;

2. MDi(G, B) ≥ χ2
p,α for i ∈ B;

3. max
i∈G

MDi(G, B) < min
i∈B

MDi(G,B);

4. if |G| > h thenMDi(G,B) < χ2
p,α for all i ∈ G.

The levelγ of anα-partition is defined asγ = max
i∈B

Pi(G,B) where

Pi(G,B) = Prob{χ2
p ≥ MDi(G,B)}.

Remark here that by property 2 the levelγ of anα-partition has to satisfyγ < α. This
fact will be used in the algorithm. The partG is named for the ”good data points” and the
partB for the ”bad data points”.

The algorithm is rather sophisticated. Before giving all the technical steps that might not
help greatly the understanding of the method we shall try to clarify the progress of the
method.

6.2.1 Progress of the algorithm

The algorithm will try to find theα-partition with all the good points inG and all the bad
points inB.

1. Start The ideal algorithm would start with all the so called elemental partitions
(|G| = p + 1) and would try to construct the soughtα-partition from each of them. But
this solution would be computationally too expensive, therefore only a random subset
of all these elemental partitions will be used. The number of these starting elemental
partition, denoted byJ(n, p, 0.99, g), will ensure with a0.99 probability that at least one
of the chosen elemental partition has its ”good part”G free of outliers (g denotes the
number of good points in the full dataset).

2. Forward search (outer cycle) The algorithm then applies to each of the selected
elemental partition the classical forward search algorithm (Hadi, 1992) adding observa-
tions one by one until it reaches anα-partition.J(n, p, 0.99, g) α-partitions are obtained.
At that point the algorithm may have obtained the soughtα-partition as well as non-valid
α-partition (obtained if the initial partition already contained outliers). A treatment of the
resulting partitions is therefore needed.
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3. Treatment of theα-partitions Three different cases can occur:

a) All obtainedα-partitions are trivial (B = ∅). In that case the algorithm declares no
outlier at theα level.

b) Only one non-trivial partition(G,B) is obtained. In that case the algorithm declares
the points inB as outliers at theα level.

c) Different distinct non-trivialα-partitions are obtained. Here is the point where the
algorithm differs from other existing ones. Kosinski argues that simply choosing
one of the partition using for example a criteria like minimizing a volume (like
MCD or MVE) may occasionally fail to detect the correct outliers in particular
under high contamination. Therefore he eliminates first the more extreme outliers:
the algorithm computes all the levels of theseα-partitions and select the minimum
valueγ (recall thatγ < α). The algorithms then applies again the classical forward
search methods to the obtainedα-partitions but this time to obtainγ-partitions and
it goes back to the beginning of 3 (inner cycle).

4. Treatment of detected outliers If no inner cycle have been used all the outliers are
detected at theα level and the algorithm proceeds to the final check. If one or more inner
cycles have been used then all the outliers are detected at aγ level with γ < α therefore
the algorithm removes them from the data and starts all over again at point 1 but with a
smaller dataset.

5. Final check If several outer cycle have been used (i.e. theα-partition has been found
on a smaller dataset after removing the more extreme outliers) then the algorithm applies
one more time a forward search to this partition to be sure to obtain anα-partition of the
whole dataset (in simulations this check has never changed anything).

Comments By taking several starting partitions Kosinski tries to solve the main prob-
lem of the classical forward search method, namely the choice of a small subset of good
points. His treatment of the possible distinct found partitions is not based on a criteria like
MVE or MCD but first removes the more outlying points and then reapplies the algorithm.
We shall see later that the simple forward search methods are rather fast algorithms there-
fore clearly the speed of Kosinski’s method will depend on the numberJ(n, p, 0.99, g) of
starting partitions. As an example, using Kosinski’s formula, we computed the number
of starting partitions withn = 10′000 observations,g = 9′000 good points andp = 100
variables. We got :J(10000, 100, 0.99, 9000) = 203′840. This number shows that we
have to be aware that with large dataset we might have to take a probability smaller than
0.99 : for exampleJ(10000, 100, 0.95, 9000) = 132′601.

We are now able to describe the algorithm with all the technical details.
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6.2.2 The algorithm

Even if the author does not state any assumption required by the algorithm it is clear that
as the classical ideas of a forward search methods are used we should assume that the data
is unimodal and roughly elliptical symmetric.

Consider type I errorα = 0.01 and assume that there are at mostN − h outliers. Start
with outer cycle numberm = 0 andD(0) = {1, 2, ..., N}.

Step 1 Incrementm by one and set the inner cycle number tow = 0. Randomly form
J(|D(m − 1)|, p, 0.99, h) distinct elemental (i.e.|G| = p + 1) partitions of data
D(m−1). To each elemental partition apply the classical forward search algorithm
adding one observation at a time and stop when you get anα-partition ofD(m−1).
Let K(m,w) be the number of resulting distinctα-partitions. IfK(m,w) = 0 then
defineD(m) = D(m− 1) and go to step 5, otherwise move to step 2.

Step 2 If K(m,w) = 1, denote the single available partition ofD(m − 1) by
(G(m), B(m)) and go to step 4, otherwise move to step 3.

Step 3 Denote the levels of theK(m,w) available partitions byγk(m,w) with k =
1, ..., K(m,w). Chose the partition corresponding to the most significant level
γ(m,w) = min

k
γk(m,w). Apply the forward search procedure to all available

partitions with the newα = γ(m,w). Incrementw by one. Denote byK(m,w) the
number of resulting distinctα-partitions ofD(m− 1) and return to step 2.

Step 4 Form the reduced dataD(m) = G(m). If w ≥ 1, i.e. step 3 was used, then return
to step 1 as long as|G| > h, otherwise (w = 0 or |G(m)| = h) move to last step.

Step 5 If D(m) = {1, .., N} declare no outlier. If observations were removed only during
the first outer cycle, declareB(m) as outliers. If observations were removed in
more than one outer cycle, then apply one last time the forward search withα to
the partition(D(m), D −D(m)) of D and declare as outliers the ”bad part” of the
resulting partition.

6.2.3 Properties

Kosinski does not state many properties of its algorithm. It seems to have empirically a
very high breakdown point but may be computationally intensive for large datasets due to
the large number of elemental partitions. Simulations were run to compare the algorithm
to an hybrid method given by Rocke and Woodruff (Rocke and Woodruff, 1996). Kosin-
ski’s methods performed better than the Rocke and Woodruff’s one. These tests are used
in the next section to select which method between Kosinski and BACON will be chosen
for the rest of the study.
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6.3 Comparison between BACON and Kosinski

Kosinski’s method and Bacon have been compared individually to the original forward
search methods (Hadi and Atkinson) and have performed better. As we wished to study
only one forward search method in the following, we ran some tests to select the most
efficient one. We used the tests ran by Kosinski himself in his 1999 article. That saved us
the time to implement the Kosinski algorithm. Let us start by describing these simulations.

6.3.1 Description of the tests

Recall that these tests are designed and described in (Kosinski, 1999). For each test
T = 100 datasets are generated withg ”good data” points andb outliers, i.eN = g + b
and the contamination fractionf = b/N . The performance is evaluated on three criteria:

p1 =
1

T

T∑
i=1

1l(mi = 0), p2 =
1

T

T∑
i=1

mi

b
, andp3 =

1

T

T∑
i=1

si

g
,

wheremi is the number of undetected outliers,si the number of swamped ”good obser-
vations” and1l(mi = 0) = 1 if and only if mi = 0. In other words,p1 is the proportion
of simulation runs which resulted in identification of all the outliers,p2 is the average
proportion of undetected outliers, andp3 is the average proportion of swamped ”good
observations”. A perfect method would getp1 = 1, p2 = 0 andp3 close to its nominal
significance levelα. Remark here thatp2 ≤ 1−p1 and that the equality occurs only when
in every run where not all the outliers were detected actually none was detected.

Initial tests were run to check if the value ofp3 is close to the nominal significance level
when no outlier is present. Tests were therefore run withg = 100 and b = 0. The
significance level was set toα = 0.01 and tests were run in dimensions fromp = 2 to 10.
Table 1 shows the results.

Two similar series of tests were then run, one in dimensionp = 2 (see Table 2) and
one in dimensionp = 5 (see Table 3). The number of ”good observations” was fixed
at g = 100, the contamination fraction varies fromf = 0.10 to 0.45 by steps of0.05.
The ”good points” were generated from a multivariate normal distributionNp(0, σ

2
1Ip),

and the outliers fromNp(d · 1p, σ
2
2Ip), where1p is the p-vector of1’s andIp the identity

matrix. The tests were run withσ2
1 = 40, σ2

2 = 1 andd = 20, 25 or 30. The significance
level was set toα = 0.01.

6.3.2 Results of the tests

The following tables display the results obtained by Kosinski for his algorithm (KOS)
and reported in his paper (Kosinski, 1999) and the ones we obtained for BACON with
non-robust start (V1) and robust start (V2).
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Table 1: Values of p3 in initial tests, significance level set to α = 0.01

Method p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
KOS 0.012 0.009 0.010 0.009 0.007 0.009 0.009 0.008 0.007
V1 0.012 0.011 0.011 0.009 0.008 0.007 0.007 0.006 0.006
V2 0.011 0.011 0.010 0.008 0.009 0.008 0.008 0.007 0.006

Table 2: Tests in dimension p = 2, significance level set to α = 0.01

Values of p1 p2 p3

f KOS V 1 V 2 KOS V 1 V 2 KOS V 1 V 2
Distanced = 30

0.45 1.000 0.970 1.000 0.000 0.030 0.000 0.013 0.013 0.011
0.40 1.000 0.990 1.000 0.000 0.010 0.000 0.011 0.011 0.013
0.35 1.000 0.990 1.000 0.000 0.010 0.000 0.011 0.012 0.014
0.30 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.014 0.012
0.25 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.012 0.014
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.015 0.014
0.15 1.000 1.000 1.000 0.000 0.000 0.000 0.010 0.015 0.013
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.013 0.012 0.011

Distanced = 25
0.45 1.000 0.860 1.000 0.000 0.140 0.000 0.012 0.226 0.015
0.40 1.000 0.930 1.000 0.000 0.070 0.000 0.010 0.015 0.015
0.35 1.000 0.890 1.000 0.000 0.110 0.000 0.010 0.023 0.014
0.30 1.000 0.970 1.000 0.000 0.030 0.000 0.011 0.015 0.014
0.25 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.012 0.013
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.013 0.012
0.15 1.000 1.000 1.000 0.000 0.000 0.000 0.011 0.012 0.013
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.012 0.014

Distanced = 20
0.45 0.530 0.700 0.810 0.470 0.300 0.190 0.428 0.054 0.022
0.40 0.970 0.620 0.990 0.030 0.380 0.010 0.036 0.053 0.014
0.35 0.990 0.730 1.000 0.010 0.270 0.000 0.019 0.018 0.013
0.30 1.000 0.890 1.000 0.000 0.110 0.000 0.010 0.013 0.013
0.25 1.000 0.920 1.000 0.000 0.080 0.000 0.013 0.013 0.011
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.014 0.011
0.15 1.000 0.980 1.000 0.000 0.020 0.000 0.010 0.013 0.013
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.013 0.020 0.011

6.3.3 Conclusions of the tests

The initial tests confirm thatp3 is very close to the nominal significance level for all
methods.
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Table 3: Tests in dimension p = 5, significance level set to α = 0.01

Values of p1 p2 p3

f KOS V 1 V 2 KOS V 1 V 2 KOS V 1 V 2
Distanced = 30

0.45 1.000 0.000 1.000 0.000 0.996 0.000 0.008 1.000 0.010
0.40 1.000 0.000 1.000 0.000 0.998 0.000 0.010 0.806 0.008
0.35 1.000 0.000 1.000 0.000 1.000 0.000 0.008 0.806 0.012
0.30 1.000 0.200 1.000 0.000 0.800 0.000 0.010 0.102 0.012
0.25 1.000 0.990 1.000 0.000 0.010 0.000 0.008 0.013 0.011
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.011 0.010
0.15 1.000 1.000 1.000 0.000 0.000 0.000 0.010 0.009 0.012
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.011 0.011 0.009

Distanced = 25
0.45 1.000 0.000 1.000 0.000 0.996 0.000 0.008 1.000 0.009
0.40 1.000 0.000 1.000 0.000 0.999 0.000 0.009 0.999 0.010
0.35 1.000 0.000 1.000 0.000 1.000 0.000 0.009 0.883 0.010
0.30 1.000 0.110 1.000 0.000 0.890 0.000 0.010 0.110 0.011
0.25 1.000 0.950 1.000 0.000 0.050 0.000 0.008 0.013 0.012
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.010 0.012
0.15 1.000 1.000 1.000 0.000 0.000 0.000 0.007 0.010 0.012
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.008 0.010

Distanced = 20
0.45 0.690 0.000 0.980 0.310 0.996 0.020 0.279 1.000 0.012
0.40 1.000 0.000 1.000 0.000 0.999 0.000 0.008 0.999 0.010
0.35 1.000 0.000 1.000 0.000 0.999 0.000 0.008 0.872 0.011
0.30 1.000 0.010 1.000 0.000 0.990 0.000 0.009 0.154 0.010
0.25 1.000 0.880 1.000 0.000 0.120 0.000 0.008 0.014 0.010
0.20 1.000 0.920 1.000 0.000 0.080 0.000 0.010 0.012 0.013
0.15 1.000 0.950 1.000 0.000 0.050 0.000 0.009 0.012 0.010
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.008 0.012 0.010

The main tests showed clearly that BACON with a non-robust start (V1) is not as efficient
as Kosinski’s method (KOS). Looking for example at the tests run withp = 2 andd = 25
we see that V1 is no longer perfect when the contamination proportion is higher than25%
while KOS remains perfect. With the same distance in dimensionp = 5 V1 breaks down
even with25% of contamination. This breakdown comes from the fact that the overall
mean is attracted more and more by the contamination cloud when the latter grows. It is
even so attracted by it in some cases that V1 will end by considering the outliers as ”good
data” and the remainder as ”outliers”: you can see this particularity for example in the
test withp = 5, d = 30 andf = 0.45 wherep3 = 1, which means that all good points are
always considered as outliers.

On the contrary the main tests showed that BACON with a robust start (V2) is even more
efficient than Kosinski’s algorithm. V2 is almost perfect in all cases. It only omits a few
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outliers whend = 20 and the contamination is very highf = 40 or 45. But in any cases
it is as efficient as KOS. Moreover, even if we did not implement KOS we can see that
V2 has to be quicker: for example Kosinski presented the results on the Bushfire dataset
(Maronna and Yohai, 1995) and showed that it took several outer and inner cycle to find
the outliers; BACON took4 iterations (in 0.12s in S-Plus on a 600MHz PC with 128Mb
RAM) to get the same outliers (see next section).

6.3.4 Summary

Simulations with the same test bed as Kosinski used (but of course with different real-
isations) showed that BACON algorithm with a robust start is superior to the Kosinski
algorithm. For the rest of this study, BACON with a robust start was selected as our for-
ward search method. In all tests ran by Kosinski to show the superiority of his algorithm
over the hybrid method designed by Rocke and Woodruff in (Rocke and Woodruff, 1996)
BACON with a robust start performed always as well and even better when the contam-
ination is high and relatively close to the good data. BACON is a very fast algorithm
and is very efficient when the good data comes from some unimodal multivariate normal
distribution (in that case it’s the best algorithm we have tested). BACON with a robust
start has a very high empirical breakdown point and is computationally very efficient but
is not affine equivariant (see the introduction for some comments on that fact).

6.4 A new graphical tool based on forward search to analyze outliers

The methods exposed above give us tools to detect outliers by splitting the data in two
parts: ”good” and ”bad” points. Robust estimates of the mean and covariance matrix are
obtained by taking the sample mean and covariance matrix of the subset of the ”good
points”. These estimates allow us to calculate the Mahalanobis distances and identify
outliers but do not give any more information on these outliers. We are proposing here
to use a plot of the oldest criterion on outlyingness to get a more precise overall picture
of the outliers situation. Atkinson used also graphical techniques in his article but only
as a detection tool: he kept for all points the history of the Mahalanobis distancedi.
As he used a forward algorithm growing one observation at each step he had to stock
n × (n − k) distances wherek is the number of observations used for the first estimate
of the covariance matrix. What we propose here is to memorize at each step only the
Wilks’s one outlier scatter ratio of the added observation. This will give us an idea on the
growth of the ellipsoid volume when the observation is added. To visualize this ”Volume
History” (VH) we plot the percentage of growth at each step for the second added half of
the data. To illustrate this we used the VH of one example of the above tests: casep = 5,
d = 20, f = 0.25. We plotted first the VH of such a set without outliers and then the one
generated for the test. We clearly see on the outlier-free VH (see Chart 1) that only one
point seems suspicious with a volume growth of about14% which is higher than the other
ones. On the other hand the second VH history (see Chart 2) shows a typical pattern of
concentrated contamination: we see an ”hyperbole-shaped” curve indicating the presence
of clear outliers close to each other. The first detected outlier has a volume growth of
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Chart 1: Volume history for a multivariate normal distribution with
100 points in dimension 5
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more than40%. This pattern is exactly the same with a real point mass contamination.
VH gives us a general picture of proximity of the outliers to each other. Let us look at our

Chart 2: Volume history for a multivariate normal distribution with 75
points in dimension 5 contaminated by 25 points as in Kosinski’s test
with d = 20
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favorite example of the Bushfire data (see the second chapter) to see the utility of VH (see
Chart 3). The first outlier seems isolated (12) with a big growth rate (87%) followed by
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Chart 3: Volume history for the Bushfire data
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observation7 also isolated (126%). Then outlier11 (221%) might be close to outlier10
(70%). Similarly 8 (144%) might mask9 (40%) while outlier31 seems isolated (220%).
Finally observation32 (402%) seems to lead by far a concentrated contamination with
observations33 to 38.

The Bushfire dataset has38 observations in dimension5 and allows a two dimensional
plot (in variable2 and 3) that reveals almost all the outliers (see Chart 4). On this
scatter plot we see that the VH diagnostic is pretty accurate. Observation7 is actually
far from observation10 and11 on other variables than2 and3, 31 is outlying also on
other variables, and32 is not very close to33 − 38 but indicates the direction of the
contamination.

The disadvantage of the Volume History is of course the speed of the algorithm. In fact
using the relation of Lemma 6.1 the computation of the Wilks’s one outlier scatter ratios
correspond to the computation of the smallest Mahalanobis distances, therefore the speed
of such an algorithm is the same as the first versions of Hadi and Atkinson of forward
search methods. But with moderate size the VH could give interesting information on the
outliers.

7 A projection pursuit method

Among the methods for computing a robust estimate of the covariance matrix for a uni-
modal elliptical distribution some of them are using a simple geometrical idea: ”If a point
is a multivariate outlier, then there must be some one-dimensional projection of the data
for which the point is a univariate outlier”. These methods fall under projection pursuit
techniques. Two different approaches are here possible. The first approach computes
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Chart 4: Bushfire dataset
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directly estimates of the eigenvectors and eigenvalues of the covariance matrix using a
robust measure of univariate scatter. This method of robust principal component analysis
has been mentioned by Huber (Huber, 1985), developed by Li and Chen (Li and Chen,
1985) and studied further by Croux and Ruiz-Gazen (Croux and Ruiz-Gazen, 2000). The
other approach use the geometric idea to find the ”interesting directions for outlyingness”,
to identify outliers and then to compute an estimate of the covariance matrix using this
information. This second approach gave birth to the first affine equivariant multivariate
estimators of location and scatter robust enough to tolerate up to50% of outliers in the
sample before they break down. They were discovered independently by Stahel (Stahel,
1981) and Donoho (Donoho, 1982).

In this work only the second approach is followed. It was selected because it has al-
ready been used in official statistics by a national statistical office (Statistics Canada) in
(Franklin et al., 2000). Moreover at the beginning of that study we were not aware of the
existence of the new algorithm given by Croux and Ruiz-Gazen and therefore didn’t com-
pare its performances to the Stahel-Donoho method. We implemented a modified version
of the original Stahel-Donoho estimator, starting from a version given by Patak (Patak,
1990) and reported in (Franklin et al., 2000).

7.1 Modified Stahel-Donoho (MSD) estimators

We start by recalling the construction of the original Stahel-Donoho (SD) estimators, and
some properties obtained by Maronna and Yohai in (Maronna and Yohai, 1995).
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7.1.1 Original SD estimators and some properties

The SD estimators are defined as weighted mean and covariance matrix, where each has a
weight that is a function of an outlyingness measure, with points having large outlyingness
receiving small weights.

As usual letX be then×p data matrix withn observations (x1, ..., xn) andp variables. Let
µ andσ2 be affine equivariant univariate estimator of location and scatter, the outlyingness
measureri of each observationxi is given by

ri = sup
‖a‖=1

|atxi − µ(atX t)|
σ(atX t)

.

Eachri measures the maximum standardized one-dimensional deviation from the esti-
mated locationµ for all directions inIRp. Then the weights are computed as

ui = u(ri) whereu : IR+ → IR+ is a weight function.

The SD estimators are then defined as

mSD =

∑n
i=1 uixi∑n
i=1 ui

andSSD =

∑n
i=1 ui(xi −mSD)(xi −mSD)t

∑n
i=1 ui

.

By definition and by the assumptions onµ andσ2 the estimators are affine equivariant.
Actually if µ andσ2 are the usual mean and variance and ifu is the identity then the
SD estimators are the usual sample mean and covariance matrix. Stahel (Stahel, 1981)
showed that the SD estimators have an asymptotic breakdown point of1/2 at continuous
multivariate model ifµ andσ have the same property and Donoho (Donoho, 1982) de-
rived the finite-sample breakdown point in the case in whichµ = median andσ = mad.
In (Maronna and Yohai, 1995) Maronna and Yohai studied the finite sample breakdown
point of the latter estimator but with the outlyingness measureri taken only on a ran-
dom subset of sizeN of all a ∈ IRp with ‖ a ‖= 1. They computed the sizeN needed
for the breakdown of this approximate estimator to be as good as the usual one with
a probability of0.999. They showed thatN grows exponentially withp implying un-
avoidable computing difficulties for largep. For example, forp = 4, 6, 8, and10 one
needsN = 210, 1′050, 5′000, and26′260. Their study also determined what was the best
weight function to use according to their quality measures (biases and efficiencies) and
the following ”Huber-like” weight was selected:

u : IR+ → IR+, r 7→ u(r) =

{
1 if r ≤ c(

c
r

)2
if r > c

with c =
√

χ2
p,0.95

7.1.2 Modified SD estimators

We start by giving the modified Stahel-Donoho estimators proposed by Patak (Patak,
1990) as reported and used in (Franklin et al., 2000). This construction is as follows:
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1. The data are centered using theL1-estimate of the location vector. TheL1-estimate
of the location vector is defined as the solution of the minimization problem:
minT

∑n
i=1 ‖xi − T ‖2. It is often named the spatial median.

2. The initial weights are all set to one:ui = 1, i = 1, ..., n.

3. Fork = 1 to m (m usually set to10) do

a) Randomly generate a unit vectorv1 ∈ IRp using a uniform distribution on the
unit sphere inIRp.

b) Calculatev2, ..., vp in such a way that thevi’s form an orthonormal basis of
IRp

c) Fori = 1, ..., n andj = 1, ..., p compute

rij =
|vt

jxi −med(vt
jX

t)|
mad(vt

jX
t)

and theñrij =





rij if 0 ≤ rij < 2.5

2.5 if 2.5 ≤ rij < 4

0 if 4 ≤ rij

.

Finally compute

uk
i =

p∏
j=1

r̃ij

rij

.

d) If uk
i < ui then setui = uk

i .

4. Compute the weighted estimates of location and scatter using the weightsui.

5. Reset all weights to one:ui = 1, i = 1, ..., n.

6. Redo the loop in 3. but this time by replacing the random orthogonal basis (points
a) and b)) by the computation of the principal components of the current weighted
covariance matrix. Stop when the weights do not change significantly (in practice
one iteration has been found to be sufficient).

Our version of the modified Stahel-Donoho will differ in several points from the Patak’s
algorithm:

(i) As the computation of the weights use some centering on the one-dimension pro-
jections, the weights are location invariant. Therefore the weighted estimates of
location and scatter are location equivariant and the initial centering is useless. We
removed it from our algorithm.

(ii) Following Maronna and Yohai we decided to use ”Huber-like” weight function in-
stead of the non-continuous weight function proposed by Patak (see Chart 5 for the
picture in dimension 1), i.e. we change the computation of ther̃ij into:

r̃ij =

{
rij if 0 ≤ rij < c
c2

rij
if c ≤ rij

with c =
√

χ2
p,0.95.
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Chart 5: Weights used by Patak and ”Huber-like” weights in dimen-
sion 1
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(iii) Following Maronna and Yohaim is set by default tom = bexp(2.1328 + 0.8023 ∗
p)/pc. Of course in high dimension the user might have to choose a much smaller
m.

(iv) We did not reset the weights to one in 5. The reason here is that according to our
experience outliers that are not on the principal components directions might be
masked if we do reset the weights.

8 A minimization of scale method

After Stahel and Donoho, Rousseuw (Rousseuw, 1984), (Rousseeuw, 1985) intro-
duced a second affine equivariant estimator with maximal breakdown point, by putting
”T (X) =center of the minimal volume ellipsoid covering (at least)h points ofX”, where
h can be taken equal tobn/2c + 1. This estimator is called the minimum volume ellip-
soid estimator (MVE). The corresponding covariance estimator is given by the ellipsoid
itself, multiplied by a suitable factor to obtain consistency at multivariate normal data.
Rousseuw noticed however that forp = 1 the MVE reduces to the shortest half, soT (X)
becomes the one-dimensional least median of squares which converges liken1/3, see The-
orem 3 in Section 4 of Chapter 4 in (Rousseeuw and Leroy, 1987). Assuming that MVE
will not have a better rate Rousseuw then proposed to generalize the least trimmed squares
which converges liken1/2, see Theorem 4 in Section 4 of Chapter 4 in (Rousseeuw and
Leroy, 1987), and ended up with the minimum covariance determinant estimator (MCD)
defined this time by minimizing the determinant of the covariance matrix computed from
theh points. This estimator will be included in this study or actually a reweighted form
of it that is standard implemented in S-Plus.
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8.1 Reweighted minimum covariance determinant estimators
(RMCD)

As usual letX be a sample ofn observations (x1, ..., xn) with p variables. The MCD
estimators are determined by selecting the subset{xi1 , ..., xih} of sizeh which minimizes
the determinant of the covariance matrix computed from that subset. The location and
scatter estimators are then defined as

mMCD =
1

h

h∑
j=1

xij andSMCD = cp
1

h

h∑
j=1

(xij −mMCD)(xij −mMCD)t

with cp the consistency factor at multivariate normal. Nowh can be chosen by the user
determining the breakdown point of the estimator: ifh = n(1 − β) the estimator has a
breakdown point ofβ. Typicallyβ is set to0.5 or 0.25. As it is usually not feasible to find
the exact minimum several algorithms have been proposed to approximate the solution.
The best one was proposed by Rousseuw and van Driessen (Rousseeuw and van Driessen,
1999), it is called the FAST-MCD algorithm. The major drawback of the MCD estimators
remains its low efficiency at the normal distribution (Croux and Haesbroeck, 1999). To
overcome this problem a reweighting step can be added to the MCD estimators. Weights
are computed using a cut-off value on the Mahalanobis distances:

ui =

{
1 if (xi −mMCD)tS−1

MCD(xi −mMCD) ≤ χ2
p,α

0 otherwise

Then the reweighted minimum covariance determinant estimators (RMCD) are defined
by

mRMCD =

∑n
i=1 uixi∑n
i=1 ui

andSRMCD = dp

∑n
i=1 ui(xi −mRMCD)(xi −mRMCD)t

∑n
i=1 ui

with dp the consistency factor at multivariate normal. The RMCD estimators inherit the
breakdown point of the MCD estimators. The RMCD estimators are standard imple-
mented in S-Plus as the ”cov.mcd” function withα = 0.025.

8.2 FAST-MCD algorithm

We report here the FAST-MCD algorithm as described in (Rousseeuw and van Driessen,
1999). We shall need this description in the next sections when we’ll adapt the algorithm
to sampling weights and missing values. In this algorithm a C-step is like a BACON-step
but with the number of point in the subset fixed: if you have a subset ofk observations,
compute the Mahalanobis distances of all the points in the set using the mean and covari-
ance matrix based only on the subset and select a new subset of sizek corresponding to
thek smallest obtained Mahalanobis distances.

1. By default seth = (n + p + 1)/2 or let the user choose, report the breakdown point
of (n− h + 1)/n.
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2. If h = n return the usual mean and covariance matrix and stop.

3. If p = 1 compute the exact MCD using the algorithm given in (Rousseeuw and
Leroy, 1987), pages 171-172, then stop.

4. If n < 600 then

• repeat500 times:

– construct an initial subset of sizeh starting fromp + 1 randomly cho-
sen points then adding randomly one point at a time until the covariance
matrix of this subset is non-singular and finally selecting theh smallest
Mahalanobis distances based on these randomly chosen points,

– carry out two C-steps,

• among these500 subsets select the10 with lowest determinant of the covari-
ance matrix,

• apply C-steps until convergence to all these subsets,

• among these10 subsets select the one with lowest determinant of the covari-
ance matrix,

• report the meanm and covariance matrixS based on that subset and go to
point 7.

5. If 600 ≤ n < 1500 then

• construct as many disjoint random subsets as possible with all these subsets
being of sizensub ≥ 300 (or nsub+1), denote byk the number of these subsets
(i.e. 2 ≤ k ≤ 4),

• inside each subset repeat500/k times:

– construct an initial subset of sizehsub = nsubh/n as in point 4,

– carry out two C-steps, usingnsub andhsub,

– keep the10 subsets with lowest determinant of covariance matrix,

• from these10k subsets of sizehsub form 10k subsets of sizeh using the small-
est Mahalanobis distances,

• apply two C-steps to all these subsets,

• among these10k subsets select the10 with lowest determinant of the covari-
ance matrix

• apply C-steps until convergence to all these subsets,

• among these10 subsets select the one with lowest determinant of the covari-
ance matrix,

• report the meanm and covariance matrixS based on that subset and go to
point 7.
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6. If n ≥ 1500 select a random subset of sizen1 = 1499, then apply point 5 to that
subset withn1 andh1 = 1499h/n except that when the last10 subsets of sizeh1

are selected (fifth step) their sizes are extended toh using Mahalanobis distances
and the last steps are applied to the all dataset.

7. In order to obtain consistency under multivariate normal distribution set

mMCD = m and SMCD =
medi(MDm,S(xi))

χ2
p,0.5

S

8. To improve efficiency under normal distribution set finally

mRMCD =

∑n
i=1 uixi∑n
i=1 ui

andSRMCD =

∑n
i=1 ui(xi −mRMCD)(xi −mRMCD)t

∑n
i=1 ui

with

ui =

{
1 if MDmMCD,SMCD

(xi) ≤ χ2
p,0.025

0 otherwise

9 A nonparametric method

9.1 Introduction and motivation

As noticed in the introduction our first intention was to include diverse nonparametric or
semi-parametric approaches of outlier detection like data depth (Liu et al., 1999) in this
study but we had to renounce by lack of resources. Nevertheless we are proposing a new
non-parametric method for the detection of multivariate outliers, the Epidemic Algorithm
(Hulliger and B́eguin, 2001).

The idea of the Epidemic Algorithm (EA) is the following: We want to detect outliers in a
population ofn points inp-dimensional space. We start a simulated epidemic from a well
chosen point. The epidemic will spread through the population and eventually all points
will be infected. In this process the outliers should either not be infected or be infected
late due to their isolation. We use the infection time to judge on the outlyingness of a
point. In other words the epidemic defines a random mapping from the population into
the time axes which should give high values for outliers.

9.2 Distances, center and infection probability

The probability of transmission of the epidemic depends on the distance between obser-
vations and decreases with it. The transmissions are independent. The time is discrete.
An infected point can transmit the epidemic as long as the epidemic lasts.
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Denote the population withU . The points are described by the vector valued variable
xi ∈ IRp, (i = 1, ..., n). The distance between pointsi andj is the Euclidean distance:

dij = d(xi, xj) =‖xi − xj ‖2=

(
p∑

k=1

(xik − xjk)
2

)1/2

= ((xi − xj)
t(xi − xj))

1/2.

The matrix of these distances isD. To avoid unbalanced effects of the different variables,
their variances shall be standardized before calculating the distances, e.g. by

x̃ik =
xik −med(xik)

mad(xik)
.

Alternatively one may weight the contribution of each variable to the distance by the
inverse of a robust measure of scale:

dij = d(xi, xj) =

(
p∑

k=1

qk(xik − xjk)
2

)1/2

,

where e.g.qk = (mad(xik))
−2.

The starting point of the epidemic shall be the ”sample spatial median”c, namely the
sample point that has the characterizing minimal property of the usual spatial median:

c = {xi : wherei is such that
∑
j∈U

dij = min
k∈U

(∑
j∈U

dkj

)
} = arg min

i∈U

∑
j∈U

d(xi, xj).

Note that the sample spatial median is not necessarily close to the real spatial median.
E.g. for a uniform distribution on a circle the spatial median will be near the center and
the sample spatial median will be on the circle. However the sample spatial median will
be in the bulk of the data. Moreover as all the distancesdij will be needed anyway for the
Epidemic Algorithm, the computation ofssm is cheap.

Given a pointi that is infected, the probability that a non-infected pointj is infected byi
at any timet is

P [j|i] = h(dij) = P [i|j],
where the functionh is monotone decreasing for growingd and0 ≤ h(dij) ≤ 1. We write
hij = h(dij) for brevity. There are many possible choices for the transmission functionh.
Three examples are:

a) The step function

h(d) =

{
1 if d ≤ d0

0 if not

corresponding to a total infection in the ball with radiusd0 and no possible infection
outside this ball. This yields a deterministic epidemic or rather a minimum journey
with day-trips between points at maximal distanced0.
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b) A simple linear transmission function

h(d) =

{
(1− βd) if d ≤ 1

β

0 if not

This function becomes exactly0 at dij = 1/β and thus no transmission is possi-
ble beyond this distance. The parameterβ may be chosen in the following way.
Calculate the maximum distance to a nearest neighbord0 = max

i
{ min

j
{dij}}.

Thenβ = (1 − 1/n) min{d0, 2
√

p}. Thusβ is chosen such that the transmission
probability is1/n atd0 or at2

√
p if d0 is inflated by one or several single outliers.

c) The inverse power function:

h(d) = 1/(βd + 1)p.

We propose to chooseβ such thath(d0) = 1/(βd0 + 1)p = 1/n, i.e.β = (n1/p −
1)/d0.

d) The logistic function:

hij =
exp(α + βdij)

(1 + exp(α + βdij))

with α > 0 andβ < 0. The transmission probability is close to1 for dij = 0 and
= 0.5 atdij = −α/β. The slope at this latter distance isβ/4. We propose to choose
the parametersα andβ in such a way that the transmission probability is0.5 at the
median of the interpoint distances and1/n at the maximal distanced0.

In the following examples, the transmission function a) is used. The choice of the trans-
mission function and its parameters is crucial for the detection capability of the algorithm
and for its speed.

If a subsetI ⊂ U of points is infected at a certain time then the total infection probability
that an uninfected pointj is infected at the next step is

P [j|I] = 1−
∏
i∈I

(1− P [j|i]) = 1−
∏
i∈I

(1− hij).

Thus we do not have to simulate each infection from point to point but only from the set
of infected points to the each non-infected point.

9.3 The steps of the Epidemic Algorithm

Denote byIt the subset of all the points infected up to timet: It = {i : 0 < ti ≤ t}.
Denote the index of the sample spatial medianc with i(c).
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1. Set the infection time of all points to zero:tj := 0, ∀j ∈ U .

2. Set the time to one :t := 1. Choose the sample spatial medianc as
the starting point, i.e. set its infection time to one:ti(c) := 1 and thus
I1 = {i(c)}.

3. Increase the infection time by one:t := t + 1.

4. Calculate the total infection probabilityP [j|It−1] for all non-infected
pointsj 6∈ It−1 :

P [j|It−1] , ∀j 6∈ It−1.

5. Realise independent Bernoulli trials with success probabilityP [j|It−1] for
the pointsj /∈ It−1. A success means that the point is infected at timet
and its infection timetj is set tot: tj := t.

6. If |It| = n or t − max{ti : i ∈ It} > l then settmax = t and stop.
Otherwise go to step 3.

The algorithm stops if all points are infected or if no infection occurs during a period of
lengthl. The non-infected points will keep infection timetj = 0. The integer numberl is
chosen by the statistician. In the next Section it is set to10. Alternatively the choice ofl
may be guided by an upper bound on the probability of no infection inl trials: (1−h(d0))

l.
In the following we sometimes abbreviate Epidemic Algorithm to EA.

9.4 Computational complexity

In the beginning we have to calculate then(n − 1)/2 distances, each involvingp + 1
operations. We cannot speed up this part because we need all distances.

However, we can avoid the recalculation of the products involved in the total infection
probability because the setsIt are nested. For this we have to introduce a vector of prod-
uctsHj,t =

∏
i∈It

(1 − P [i|j]) for each time point and we have to change the Epidemic
Algorithm slightly:

In step 1) setHj,0 = 1 ∀j ∈ U .

In step 4) do the following for eachj /∈ It−1 : SetHj,t−1 := Hj,t−2

∏
i∈It−1\It−2

(1 − hij)

and calculate the total infection probabilityPr[j|It−1] = 1−Hj,t−1.

The point is of course that for computer implementation one needs to keep in memory
only one vectorH which is updated.

At each staget there arekt = |It−1| infected points and(n − kt) non infected points.
For each non infected point the total infection probability must be calculated. This in-
volves a product with(kt − kt−1) + 1 factors. Thus for the whole epidemic for each
observation at mostn + tmax multiplications are needed and at mosttmax experiments are
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needed. Therefore the order of complexity of the epidemic isn2. Together with the initial
distance calculation the epidemic is of complexityn2(p + 1). In other words the order
of complexity of the Epidemic algorithm is quadratic inn but only linear in the number
of dimensionsp!. The dimension of the space only affects the initial calculation of the
distances. Nevertheless for large populations the computation may be very slow.

9.5 Behavior of the Epidemic algorithm with normally distributed
data

To analyze the behavior of the algorithm in the absence of outliers several datasets were
simulated with a multivariate normal distribution inIRp, with mean at the origin and
covariance matrix equal toIp (identity matrix). The following table gives the total number
of infected points at each infection time for 10 different datasets withn ranging from 100
to 2000 andp from 2 to 100 (see Table 4).

Table 4: Infection times for multivariate normal distribution

Data n 100 100 500 500 1000 1000 1000 2000 2000 2000
sets p 2 10 10 20 10 20 50 20 50 100

1 1 1 1 1 1 1 1 1 1 1
2 13 15 53 81 78 79 75 199 96 136
3 52 61 369 435 715 665 516 1758 1027 1335
4 78 89 477 489 948 943 900 1981 1815 1887
5 89 95 490 495 980 965 950 1990 1909 1963
6 95 97 494 497 989 976 970 1996 1938 1975
7 97 97 494 498 992 987 980 1998 1952 1982
8 99 97 496 499 992 991 985 1962 1984

Infection 9 98 497 994 992 989 1972 1987
time 10 497 994 992 990 1976 1987
(t) 11 498 995 992 991 1977 1989

12 996 992 992 1982 1990
13 996 993 993 1984 1990
14 996 996 992 1985 1990
15 997 993 1988 1990
16 993 1990 1991
17 993 1990 1991
18 996 1990 1992
19 997 1991 1993
20 997 1991 1995

Largest inf. time 8 9 11 8 15 14 25 7 47 34
Non-infected 1 2 2 1 3 4 2 2 3 2
Comp. time 0.7 0.8 3.4 3.4 9.2 10.4 15.0 388.5 776.1 252.3

This table shows that under normal distribution the median infection time is always3 and
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that after time7 more than95% of the population has been infected in all cases for any
values ofn andp (the worst case occurred whenn = 100 where only97% is detected at
t = 7). We therefore uset = 7 as critical time under normal distribution. The number
of non-infected points does not seem to depend onn or p; in all simulations it has never
exceeded5. In contrast the length of the epidemic does vary very much, even if half of
the population has been infected after time3 in all cases! It seems that for a fixedn the
largest infection time increases withp. The three computing times forn = 2000 are not
too relevant because a large part of them is due to memory swapping.

9.6 Remarks

• The distance matrixD = (dij) contains all the necessary information on the popu-
lation. Thus if two point clouds have the same distance matrix the Epidemic Algo-
rithm should detect the same outliers apart from random variation. This is in order.
However, in a situation where the good observations follow a model like a multiple
regression the Epidemic Algorithm may be worse than an algorithm which builds
on this model (see the Stackloss data example in the next section).

• We may integrate ordinal categorical variables in the distance by introducing some
scale. For nominal categorical variables we may set the distance to 0 if the cat-
egories coincide and to 1 if not. Other possibilities exist for example with the
nomenclature of economic activities. There you may count the nodes you have to
pass in the classification tree for moving from one category to the next.

• An observation which is outlying in only one or two dimensions but an inlier in all
other dimensions may have an overall Mahalanobis distance which does not show
it as an outlier. This sort of outliers could be detected better with distances likeL∞
or L1 instead of the Euclidean distance.

• The infection process is a Markov process but it is not time homogeneous because
the infection probability changes over time. In fact for the infection probability of
a point at a certain time the whole history of the epidemic is important. And this
history depends on the spatial configuration of the points as it is reflected by the
distance matrix. The infection probability of a pointj when it is the only remaining
non-infected point, i.e.P [j|U\j] = 1 −∏

i6=j(1 − hij), gives no direct hint to its
infection time because the infection time ofj depends on which of the points in
U\j become infected at what time.

• Theoretically one could calculate the expected infection timeE[tj] by considering
all possible epidemics which lead to the infection of pointj. However, since the
number of possible epidemics is exponential inn this is not feasible in practice.

The Epidemic algorithm is computationally feasible. It is somewhat slower than the most
efficient algorithms. However its computing time does not grow exponentially with the
number of dimensions. It does not need any assumption on the data except that the good
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data is not divided into well separated clusters. No transformation is necessary to apply
EA. It is based on the intuitive notion of an outlier as an isolated point or group of points.
The starting point of a sample spatial median seems to be very fruitful.

The EA has connections to clustering algorithms and to nearest neighbor methods. How-
ever, by exploiting the dynamics of the epidemic, it takes into account local and global
properties at the same time.

The choice of the transmission function is crucial for the efficiency of the algorithm. Our
simple and first choice will have to become more sophisticated to be able to cope with all
types of masking problems.
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Part III

Application to real and synthetic
datasets
All the above selected methods were developed and tested on several datasets that are not
the ones chosen in EUREDIT for the evaluation phase. Most of them have been found in
the literature and were known to be somehow challenging for multivariate outlier detec-
tion. Some of them were created to test particular configurations (compact contamination,
non-elliptical data). In most articles where a new method is proposed, the authors usu-
ally present one particular dataset on which their method behaved relatively well. Our
goal here is to gather several of these datasets and compare the results of all the above
methods on all of them. The results are presented below, with cases of real and synthetic
datasets as well as symmetric and non-symmetric datasets. Conclusions are drawn in the
last subsection.

The results obtained by the methods using a robust Mahalanobis distance (SMP, BACON,
MSD and RMCD) will be illustrated by Q-Q plots of transforms of Mahalanobis distances
(MDi) using the following approximation for normal data :

Di = F−1(0.5, p, n− p)
MDi

median(MDi)
≈ fi = F−1(

i

n + 1
, p, n− p)

whereF−1(α, k, l) is theα-quantile of theF distribution withk andl degrees of freedom.
For the epidemic algorithm the infection times are plotted versus the indices of the obser-
vations. Points which are not infected are plotted with an infection time ofti = d1.2·tmaxe
instead ofti = 0 to show their outlyingness.

It is difficult to compare detection capabilities of different methods for real data sets be-
cause no ”gold method” tells us which are the ”true” outliers. What we do is to compare
the sets of points which are declared good and outlying by the different methods and even-
tually we will come up with a consensus measure to quantify the degree of coincidence a
particular method has with all the other competing methods.

All algorithms have been implemented in S-Plus 2000, on a PC with a 600 MHz Intel Pen-
tium Processor and 128 Mb RAM. TheS-language is not efficient for EA and MSD as
any use of loops should be avoided inS. Therefore one should not consider the compari-
son of computing times as totally relevant. Moreover memory problems were sometimes
encountered in particular with EA when dealing with then × n distance matrix: the 128
Mb RAM were not enough as soon asn = 2000 and the processor used virtual memory
on the hard disk making the computing time explode.

Let’s emphasize finally that parameters could vary according to the data in most of the
methods to get better results. As we are trying to develop some automatic editing proce-
dure we decided to fix once for all the parameters of the method throughout the tests. Of
course this decision is open to criticism but its justification is the fact that EUREDIT tries
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to develop methods that users could use without any specific statistical knowledge. Only
in one of the last examples we emphasized how important the parameters’ tuning can be.

Let’s recall the parameters used in the following:

SMP No parameter, version with median and mad as described in the preceding section.

BACON The version with a robust start, a starting subset of size3p and a signification
level of0.01 (see the preceding section).

MSD Huber’s weights are used. The number of projections is just reduced for high
dimension to avoid very long computations.

RMCD Standard implementation in SPlus with a50% breakdown point, reweighting
with a cut-off point withα = 0.025.

EA With a simple linear transmission function and a maximum transmission distance
automatically computed as described in the preceding section.

10 The Bushfire data

The first real dataset has38 observations in dimension5. It was used by Campbell in
1989 (Campbell, 1989) to locate bushfire scars. It contains satellite measurements on five
different frequency bands corresponding to each of38 pixels. It has the advantage of
having been well studied (Maronna and Yohai, 1995) and of allowing a two dimensional
plot (in variable2 and 3) that reveals almost all the outliers (see Chart 4). The data
contains an outlying cluster of observations32 to 38 and a few other outlying values32
and7 to 11, eventually also12 and13.

A classical multivariate analysis using the sample mean and covariance estimator would
not detect anything. Chart 6 shows that the results obtained from the three comparative
methods are quite similar. Table 5 gives the observations with the largestMDi in decreas-
ing order for the three methods. All of them detect the above mentioned outliers. MSD

Table 5: Highest Mahalanobis distances for the Bushfire data

SMP 38 37 36 35 34 33 9 8 32 7 10 11
BACON 38 35 37 33 34 36 32 9 8 10 11 7
MSD 9 8 7 32 38 10 37 35 36 34 33 11
MCD 33 35 34 38 37 36 32 9 8 31 10 11 7

does not consider the32 − 38 group as more outlying than the other outliers and MCD
detects also31 as an outlier. The EA applied to the Bushfire data did not infect any points
after timet = 6 (see Chart 7). Only non-infected observations will therefore be declared
as outliers, namely points7 to 11 and32 to 38. Clearly in that case all methods are equiv-
alent. Finally, due to the small size of the dataset all computing times are moderate : SMP
0.11s, BACON 0.08s, MSD 6.7s (500 projections), MCD 0.22s and Epidemic 0.40s.
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Chart 6: Di for SMP, BACON, MSD, RMCD for the Bushfire
dataset
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Chart 7: EA infection time on the Bushfire dataset
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11 The Ionosphere data

The second real dataset was taken from the UCI Machine Learning Database Repository
(Bay, 1999) and was suggested to us by Ricardo Maronna (Maronna and Zamar, 2001).
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This dataset was part of a study of the Ionosphere carried out by the Space Physics Group
of the Applied Physics Laboratory of the Johns Hopkins University (Sigillito et al., 1989).
Radar data were collected by a system in Goose Bay, Labrador. The targets were free
electrons in the ionosphere. ”Good” radar returns were those showing evidence of some
type of structure in the ionosphere. These good radar measurements form the dataset
which is studied here: there are225 observations in dimension32 (two variables with no
variance were eliminated).

The EA was run first and gave results shown on chart 8. Two observations were not in-

Chart 8: EA infection time on the Ionosphere dataset
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fected (62 and95) and10 others were infected after timet = 10. To compare these results
with the other methods, the Q-Q plots are given in Chart 9. Note here that according to
Maronna and Yohai MSD should have used about1.19∗1012 different directions which is
computationally unfeasible, therefore we restricted ourselves to5000. These plots show
that about60%(= 135 observations) of the data behave like normally distributed. The
picture for SMP differs from the other ones as SMP is the only estimator not based (by
selection or downweighting) on only this supposed normal part. Note that after timet = 3
the EA had infected134 observations! Clearly something is happening for the remaining
data. Choosing a value where to cut for outlyingness would require more knowledge of
the data.

To compare all the results we give two tables with the number of common points in the
”central part” of each method and in the ”extreme part” (see Table 6). The central part
of a method consists of the134 observations which are least outlying (lowestMDi or
infection time≤ 3) while the extreme part consists of the12 most outlying observations
(highestMDi or infection time> 10 or non-infected).

Amazingly SMP is the most consensual estimator for the central part sharing always more
than103 points (77%) with any other estimator. The four other methods seem to pair off:
MSD and RMCD share125 points (93%) of their central parts while BACON and EA
share119 points (89%). But the two pairs of methods seem to diverge somehow: for
example RMCD and EA only share80 points (59%) of their central parts. A possible
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Chart 9: Di for SMP, BACON, MSD and RMCD for Ionosphere
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explanation to that phenomena could be the ideas behind the methods: both MSD and
RMCD are based on geometrical ideas while both BACON and EA are based on growing
the good part of the data.

For the extreme part there is no consensus, but if we look closer at the Q-Q plots or the
infection times, SMP has five clear outliers (27, 62, 85, 95 and202), BACON has only
one (27), MSD has four (27, 62, 95 and96), MCD has also four (18, 27, 95 and96) and
EA has eight (27, 41, 56, 62, 95, 96, 182, 202). If all methods detected observation27,
BACON missed everything else. The other four methods detected also95, while two
other observations where only missed by one method:96 missed by SMP (but ranked
only one observation behind) and62 missed by RMCD (but ranked only two observations
behind). Observation202 was detected by both SMP and EA. Finally RMCD added18,
SMP added85 and EA added41, 56 and182. If we except BACON that probably fails
because of the total lack of normality of the data we see that only four observations appear
in all twelve most outlying points for all methods:27, 62, 95 and96 (all detected as more
outlying by MSD).

To give another way to see these results we introduce a new measure called a consensus
measure. For a fixed numberk, denote byX(k) the set ofk first outliers declared by
the methodX, X ∈ {SMP,BACON,MSD,RMCD,EA} and byall(k) the union with
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Table 6: Comparison of central and extreme parts for the Iono-
sphere data

Central part (134 points)
SMP BAC MSD RMCD EA

SMP 134 118 111 103 108
BAC 118 134 98 90 119
MSD 111 98 134 125 87

RMCD 103 90 125 134 80
EA 108 119 87 80 134

Extreme part (12 points)
SMP BAC MSD RMCD EA

SMP 12 2 7 7 7
BAC 2 12 2 2 2
MSD 7 2 12 9 7

RMCD 7 2 9 12 6
EA 7 2 7 6 12

repetition (i.e.{a; b} ∪ {a; c} = {a; a; b; c}) of the X(k)’s. Our consensus measure is
defined as:

cm(X, k) =
1

k

∑

x∈X(k)

#occurrences ofx in all(k)− 1

#methods− 1

In other wordscm(X, k) measure the average frequency that a given outlier inX(k) is
detected by another method. Note that if you have the above table,cm(X, k) is just the
average of the quotients of the non-diagonal elements of the line forX divided byk.
When all methods detects the same firstk outliers thencm(X, k) = 1 for all X and when
for a given methodX none of theX(k) is detected by another method thencm(X, k) =
0. Table 7 gives the values of thecm(X, 12) and confirm that for the Ionosphere data
BACON is very isolated and thatMSD is the most consensual.

Table 7: Consensus measures for the Ionosphere data

X SMP BACON MSD RMCD EA

cm(X,12) 0.48 0.17 0.52 0.5 0.46

The computing times diverge. SMP took 0.6s, BACON 0.41s, MSD 342s, MCD 22s and
EA took 2.1s. Note that even if our implementation of MSD is not optimized we can
see that when the dimension of the data grows, the computing time of MCD and MSD
grows too. This was expected as well as the fact that the computing time of EA is not
much affected by the growth of dimension (remember that the dimension appears in the
algorithm only in the distance computation). SMP and BACON remain by far the fastest
but in such a case with a large part of non-normal data BACON seems to fail to detect the
outliers.
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12 The Low Resolution Spectrometer (LRS) data

The third real dataset is also taken from the UCI Machine Learning Database Repository.
These data were gathered in the Infra-Red Astronomy Satellite (IRAS) project, that was
the first attempt to map the sky at infra-red wavelengths. It consists of531 high quality
spectra measured on93 different frequencies.

We encountered two problems when running the different algorithms. As the number of
points (531) is not important relatively to the dimension (93) of the data, BACON totally
failed to work out : all the considered subsets did have a singular covariance matrix and
therefore the algorithm was unable to compute Mahalanobis distances. Moreover, the
S-Plus function cov.mcd does not allow more than50 variables but as the LRS dataset
has already been analyzed using RMCD by Maronna and Zamar (Maronna and Zamar,
2001) we are just referring to these results for RMCD. MSD was run with2000 different
directions. We do not show the Q-Q plots of theDi’s or the infection times as they are
similar to the preceding ones except that this time the normally behaving part of the data
seems bigger. For example only8 observations were infected after time7 and only3
not infected with EA. As the other methods also had11 or 12 clear outliers, we give
the comparative table of the extreme part in Table 8. The results are here very similar.

Table 8: Comparison of the extreme parts for the LRS data

Extreme part (11 points)
SMP MSD RMCD EA

SMP 11 10 10 10
MSD 10 11 9 9

RMCD 10 9 11 9
EA 10 9 9 11

SMP is the most consensual method and eight observations are simultaneously detected
by all methods. The differences here are rather the measures of outlyingness given by
the methods. Table 9 lists the11 observations in decreasing order of their measure of
outlyingness.

Table 9: Most outlying observations for the LRS data

SMP 210 90 112 173 307 281 451 193 2 67 382
RMCD 210 173 112 90 307 2 281 193 451 67 370
MSD 307 382 210 281 280 90 173 112 2 67 451
EA 210 307 281 451 398 90 382 67 112 173 193

The consensus measures are here very high (see Table 10).
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Table 10: Consensus measures for the LRS data

X SMP MSD RMCD EA

cm(X,11) 0.91 0.85 0.85 0.85

The computing times diverge. SMP took 2.1s, MSD 398s, MCD 616s and EA took 5.7s.
With that dimension the computing time of MCD and MSD start to get very big while EA
is not much affected by the growth of dimension. SMP keeps performing fast and well.

13 The Restaurants data

As business surveys are often encountered in official statistics we felt that it was necessary
to include in these preliminary tests a dataset of such a kind. The problematic point of
such data is that they always need some transformation, usually some log transformation,
prior to any analysis and that they often do not have some nice elliptical or symmetric
distribution. The following dataset is a subsample of restaurants of the 1995 Swiss census
of the enterprises. The largest restaurants were removed for confidentiality reasons. As
we wished to present graphically the results only two variables were retained:emp will
denote the number of employees andturn the turnover of the restaurants. As usual a log
transformation is performed first. A scatter plot of the1271 observations is given in Chart
10.

Chart 10: Scatter plot of the restaurants data after a log transforma-
tion
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Such a picture is common in business surveys. No symmetry appears in the dataset and
therefore the methods needing that assumption will clearly have trouble to cope with that
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characteristic. Looking at the plot we could consider as potential outliers the restaurants
with a high number of employees or for the other ones with high or low turnover.

In that case the results obtained by all the methods using a Mahalanobis distance are so
close that there is no point to try to compare them. To illustrate that fact we gave some
consensus measures for these methods in Table 11.

Table 11: Consensus measures (without EA) for the restaurants

X SMP BACON MSD RMCD
cm(X,10) 1 1 1 1
cm(X,50) 0.97 0.97 0.97 0.97
cm(X,100) 0.94 0.96 0.94 0.96
cm(X,150) 0.98 0.98 0.96 0.98

Therefore we restrict our comparison between one of them (BACON) and EA. We gave
first the Q-Q plot of theDi for BACON and the infection history for EA (see Chart 11).

Chart 11: Di for BACON and infection times for the restaurants
dataset
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Looking at these charts we could consider that22 observations seem to be really outlying
for BACON while EA found23 observations with infection time greater than4. We
plotted the data with these outliers for BACON and EA (see Chart 12). As EA infected
only 75 observations after time3, we also plotted the75 most outlying points for both
methods (see Chart 13).

On these pictures we clearly see the difference between EA and the other methods. BA-
CON bases its measure of outlyingness using what should be the symmetric (elliptical)
part of the good data. Therefore here we clearly see that BACON does not detect as well
as EA the observations located in the direction of the main axis of the ellipsoid (high
emp and high turn) because these observations seem to fit the normal model sought by

59



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

Chart 12: Outliers for BACON (22) and EA (23) for the restaurants
dataset
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Chart 13: Outliers (75) for BACON and EA for the restaurants
dataset
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BACON. On the contrary EA doesn’t look for a model and therefore found very well the
observations that we considered as outliers when we first looked at the scatter plot.

The computing times here show clearly that EA is more affected by the number of obser-
vations than other methods. SMP took 0.6s, BACON 0.5s, MSD 2.1s, MCD 0.7s and EA
took 11s.

14 Dataset with high concentrated contamination

In (Rocke and Woodruff, 1996) Rocke and Woodruff made two observations: 1) it is
very hard to detect outliers in data with a contamination fraction of35% or higher; 2)
compactly spaced outliers are harder to find. To test the quality of the different methods
we combined here the two difficulties: we generated a dataset with500 observations in
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IR10 with observations1 to 300 that followed a multivariate normal distribution centered
at the origin with a covariance matrix set to10 ∗ I10 and two contaminations formed
by two other clouds centered at two randomly chosen points inIR10, one at distance70
(observations301 to 400) and the other at distance100 (observations401 to 500), both
with multivariate normal distribution with covariance matrix ofI10.

Here, as we know the indices of the outliers, the results of all methods are just plotted
with the Mahalanobis distance or the infection time versus the index (see Chart 14). We
restricted MSD to5000 projections.

Chart 14: MDi or infection time for SMP, BACON, MSD, RMCD, EA
for the dataset with concentrated contamination
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The results are very different:

SMP The more distant outlier cloud and some other good points were detected with high
Mahalanobis distances, but the closest cloud was not.

BACON The detection is perfect even adding the distinction between the two clouds.
This is no surprise since BACON is designed to be perfect in such cases.

MSD Nothing is detected except good points. Of course here by changing the weighting
function the results could be totally different.
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MCD The 200 outliers got the smallest Mahalanobis distances and had no chance of
being detected. The Q-Q plot looks very strange but can only tell that there is a
problem...

EA The 200 outliers have not been infected and they are therefore perfectly detected.
Three other points are infected after time6 and are therefore suspicious. The algo-
rithm did not make any difference between the two clouds.

The computing times were the following: SMP took 0.18s, BACON 0.14s, MSD 140s,
MCD took 5.1s and EA 11s.

15 Other datasets

We have tried the methods on several other datasets found in the literature and consid-
ered as challenging for multivariate outlier detection. The methods tested here worked
perfectly well in most of the cases. Only with few data relative to the dimension some
methods failed to identify the outliers. We do not report in all details the tests, only the
references for the data, the computing times and the encountered problems are given.

The Hertzsprung-Russell data This dataset is given in (Rousseeuw and Leroy, 1987),
Table 3, Chapter 2. A scatter plot can be found on page 261. The dataset has47 points in
dimension2. All the methods found perfectly the 6 clear outliers with computing times:
SMP in 0.08s, BACON in 0.09s, MSD in 0.63s, RMCD in 0.15s and EA in 0.32s.

The Hawkins-Bradu-Kass data This dataset is given in (Rousseeuw and Leroy, 1987),
Table 9, Chapter 3. The dataset has75 points in dimension3 (we did not use the response
variable). All the methods found perfectly the 14 outliers with computing times: SMP in
0.14s, BACON in 0.17s, MSD in 1.36s, RMCD in 0.23s and EA in 0.45s.
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The Modified Wood Specific Gravity data This dataset is given in (Rousseeuw and
Leroy, 1987), Table 8, Chapter 6. The dataset has20 points in dimension5 (we did not
use the response variable). BACON (with a smaller starting subset, i.e.c = 2), MSD and
RMCD found perfectly the 4 artificial outliers with computing times: BACON in 0.5s,
MSD in 7s and RMCD in 0.18s. EA did not infect the four outliers but also four other
good points. BACON with the default starting subset of size3p and SMP did not detect
anything.

Remarks The last example shows that with very small datasets SMP, BACON and EA
might encounter some problems while the two methods based on geometric ideas are
performing relatively well.

In the cases of regression data robust multiple regression methods should rather be used
and in several cases the multivariate methods we present here will totally fail to detect the
regression outliers. Nevertheless we can always try to find the outliers in the explanatory
variables using the multivariate methods just simply by deleting the response variable as
we did in the two preceding examples. Sometimes the multivariate methods will also end
up with the right outliers in a regression context as in the well known next example.

The Stackloss data This dataset is well-known and can be found in several articles but
also in (Rousseeuw and Leroy, 1987), Table 1, Chapter 3. The dataset has21 points in
dimension4. Most analysts agree that observations1, 3, 4 and21 are outliers and some
of them add observation2. SMP, BACON, MSD and RMCD found the five outliers with
2 as the least outlying. EA was run several times, always found1, 2 and3 as outliers but
sometimes missed4 or 21 and sometimes added17. The computing times were: SMP in
0.09s, BACON in 0.06s, MSD in 2.8s, RMCD in 0.15s and EA in 0.4s.

The Philips data This dataset is an illuminating example to show how important the
parameters’ tuning can be. This dataset has been used by Rousseeuw and van Driessen
(Rousseeuw and van Driessen, 1999) to test their FAST-MCD. The analysis using RMCD
shows78 clear outliers (observations297, 298, 433 and some concentrated contamination
from 491 to 565) and some other suspicious points in 3.1s. SMP detects clearly297 and
298 as well as some other suspicious points (among them433) but totally fails to detect the
concentrated contamination of observations491 to 565. BACON with our default param-
eters detects638 outliers indicating that we have to take a much smaller significative level
than0.01. Actually with this level set to0.0001 BACON detects exactly the same outliers
as MCD in 0.66s (In fact with its original parameters BACON would have obtained these
results). MSD got the same results as SMP, missing the concentrated contamination. By
changing the weighting function we could of course improve the detection of closed con-
tamination of MSD but then of course we would also increase drastically the number of
good observations declared as outliers. EA with the default settings detects only three
points as clear outliers (175, 297 and298). The maximum transmission distance is then
d0 = 3.05. By settingd0 = 2.4 all the concentrated contamination also appears clearly as
outlying, nevertheless EA missed433.
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16 Conclusions

Let’s try to summarize the diverse advantages and disadvantages pointed out up to that
point.

SMP The behavior of SMP has been quite a good surprise. By construction it is very
fast in all cases and seems to get very satisfying results comparing to the other methods. It
has problems to deal with very small datasets and with close concentrated contamination.
No parameters are needed. It does need the assumption of symmetric data.

BACON BACON is very fast in all cases. It is the best method when the good part of
the data is normally distributed. It starts to behave strangely when an important part of
the data is not normal (Ionosphere data). It’s major problem is that it cannot work when
the number of observationsn is not large relatively to the dimensionp. It has problems
to deal with very small datasets. Some knowledge of the algorithm is needed for a good
parameters’ tuning. It does need the assumption of symmetric data.

MSD MSD is a relatively slow algorithm. It’s computing time explodes with the dimen-
sionp and therefore approximation using less projections has to be taken. The choice of
the weighting function decides the sensitivity to close outliers. It does need the assump-
tion of symmetric convex data.

RMCD RMCD is a relatively slow algorithm. It’s computing time explodes with the
dimensionp. It has major problems to deal with concentrated contamination. It does need
the assumption of symmetric data.

EA EA is a relatively slow algorithm. It’s computing time does not grow withp but
with n. It has problem to deal with very small datasets. The choice of the maximum
transmission distance is crucial. It compares very well with the other methods. It is the
only tested methods that work well with non-symmetric data.
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Part IV

Adaptation to sampling weights
All the methods developed in EUREDIT will have to be able to analyze data from sample
surveys. In consequence they should all take sampling weights into account. This section
is dedicated to the adaptation of the methods selected above to the sampling weights. We
shall keep the same notations throughout the section. The population will be denoted
by U and will haveN units numbered by1, 2, ..., N . We shall assume that the sample
s is drawn fromU according to a sample designp(s). The size ofs will be n and its
units labeled by1, 2, ..., n. This is a slight abuse of notation as the sample indices should
rather be written asi1, ..., in with ij ∈ {1, ..., N}. The first and second order inclusion
probabilities will be denoted byπi andπij. We shall assume that the weightswi given with
the data are just the sampling weightswi = 1/πi. If a quantity is measured on the sample
with valuesx1, ..., xn the classical Horvitz-Thompson estimator of the totalX =

∑N
i=1 xi

is then given byX̂HT =
∑n

i=1 wixi. If there is a more complex procedure behind the
weights, e.g. calibration, we simply assume that

∑n
i=1 wixi yields a good estimate of the

total
∑N

i=1 xi.

17 SMP

The adaptation of SMP to sampling weights will require some more sophisticated esti-
mation methods. We shall only give a general outline of the construction of the diverse
estimators. For more details on the estimators and the estimation of their variances the
reader should refer to (Deville, 1999).

17.1 Substitution estimators

We shall work in a measure space onIRp denoted byM containing at least all point
measures denoted byδx with x ∈ IRp (in the following we shall only deal with discrete
measures). A functionalT onM associates to every measureM ∈ M a real number
T (M). We shall work only with homogeneous functionals, i.e. those for which there ex-
ists someα = α(T ) ∈ IR+ such thatT (tM) = tαT (M). A set of real values{x1, ..., xN}
taken on the populationU defines a measureMU =

∑N
i=1 δxi

∈ M. Similarly the val-
ues{x1, ..., xn} taken on the samples with given sampling weightswi defines a measure
Ms =

∑n
i=1 wiδxi

∈M.

Definition With the above notations thesubstitution estimatorof some functional value
T (MU) is T (Ms).

In the case of a total this definition is nothing else than the classical expansion estima-
tor (π-estimator or Horvitz-Thompson estimator): the functional is defined byT (M) =
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∫
xdM(x). The value of the functional on the population distribution is the sought to-

tal T (MU) =
∑N

i=1 xi = X and therefore the substitution estimator isX̂ = T (Ms) =∑n
i=1 wixi. Several estimators cannot be directly defined as a functional value but are

actually solution of an implicite functional equation (maximum likelihood estimators for
example). Generally the estimating equation can be written asT (MU , λ) = 0 where this
time the functional has a real parameterλ. This equation is supposed to have a unique
solution forMU fixed. In that case the substitution estimator ofλ is the solution of the
equationT (Ms, λ̂) = 0.

Even if we shall not estimate the variance of our estimators in this report, let us note here
that a tool developed in the field of robustness becomes a very powerful tool in estimation
theory for variance computation. Actually the influence function of a functional defined
here asIT (M, x) = lim

t→0

1
t
(T (M + tδx)− T (M)) can define a linearized version of the

substitution estimate and therefore can be used to compute the variance of the estimate
using classical formulas. The variance of all the estimators we shall use here can be
computed this way, see (Deville, 1999).

Substitution estimators will be used here to adapt SMP to sampling weights. In fact as
SMP uses the Spearman Rank correlation we do need an estimation of the ranks in the
population to be able to compute the estimator. An easy way to estimate the ranks is to
express them as functionals and use substitution estimators. Similarly the median and
the mad will be expressed as solution of implicit functional equation and the substitution
estimators are nothing else than the classical weighted median and mad.

As usual denote by{x1, ..., xN} and{y1, ..., yN} the values of two quantities measured on
the population and by{x1, ..., xn} and{y1, ..., yn} the values in the sample (xi, yj ∈ IR).
Define the two following functionals

Ri(M) =

∫
1lx≤xi

(x)dM(x)− 1

2

∫
δxi

(x)dM(x) +
1

2

and

Qj(M) =

∫
1lx≤yj

(x)dM(x)− 1

2

∫
δyj

(x)dM(x) +
1

2
.

The two functionals evaluated on the two population measures given by thexi’s and the
yi’s are nothing else than the ranks in the population:

Ri(M
x
U) =

N∑

k=1

1lx≤xi
(xk)− 1

2

N∑

k=1

δxi
(xk) +

1

2
= Ri

and

Qj(M
y
U) =

N∑

k=1

1ly≤yj
(yk)− 1

2

N∑

k=1

δyj
(yk) +

1

2
= Qj

whereRi (resp.Qj) is the rank ofxi (resp.yj) in the whole population values. Note that
in the literature the formula for the ranks is often simply given as

∑N
k=1 1lx≤xi

(xk). The
formula we proposed here is slightly more complicated but has two advantages. Firstly
the formula is exact when some values are tied giving in that case the mean rank of these
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values (when no equality appears it reduces to the usual formula) and secondly when we
shall look at the estimation this formula gives a better estimation in particular with very
large weights. The substitution estimators are

R̂i = Ri(M
x
s ) =

n∑

k=1

1lx≤xi
(xk)wk− 1

2

n∑

k=1

δxi
(xk)wk +

1

2
=

∑
1≤k≤n
xk<xi

wk +
1

2

∑
1≤k≤n
xk=xi

wk +
1

2

and

Q̂j = Qj(M
y
s ) =

n∑

k=1

1ly≤yj
(yk)wk−1

2

n∑

k=1

δyj
(yk)wk+

1

2
=

∑
1≤k≤n
yk<yj

wk+
1

2

∑
1≤k≤n
xk=xj

wk+
1

2
.

Using these estimated ranks we are now in a position to calculate the Spearman Rank
correlation. Recall that by definition

R(x, y) =

∑N
i=1(Ri −Ri)(Qi −Qi)√∑N

i=1(Ri −Ri)2
∑N

i=1(Qi −Qi)
2

.

Using the relations
∑N

i=1 Ri =
∑N

i=1 i = N(N + 1)/2 and
∑N

i=1 R2
i =

∑N
i=1 i2 =

N(N + 1)(2N + 1)/6 it reduces to

R(x, y) =
12

N(N2 − 1)

N∑
i=1

RiQi − 3
N + 1

N − 1
∼= 12

N3

N∑
i=1

RiQi − 3.

WhenN is large the last approximation is accurate. SettingN(M) =
∫

dM we define
the functional

R(M) =
12

N3(M)

∫
Ri(M)Qi(M)dM − 3

which satisfyR(MU) = R(x, y) and we obtain the estimator

R̂(x, y) = R(Ms) =
12

N3(Ms)

∫
Ri(Ms)Qi(Ms)dMs−3 =

12

(
∑n

i=1 wi)3

n∑
i=1

wiR̂iQ̂i−3.

Note that by using the functional form ofR we actually have double integrals involved in
this formula. But this is straightforward once the functional form is used. Inserting the
above formula for̂Ri andQ̂i we have finally

R̂(x, y) =
12

(
∑n

i=1 wi)3

n∑
i=1

wi




∑
1≤k≤n
xk<xi

wk +
1

2

∑
1≤k≤n
xk=xi

wk +
1

2




·




∑
1≤k≤n
yk<yj

wk +
1

2

∑
1≤k≤n
xk=xj

wk +
1

2


− 3.
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Note that we have used the fact that the mean and variance of the ranks are known on the
population to simplify the correlation formula. We might obtain a more efficient estimator
if we estimate these quantities using the sample values. Finally let us underline the fact
that we have no guarantee that the value of our estimator is between−1 and1 but in such
a case we would clearly set the value to−1 or 1.

To end the adaptation of SMP to sampling weights we still have to estimate the median
and mad for univariate data. In the above context this is done very easily. Define the
functionalT (M, λ) = 1

M(IR)

∫
1lx≤λ(x)dM(x). Then the median of the population data is

the solution of the functional equationT (MU , λ) = 0.5 and therefore its estimator is the

solution ofT (Ms, λ̂) = 0.5, i.e.

(∑
1≤k≤n
xk≤λ

wk

)
= 0.5 · ∑1≤k≤n wk. Now in general

this equation does not have a solution. Different approximations can be used, the one we
choose is defined as follows. Letxj be the smallest value such that




∑
1≤k≤n
xk≤xj

wk


 ≥ 0.5 ·

∑

1≤k≤n

wk,

and letxl be the smallest value such that



∑
1≤k≤n
xk≤xl

wk


 > 0.5 ·

∑

1≤k≤n

wk,

then the weighted median is defined as

m̂ed(x) = weighted.med(x, w) =





xj if xj = xl

wjxj+wlxl

wj+wl
if xj < xl

.

As the mad is defined using medians only, its estimation follows in the same way.

18 BACON

The adaptation of the BACON algorithm is almost straightforward. The initial subset is
selected the same way except that the usual median is replaced by its estimate defined
in the preceding section 17, namely the weighted median. For the main iterations of the
algorithm the mean and covariance matrix of the population are estimated each time by
mG andSG and the observations are ranked using this estimation. We only have to follow
the same scheme except that we shall work in the sample. Suppose that we randomly
chosek element of the samples. We can estimate the mean and the covariance matrix
of the population with the H́ajek estimator using the fact that the probability that the
observationxi appears in this subsetG of the samples is simply given bỹπi = kπi/n =
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k/(win). The estimates are therefore

mG =

∑
i∈G π̃−1

i xi∑
i∈G π̃−1

i

=

∑
i∈G wixi∑
i∈G wi

and

SG =

∑
i∈sG

π̃−1
i (xi −mG)(xi −mG)t

∑
i∈G π̃−1

i

=

∑
i∈G wi(xi −mG)(xi −mG)t

∑
i∈G wi

.

Finally we have to determine the correction factors used to do the selection of Step 3 of
the algorithm. The first factorchr measures the correction if the sizer of the part on which
we made the estimation is smaller than ”half” of the observationsh = d(N + p + 1)/2e.
As r (resp. h) can be estimated using the Horvitz-Thompson estimatorr̂ =

∑
i∈G wi

(resp.ĥ = (
∑

i∈s wi + p + 1)/2) we may estimate this correction and use

ĉhr = max

{
0,

∑
i∈s wi + p + 1− 2

∑
i∈G wi∑

i∈s wi + p + 1 + 2
∑

i∈G wi

}

instead ofchr. In the same way we use the estimate

ĉNp = 1 +
p + 1∑

i∈s wi − p
+

2∑
i∈s wi − 1− 3p

instead ofcNp to take into consideration the size ofp proportionally to the size of the
population.

19 MSD

In (Franklin et al., 2000) a comparaison of the effects of multivariate outlier detection
using MSD with and without considering sampling weights is made. The approach chosen
by Franklin et al. will not be followed here: to avoid burdensome reprogramming they
decided simply to multiply each observation by its sampling weights and then to apply the
algorithm. It didn’t seem to us that we could find a theoretical justification to that scheme.

We propose to make the following adaptations to the algorithm given in 7.1. The pro-
jections are unchanged but the computation of the weights for a given one-dimensional
projection need the value of the median and the mad for the whole population. We replace
here these two values by their estimate obtained using the estimators defined in the pre-
ceding section, namely the weighted median and the weighted mad. With this correction
Points 1 to 5 of the algorithm remain the same. Finally Point 6 and the final estimation
are obtained using the usual estimates of the mean and covariance matrix of the popula-
tion computed with robustness weights. We shall do the same just by replacing the usual
estimators by the H́ajek estimators, i.e. using the following estimates:

mMSD =

∑n
i=1 uiwixi∑n
i=1 uiwi

andSMSD =

∑n
i=1 uiwi(xi −mMSD)(xi −mMSD)t

∑n
i=1 uiwi
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20 RMCD

The adaptation of the FAST-MCD algorithm described in section 8 is also straightforward.
As in BACON the C-steps use computations of the meanmK and covariance matrixSK

of a subsetK ⊂ U to rank all the observations according to the Mahalanobis distance. In
each step the idea is that the mean and covariance matrix of the population are estimated
by mK andSK and the observations are ranked using this estimation. We only have to
follow the same scheme except that we shall use the sample. Suppose that we randomly
chosek element of the samples. We can estimate the mean and the covariance matrix
of the population with the H́ajek estimator using the fact that the probability that the
observationxi appears in this subsetsk of the samples is simply given bỹπi = kπi/n =
k/(win). The estimates are therefore

mk =

∑
i∈sk

π̃−1
i xi∑

i∈sk
π̃−1

i

=

∑
i∈sk

wixi∑
i∈sk

wi

and

Sk =

∑
i∈sk

π̃−1
i (xi −mk)(xi −mk)

t

∑
i∈sk

π̃−1
i

=

∑
i∈sk

wi(xi −mk)(xi −mk)
t

∑
i∈sk

wi

.

In the caseh = n (point 2 of the algorithm) the H́ajek estimatesmh andSh are returned.
In the casep = 1, the same arguments give a clear adaptation of the algorithm given in
(Rousseeuw and Leroy, 1987) replacing then − h + 1 means by their H́ajek estimates
and the sum of squares by the Hájek estimate of the corresponding variances. With these
corrections the structure of Points 1 to 6 of the algorithm remains unchanged. Note here
thath = (n + p + 1)/2 is computed using the sample sizen and therefore the breakdown
point is expressed according to the proportion of outliers in the sample and not in the
population. Once the subsetsh is chosen the H́ajek estimatesmh andSh are used and
points 7 and 8 become:

7. In order to obtain consistency under multivariate normal distribution set

mMCD = mh and SMCD =
weighted.medi(MDmh,Sh

(xi))

χ2
p,0.5

Sh

where theweighted.med denotes the weighted median defined in 17.

8. To improve efficiency under normal distribution set finally

mRMCD =

∑n
i=1 uiwixi∑n
i=1 uiwi

andSRMCD =

∑n
i=1 uiwi(xi −mRMCD)(xi −mRMCD)t

∑n
i=1 uiwi

with

ui =

{
1 if MDmMCD,SMCD

(xi) ≤ χ2
p,0.975

0 otherwise
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21 EA

As usual we assume that a samples of sizen is drawn from the populationU of sizeN
according to the sample designp(s). The first and second order inclusion probabilities
are denotedπi andπij. We assume that the sampling and the epidemic are independent.

The initial standardization of the data, designed to avoid unbalanced effect of the dif-
ferent variables, should be done using the median and mad computed on the population
data. We therefore estimate these quantities using the sample data with the weighted.med
(defined in 17) and the weighted.mad (defined as the mad replacing the median by the
weighted.median), i.e

x̃jk =
xjk − weighted.medi∈s(xik, wi)

weighted.madi∈s(xik, wi)
.

To determine the starting point of the epidemic according to the algorithm we should
use the population spatial medianc = arg min

i

∑
j∈U d(xi, xj). As the sum over the

population is not known we use its Horvitz-Thompson estimate and therefore our starting
point will be

c = arg min
i

∑
j∈s

wjd(xi, xj).

Denote byIU,t the set of infected points in the populationU at timet. The setIU,t is a
domain. Its intersection with the samples is Is,t = s ∩ IU,t the set of infected points
in the sample. What we actually observe isIs,t. In order to infer on the infection in the
population, we have to estimate the infection probabilitiesP [j|IU,t] = 1 − ∏

i∈IU,t
(1 −

hij) , ∀j ∈ s \ Is,t. Thus we have to estimate the product
∏

i∈IU,t
(1 − hij) from the

sample and from knowingIs,t. Taking the log of this estimand we can see that we have to
estimate the exponential of

∑
IU,t

log(1−hij). This sum can be estimated by the Horvitz-
Thompson estimator ∑

Is,t

1

πij

log(1− hij).

Exponentiation of this unbiased and consistent estimator leads to a consistent estimator
of the product. Thus the estimator of the transmission probability becomes

P̂ [j|IU,t] = 1−
∏

i∈Is,t

(1− hij)
1/πij .

In theory the problem is solved: We use these transmission probabilities for the epidemic
in the sample. Since the transmission probabilities estimate the transmission probabilities
of the population infection, the infection times will estimate the corresponding infection
times in the population.

In practice we seldom have the second order inclusion probabilitiesπij at hand. Often we
just have for each point a sampling weightwi, which is approximately the inverse1/πi

of the inclusion probabilities. We propose to use the approximations1/πij ≈ 1/(πiπj) ≈
wiwj. The first approximation holds exactly for simple random sampling with replace-
ment and for Poisson Sampling. It holds approximately for large samples, where the
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dependence of inclusion between elements usually is small. This leads to the following
estimator of the population infection probability

P̂ [j|IU,t] = 1−
∏

i∈Is,t

(1− hij)
wiwj .

A more heuristic approach assumes that at the same place as the sampled pointi there
arewi points of the population which are infected and transmit the infection at the same
time as the sampled point. In other words we assume an immediate transmission if the
distance is zero. Thus one would havewi points which are already infected and instead
of one candidate atxj to be infected there arewj of them. The transmission probability
becomes1−∏

i∈IS,t
(1− hij)

wiwj , exactly as above.

We may standardize the weights to sum ton to obtain an infection probability which
compares better with an epidemic in the sample alone. This may also help in the choice
of the maximal infection distanced0.

Another heuristic approach compares the density in the population with the density in the
sample. The density is decreased by a factor which corresponds to the sampling fraction
for simple random sampling. In the same way the average distance decreases by the
sampling fraction. Thus an approach for accounting for sampling would be to transform
the interpoint distancedij to d′ij = 2dij/(wi +wj). This would correct the distance by the
average sampling rate at pointsi andj.
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Part V

Adaptation to missing values
In this part we approach one of the critical problem encountered with real data: the miss-
ing values. In survey data we can distinguish two kinds of non-response that lead to
missing values in a dataset. In fact not all units in the sample respond to all the study
variables; some co-operate with the survey, but fail to supply answers to some question -
we talk aboutitem non-response- and others do not co-operate at all -unit non-response.

Different sampling techniques exist to deal with unit non-response. The methods devel-
oped here will not cope with that kind of non-response, it will always be assumed that
the unit non-response has been taken into account by sampling techniques and that the
sampling weights have been corrected according to unit non-response. All units that have
all items missing will therefore be removed from the dataset.

Most of the edit methods that deal with item non-response do need strong assumptions
on the missingness mechanism. That will also be the case here even if we still have to
study further two methods to see if the hypothesis could be weakened. The first section
will fix the notations and definitions for the missingness mechanism, while the next three
sections will present the proposed solutions for three methods, each of them retaining the
philosophy of the initial method: SMP will be adapted using simple imputations based on
bivariate statistics, BACON will use a method designed to estimate a covariance matrix for
incomplete multivariate normal data (BACON is best designed for this framework) and
EA will simply compute distances using the available coordinates and correcting them
with a proportionality factor to calibrate for the fraction of missing information. We did
renounce to go further with the other two methods developed in the preceding parts. The
projections in MSD couldn’t be applied without some previous imputation of the missing
data and we were not willing to merge together the edit and imputation phases at that
point. Regarding MCD, an algorithm was developed in (Cheng and Victoria-Feser, 2000)
using MCD at each step of the ER algoritm (Little and Smith, 1987) which combines
the EM algorithm and and M-estimator. However this algorithm was not designed for
survey data and we were lacking ressources to make the adaptation to sampling weights.
Finally a very short exploration of that algorithm seems to show that it could have some
difficulties to treat large size datasets.

22 Missingness mechanisms

The notions and notations for this section are largely taken from (Schafer, 2000). To
make the following text readable we shall use the following abuse of notation:X will
denote simultaneously a p-dimensional random variable (we shall always refer to the
”variable X”) and theN × p matrix containing the realized values of the variableX
of the populationU . The variableX follows a p-dimensional probability model with
parametersθ. If a census was taken of the whole population to measure the variableX
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it would result in some observed and missing valuesX = Xo ∪ Xm. We shall model
this behavior by a zero-one response variableR with the same abuse of notation:R also
denotes theN × p matrix containing the values of the variableR on the populationU ,

i.e. rij =

{
1 if xij is given,

0 if xij is missing.

The parameters of the missingness mechanism will be denoted byξ. We would not in
general expect the distribution of the variableR to be unrelated to the variableX, so
we posit a probability modelP (R|X, ξ). We shall always assume that the parametersθ
of the data model and the parametersξ are distinct. In most methods the assumption is
that the missing data are ”missing at random” (MAR) or ”missing completely at random”
(MCAR). The reader should be aware that the definition of MAR may vary depending on
the context and the author, while the definition of MCAR is standard. We shall use the
definition given in (Rubin, 1976) and used in (Schafer, 2000).

Definition 2 The missing data are MAR if the distribution ofR does not depend onXm,
i.e.

P (R|Xo, Xm, ξ) = P (R|Xo, ξ).

If both MAR and the distinctness of the parametersθ and ξ hold, then the missing-data
mechanism is said to be ignorable.

Definition 3 The missing data are MCAR if the distribution ofR does not depend onX,
i.e.

P (R|X, ξ) = P (R|ξ).
MCAR is a particular case of MAR, occuring for example when the missing data are a
simple random sample of all data.

As the methods will use the survey data and not the population data we shall need an
assumption on the relation between the missingness and the sampling mechanisms. If we
denote byS the sampling variable, we shall always assume thatS andR are independent
variables : in other words we suppose that the missingness patterns do not depend on the
sample: one unitxi of the population would have the same observed and missing items
regardless of the sample. Ifs is the sample obtained as a realization ofS we shall simply
useXs

o (resp.Xs
m) to denote the observed (resp.missing) values of the survey data.

23 SMP

Almost every step of the SMP method is perturbed by missing values. We shall assume
here that the data are MCAR; a more careful study should be carried out to see if this
hypothesis can be weakened. Two different kinds of problems are encountered: the com-
putation of univariate or bivariate statistics (σ̃ andR) and the projection of the observa-
tions onto the new basisB. The first issue is solved just by restriction to the observed
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cases. The second issue could be avoided by using another way of transforming the ma-
trix S̃1 into a definite positive matrix. But we prefer our transformation, which has some
statistical interpretation, to a purely algebraic transformation. We propose a solution that
keeps the ”robust bivariate” spirit of SMP. A missing item in an observation is imputed by
a robust regression using another observed variable selected by the robust bivariate rank
correlations. This imputation is then used to obtain the coordinates of the data in the new
basis and the end of the algorithm remains unchanged. The final measure of outlyingness
is the Mahalanobis distances computed on the observations without the imputed values.
All the details are given by going through the algorithm step by step. The notations of
Section 5.2 remain unchanged.

(i) The univariate statistics̃σ of xl is computed on thei’s such thatril = 1. For
our choice ofσ̃ we therefore have to define how the estimation of the median is
computed.

Let xil be the smallest value ofxl such thatril = 1 and
∑

1≤k≤n
rkl=1

xkl≤xil

wk ≥ 0.5 ·
∑

1≤k≤n
rkl=1

wk.

and letxjl be the smallest value ofxl such thatrjl = 1 and

∑
1≤k≤n
rkl=1

xkl≤xjl

wk > 0.5 ·
∑

1≤k≤n
rkl=1

wk,

the estimation of the median is given by

m̂ed(xl, w) =





xil if xil = xjl

wixil+wjxjl

wi+wj
if xil < xjl

.

As the mad is defined using medians only, its estimation follows in the same way.
For the Spearman Rank correlation we restrict all the computations to the common
observed values of two variables. Using the formula developed in 17.1 we obtain

R̂(xl, xm) =
12

(
∑

1≤i≤n
rilrim=1

wi)3

∑
1≤i≤n

rilrim=1

wi




∑
1≤k≤n
rkl=1

xkl<xil

wk +
1

2

∑
1≤k≤n
rkl=1

xkl=xil

wk +
1

2




·




∑
1≤k≤n
rkm=1

xkm<xim

wk +
1

2

∑
1≤k≤n
rkm=1

xkm=xim

wk +
1

2


− 3,
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if {i : rilrim = 1} 6= ∅. If there is no common observed variable betweenxl and
xm then a warning is sent to the user and the correlation rank is set to zero

R̂(xl, xm) = 0 if {i : rilrim = 1} = ∅.

The sizes of the set on which the correlations are computed are kept in the variable

clm =
n∑

i=1

rilrim.

(ii) The second step contains the projection problem. The computation of the new basis
B is straightforward but the matrix productXB corresponding to the change of
basis is impossible as soon as one item is missing. We use imputation by fitting
a value using a robust regression. We set the following ”quality” condition for a
variablexk to be a regressor for a variablexj:

cjk =
n∑

i=1

rijrik > γn for some parameter0 < γ < 1.

For each variablexj the algorithm will impute a value for a missing valuexij (rij =
0) with a robust fit using the variable which has the highestR̃(xk, xj) among the
variablesxk satisfying the ”quality” condition andrik = 1. The following pseudo-
code describes this imputation process.

- for all variables xj having missing values (
∑n

i=1 rij < n) do
- select the m ( 0 ≤ m ≤ p− 1) variables xk such that cjk > γn;
- if m = 0 next;
- rank these variables according to R̃(xk, xj):

R̃(xk1 , xj) ≥ R̃(xk2 , xj) ≥ ... ≥ R̃(xkm , xj);
- reg = 1;
- while (

∑n
i=1 rij < n) and reg ≤ m do

- if
∑n

i=1(1− rij)rikreg > 0 fit a robust regression of xj on
xkreg and impute all xij where (1− rij)rikreg = 1 with the
robust fit plus a randomly chosen residual error;

- reg = reg + 1 ;
- next;

- next;
- if some missing values are left ask the user to relax his quality

condition or to exit.

Once all missing values have been imputed all the computations of the step can be
performed.

(iii) Unchanged.

Remarks:

1) All regressions are fitted with the initial data, no imputed values are included in
these computations.
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2) In our implementation we use an M-estimator for regression which bounds the in-
fluence of residuals and of the explanatory variablexk.

The detection is performed using Mahalanobis distance only on the initial data.

23.1 Mahalanobis distances

Once estimations of the meañm and covariance matrix̃S are available the estimation of
the full Mahalanobis distance of an observationxi = (xi)o ∪ (xi)m is based on the partial
Mahalanobis distance computed on the componentsoi of (xi)o and inflated by a factor
inversely proportional to the proportion of observed values|oi|

p
, i.e.

MD2
M,S(xi) =

p

|oi|((xi)o −Moi
)t(S−1)oi

((xi)o −Moi
),

whereMoi
is the orthogonal projection ofM to the subspace defined byoi and(S−1)oi

is the restriction to that subspace of the quadratic form given byS−1. Using the response
variableR, this can be rewritten as

MD2
M,S(xi) =

p∑p
j=1 rij

(xi −M)tdiag(ri)S
−1diag(ri)(xi −M),

wherediag(ri) is the diagonal matrix with diagonalri, theith line of R corresponding to
xi.

24 BACON

The ”growing a good subset of observations” principle is not disrupted by item non-
response as long as the measure that is used to grow the subset at each step is available. In
BACON this measure is given by Mahalanobis distances based on the Hàjek estimators
of the mean and covariance matrix computed on the subset. The missing values will
interfere with the three computations: the estimation of the mean, the estimation of the
covariance matrix and the computation of the Mahalanobis distances using the other two.
One problem - the Mahalanobis distances - is easily solved while the other two - the
mean and the covariance matrix - are more delicate to deal with. The solution to the first
problem has been presented in the preceeding section 23.1. For the other two problems we
had to select estimators of the mean and the covariance matrix computable with missing
values. We choose a method that is known to work well for multivariate normal data
when applied to the whole population: the EM algorithm. In the second subsection we
shall describe how we adapted the EM-algorithm to survey data to obtain EM estimators
of the variance and covariance matrix. The reason of the choice of this algorithm was
to maintain the efficiency of the BACON algorithm when applied to multivariate normal
data. The last subsection will describe how the BACON and EM algorithms were merged
together to create the ”BACON-EM for survey data” algorithm.
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24.1 EM estimators for survey data under multivariate normal
model

In this subsection we shall adapt the EM algorithm to the context of survey data. We shall
begin by stating general points on the algorithm. This summary will present briefly the
theory underlying the algorithm and some results for regular exponential families. All
details can be found in (Schafer, 2000).

24.1.1 Generalities on EM

Model assumptions In order to justify the different steps of the algorithm, some as-
sumptions on an underlying model of the population data are needed. We shall consider
population datasets whose observations can be modeled as independant, identically dis-
tributed (iid) draws from some multivariate probability distributionf(x, θ). The proba-
bility function of the complete data may therefore be written as

P (X|θ) =
N∏

i=1

f(xi, θ),

whereN is the size of the population. This is called the complete-data model. Recall
thatX denotes simultaneously the random variable and the matrix of the values and that
the same holds forR the response variable. In the following we shall assume that the
missingness mechanism is ignorable, i.e. MAR and distincness of the parametersθ of X
andξ of R.

The EM algorithm The ignorability assumption allows us to factor the distribution of
what we really observeP (R, Xo|θ, ξ) into two pieces:

P (R,Xo|θ, ξ) =

∫
P (R, X|θ, ξ)dXm

=

∫
P (R|X, ξ)P (X|θ)dXm

= P (R|Xo, ξ) ·
∫

P (X|θ)dXm

= P (R|Xo, ξ) · P (Xo|θ).
This factorization shows that likelihood-based inferences aboutθ can be performed with-
out regard to the missing-data mechanism. The factor pertaining toθ will be called the
observed data likelihood: L(θ|Xo) ∝ P (Xo|θ).
The distribution of the complete dataX can always be factored as

P (X|θ) = P (Xo|θ)P (Xm|Xo, θ).

Viewing each term as a function ofθ and taking the log, we obtain

l(θ|X) = l(θ|Xo) + log(P (Xm|Xo, θ)) + c,
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where l(θ|X) = log(P (X|θ)) is the complete-data loglikelihood,l(θ|Xo) =
log(L(θ|Xo)) is the observed-data likelihood andc is an arbitrary constant. The term
P (Xm|Xo, θ) is crucial and plays a central role in EM. It captures the interdepen-
dence betweenXm and θ on which EM capitalizes. As this predictive distribution
P (Xm|Xo, θ) cannot be calculated each expectation step (E-step) will take an average
overP (Xm|Xo, θ

(t)), whereθ(t) is a preliminary estimate of the unknown parameter, i.e.
if we set

Q(θ|θ(t)) =

∫
l(θ|X)P (Xm|Xo, θ

(t))dXm

and

H(θ|θ(t)) =

∫
log(P (Xm|Xo, θ))P (Xm|Xo, θ

(t))dXm

we then have
Q(θ|θ(t)) = l(θ|Xo) + H(θ|θ(t)) + c.

The maximization step (M-step) will find the maximumθ(t+1) of Q(θ|θ(t)). A central
result (Dempster et al., 1977) shows thatθ(t+1) is a better estimate thanθ(t) in the sense
thatl(θ(t+1)|Xo) ≥ l(θ(t)|Xo). The EM algorithm is then described as follows.

The EM algorithm Choose a starting valueθ0 of the parameter to be estimated, then
iterate the following steps until convergence up to some desired precision:

E-step Q(θ|θ(t)) is calculated by averaging the complete-data loglikelihoodl(θ|X) over
P (Xm|Xo, θ

(t));

M-step θ(t+1) is found by maximizingQ(θ|θ(t)).

Conditions under which this sequenceθ(t) converges to a stationary point of the observed-
data likelihood are provided in (Dempster et al., 1977). In well-behaved problems this
stationary point is a global maximum.

EM for regular exponential families EM uses the interdependence between missing
dataXm and the unknown parametersθ. The E-step uses the value ofθ(t) to fill in some-
how the missing data and the M-step uses these values to re-estimate the parameters and
obtainθ(t+1). If in most cases the M-step is straightforward (no computational difference
from finding the MLE in the complete-data case), the E-step can be a real burden. This
is not the case when the complete-data probability model falls in a regular exponential
family. For these families the complete data loglikelihood may be written as

l(θ|X) = η(θ)tT (X) + Ng(θ) + c,

whereη(θ) = (η1(θ), η2(θ), ..., ηk(θ))
t is the canonical form of the parameterθ and

T (X) = (T1(X), T2(X), ..., Tk(X))t is the vector of complete-data sufficient statistics.
Moreover, each of the sufficient statistics has an additive formTj(X) =

∑N
i=1 hj(xi),

for some functionhj. Becausel(θ|X) is a linear function of the sufficient statistics, the
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E-step replacesTj(X) by E(Tj(X)|Xo, θ
(t)). In other words the E-step fills in the miss-

ing portions of the complete-data sufficient statistics. In the case of multivariate normal
data, these expectations will be available in closed form and thus the E-step will also be
straightforward.

With these results we are now able to adapt the algorithm to survey data.

24.1.2 EM for survey data

Assumptions on the study population In order to adapt the EM algorithm to the con-
text of survey data, we need assumptions on the study populationU . We shall assume
that we have an underlying multivariate normal superpopulation model for the variable of
interest, i.e.

X ∼ N(θ) = N(µ, Σ).

Again X (resp. R) will denote simultaneously the random variable (resp. the response
variable) of the superpopulation and theN×p matrix containing the values of the variable
on the populationU . If we denote byS the sampling variable, we shall assume thatS
andR are independent variables. Ifs is the sample obtained as a realization ofS we shall
simply useXs

o (resp.Xs
m) to denote the observed (resp.missing) values of the survey data.

Our strategy is then termed as afull information maximum likelihood approach (Cham-
bers, 2001)by opposition to amaximum sample likelihoodapproach where the EM al-
gorithm would be run just by using the information contained inXs

o . Our idea is very
simple : every time the EM algorithm run on the whole population would need a quantity
T computed fromXo we shall estimate it bŷT usingXs

o .

The complete data case To establish the notational conventions of this section we shall
begin by looking at the complete data case for which we won’t need the EM algorithm
to estimateθ. Recall thatX (resp. Xs) denotes the population (resp. sample) data.
An element of the matrixX (resp. Xs) will be denoted byxij with i = 1, . . . , N and
j = 1, ..., p (resp.xs

ij with i = 1, ..., n andj = 1, ..., p). All vectors will be expressed as
column vectors, for example theith row ofX is

xi = (xi1, ..., xip)
t.

We assume thatx1,...,xN are independent realizations of the random variableX, i.e.

x1, ..., xN ∼ iid N(θ) = N(µ, Σ).

Discarding a proportionality constant the likelihood function is

L(θ|X) ∝ |Σ|−N
2 exp

{
−1

2

N∑
i=1

(xi − µ)tΣ−1(xi − µ)

}
.

Expanding the exponent and taking the logarithm we can write the loglikelihood function
as

l(θ|X) = −N

2
log |Σ| − N

2
µtΣ−1µ + µtΣ−1T1 − 1

2
tr(Σ−1T2)
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where

T1 = X t1N =
(∑N

i=1xi1, . . . ,
∑N

i=1xip

)t

=
N∑

i=1

(xi1, . . . , xip)

and

T2 = X tX =




∑N
i=1 x2

i1

∑N
i=1 xi1xi2 · · · ∑N

i=1 xi1xip∑N
i=1 xi2xi1

∑N
i=1 x2

i2 · · · ∑N
i=1 xi2xip

...
...

. ..
...∑N

i=1 xipxi1

∑N
i=1 xipxi2 · · · ∑N

i=1 x2
ip




=
N∑

i=1




x2
i1 xi1xi2 · · · xi1xip

xi2xi1 x2
i2 · · · xi2xip

...
...

. . .
...

xipxi1 xipxi2 · · · x2
ip




are the sufficient statistics. As these statistics will be needed to find the MLE forθ, we
have to estimate them from survey dataXs if the population dataX is not available. The
Horvitz-Thompson estimates of both quantities are simply given by (recall thatωi are the
sampling weights)

T̂1 =
n∑

i=1

ωi(x
s
i1, . . . , x

s
ip)

and

T̂2 =
n∑

i=1

ωi




(xs
i1)

2 xs
i1x

s
i2 · · · xs

i1x
s
ip

xs
i2x

s
i1 (xs

i2)
2 · · · xs

i2x
s
ip

...
...

. ..
...

xs
ipx

s
i1 xs

ipx
s
i2 · · · (xs

ip)
2




In the complete data case we have seen that because the multivariate normal is a regular
exponential family and the loglikelihood function is linear in the elements ofT1 andT2

we can find the MLE by equating the realized values ofT1 andT2 to their expectations
E(T1) = Nµ andE(T2) = N(Σ + µµt). This leads to the well known MLE estimator of
θ = (µ, σ):

MLE(µ) =
1

N
T1

and

MLE(Σ) =
1

N
T2 −MLE(µ)MLE(µ)t

If N is known (i.e.Σn
i=1ωi = N ) we estimate these quantities by the classical Horvitz-

Thompson estimates

M̂LE(µ) =
1

N
T̂1
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and
̂MLE(Σ) =

1

N
T̂2 − M̂LE(µ)M̂LE(µ)

t

.

If N is not known the H́ajek estimator is used estimatingN by Σn
i=1ωi.

The incomplete data case - The EM algorithm We shall proceed in the same way to
adapt the EM algorithm to the survey data. We shall analyze the EM algorithm forX and
at each step where it is needed we shall use estimates based onXs. The presentation of
the EM algorithm given in (Schafer, 2000) is used here. We shall first give some matrix
tools that will simplify the description of the algorithm.

The sweep operator If a multivariate normal randomz vector distributed asN(µ, Σ) is
partitioned in two partszt = (zt

1, z
t
2) then thezi’s are distributed asN(µi, Σii) with

µ =

(
µ1

µ2

)
andΣ =

(
Σ11 Σ12

Σ21 Σ22

)
.

It is well knows that the conditional distribution ofz2|z1 is normal with momentsµ2·1 =
α2·1 + B2·1z1 and covariance matrixΣ2·1 where

α2·1 = µ2 − Σ21Σ
−1
11 µ1

B2·1 = Σ21Σ
−1
11

Σ2·1 = Σ22 − Σ21Σ
−1
11 Σ12

(4)

Now specifying the distribution ofz (parametrized byµ, Σ) is the same as specifying
the distribution ofz1 (parametrized byµ1, Σ1) and the conditional distribution ofz2|z1

(parametrized byµ2·1 = α2·1 +B2·1z1, Σ2·1). The transformation from the first parameters
to the second ones is therefore one-to-one with inverse given by

µ2 = α2·1 + B2·1µ1

Σ12 = Σ11B
t
2·1

Σ22 = Σ2·1 + B2·1Σ11B
t
2·1

(5)

Both transformations will play a crucial role in the realization of the EM algorithm and
the essential tool to implement it in an easy way is the sweep operator. This device was
first introduced by (Beaton, 1964) and is commonly used in linear model computations
and stepwise regression.

Definition 4 Let G be ap × p symmetric matrix with elementsgij, the sweep operator
SWP [k] (for 1 ≤ k ≤ p) replacesG by anotherp× p symmetricH = SWP [k]G matrix
with elements given by

hkk = −1/gkk

hjk = hkj = gjk/gkk for j 6= k

hjl = hlj = gjl − gjkgkl/gkk for j 6= k andl 6= k

After the application of the operatorSWP [k], the matrix is said to have been swept on
positionk.

82



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

It is convenient to define a reverse-sweep operator that returns a swept matrix to its origi-
nal form.

Definition 5 LetH be ap× p symmetric matrix with elementshij, the reverse-sweep op-
eratorRSW [k] (for 1 ≤ k ≤ p) replacesH by anotherp× p symmetricG = RSW [k]H
matrix with elements given by

gkk = −1/hkk

gjk = gkj = −hjk/hkk for j 6= k

gjl = glj = hjl − hjkhkl/hkk for j 6= k andl 6= k

By definition we have therefore

RSW [k]SWP [k]G = G = SWP [k]RSW [k]G.

Both operators are commutative, i.e.

SWP [k1]SWP [k2] = SWP [k2]SWP [k1],

RSW [k1]RSW [k2] = RSW [k2]RSW [k1].

Thus we can extend the notations to

SWP [k1]SWP [k2] · · ·SWP [kl] = SWP [k1, k2, . . . , kl],

RSW [k1]RSW [k2] · · ·RSW [kl] = RSW [k1, k2, . . . , kl].

Among several properties of these operators let us quote the following. IfG is partitioned
as

G =

(
G11 G12

G21 G22

)

with G11 ap1 × p1 matrix then the swept matrix on the firstp1 position is given by

SWP [1, 2, . . . , p1]G =

(
−G−1

11 G−1
11 G12

G21G
−1
11 G22 −G21G

−1
11 G12

)
.

In particular we haveSWP [1, . . . , p]G = −G−1. Moreover the determinant is ob-
tained through the process of sweeping on all positions by|G| =

∏p
k=1 γk with γk =

(SWP [1, . . . , k − 1]G)kk.

Both transformations 4 and 5 can be expressed very easily in a matrix form using the
sweep and reverse sweep operators. With the above notations let us write the parameterθ
as a(p + 1)× (p + 1) matrix

θ =

(
−1 µt

µ Σ

)
=



−1 µt

1 µt
2

µ1 Σ11 Σ12

µ2 Σ21 Σ22


 .
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The reason for placing−1 in the upper-left corner is given at the end of the section. To
keep unchanged the indices ofΣ we shall number the lines and column of this matrix
from 0 to p. Using the above properties we sweepθ on positions1, . . . , p1 and we obtain
the following matrix

SWP [1, . . . , p1]θ =



−1− µt

1Σ
−1
11 µ1 µt

1Σ
−1
11 µt

2 − µt
1Σ

−1
11 Σ12

Σ−1
11 µ1 −Σ−1

11 Σ−1
11 Σ12

µ2 − Σ21Σ
−1
11 µ1 Σ21Σ

−1
11 Σ22 − Σ21Σ

−1
11 Σ12




=



−1− µt

1Σ
−1
11 µ1 µt

1Σ
−1
11 αt

2·1
Σ−1

11 µ1 −Σ−1
11 Bt

2·1
α2·1 B2·1 Σ2·1


 .

Now as we also have

RSW [1, . . . , p1]

(
−1− µt

1Σ
−1
11 µ1 µt

1Σ
−1
11

Σ−1
11 µ1 −Σ−1

11

)
=

(
−1 µt

1

µ1 Σ11

)
,

we see that just by sweepingθ on position1, 2, . . . , p1 and then by reverse sweeping the
upper-left(p1 + 1)× (p1 + 1) submatrix on the same position we obtain the matrix

φ =




−1 µt
1 αt

2·1
µ1 Σ11 Bt

2·1
α2·1 B2·1 Σ2·1


 .

We have then realized the transformation 4 fromθ to φ with the sweep and reverse-sweep
operators.

The reason for placing the−1 results from the following relation

RSW [0]θ = RSW [0]

(
−1 µt

µ Σ

)
=

(
1 µt

µ Σ + µµt

)
.

The last matrix contains the natural representation of the MLE, i.e using the notation
developed in the complete data case we have

(
1 MLE(µt)

MLE(µ) MLE(Σ) + MLE(µ)MLE(µ)t

)
=

1

N

(
N T t

1

T1 T2

)
=

T

N

with T =

(
N T t

1

T1 T2

)
being the matrix form of the sufficient statistics. In the case of

multivariate normal data we have thus showed that the MLE can be computed from the
sufficient statistics using the sweep operator

MLE(θ) = SWP [0]

(
T

N

)
.
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The EM-algorithm for survey data Recall thatX is theN×p matrix of the population
data andXs then × p matrix of the survey data. We shall number bya = 1, . . . , A the
missingness patterns appearing among the rows ofX. A pattern for a rowxi of X can
be represented as a p-vector of0’s and1’s with 0 values corresponding to missing items
and 1 values to observed items. For example ifxi = (23, NA, 2, 7, NA,NA, 12, 8)t

its missingness pattern is described asmis(xi) = (1, 0, 1, 1, 0, 0, 1, 1)t. The number of
different possible missingness patternsA is bounded by2p− 1 (the trivial pattern with all
values set to0’s will never be used because the completely missing rows ofX contribute
to nothing to the observed-data likelihood and should be removed from the data). The
A × p matrix M will be the matrix having as rows the missingness patternsma with
a = 1, . . . , A. Let ma be one of these missingness patterns we shall need the following
notations

I(a) = {i : mis(xi) = ma} = {row labels ofX havingma as missingness pattern}
O(a) = {j : maj = 1} = {column labels of patterna with observed items}
M(a) = {j : maj = 0} = {column labels of patterna with missing items}

For the patterna given above as an example we would haveO(a) = {1, 3, 4, 7, 8} and
M(a) = {2, 5, 6}.

The E-step With a model of the regular exponential family we have seen that the E-step
just replaces the sufficient statistics by their expectation overP (Xm|Xo, θ) for an assumed
value ofθ. As theses statistics are linear combinations ofxij andxijxik the crucial point
is to find their expectations.

As the rowsxi are independent for a givenθ we have

P (Xm|Xo, θ) =
N∏

i=1

P (xi(mis)|xi(obs), θ)

wherexi(obs) (resp.xi(mis) denote the observed (resp. missing) subvector ofxi. Now in the
case whereP (xi|θ) is a multivariate normal distribution we have seen that the moments of
P (xi(mis)|xi(obs), θ) can be obtained using the sweep operator. More precisely for a given
patterns if i ∈ I(s), j, k ∈ M(s) and if we set

C = SWP [O(s)]θ

with θ the parameters matrix seen above we then have

E(xij|Xo, θ) = E(xij|xi(obs), θ) = c0j +
∑

k∈O(s)

ckjxik

and
Cov(xij, xik|Xo, θ) = Cov(xij, xik|xi(obs), θ) = cjk.

If j ∈ O(s), xij is fixed and we have trivially that

E(xij|Xo, θ) = E(xij|xi(obs), θ) = xij
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and

Cov(xij, xik|Xo, θ) = Cov(xij, xik|xi(obs), θ) = 0.

UsingE(xy) = E(x)E(y) + Cov(x, y) we obtain the final general expressions fori ∈
I(s)

E(xij|Xo, θ) = E(xij|xi(obs), θ) =

{
xij for j ∈ O(s)

x∗ij for j ∈ M(s)

and

E(xijxik|Xo, θ) = E(xijxik|xi(obs), θ)

=





xijxik for j, k ∈ O(s)

x∗ijxik for j ∈ M(s), k ∈ O(s)

cjk + x∗ijx
∗
ik for j, k ∈ M(s)

where

x∗ij = c0j +
∑

k∈O(s)

ckjxik

Remark:We emphasize here the fact that in both equations the independence of the ob-
servationsxi implies the first equality and in consequence the fact that these moments can
be calculated from onexi without any knowledge of the other ones. This means that these
relations are the same for thexs

ij ’s:

E(xs
ij|Xo, θ) = E(xs

ij|xs
i(obs), θ) =

{
xs

ij for j ∈ O(s)

xs
ij
∗ for j ∈ M(s)

and

E(xs
ijx

s
ik|Xo, θ) = E(xs

ijx
s
ik|xs

i(obs), θ)

=





xs
ijx

s
ik for j, k ∈ O(s)

xs
ij
∗xs

ik for j ∈ M(s), k ∈ O(s)

cjk + xs
ij
∗xs

ik
∗ for j, k ∈ M(s)

where

xs
ij
∗ = c0j +

∑

k∈O(s)

ckjx
s
ik

We are now in a position to write the E-step in a matrix form (to shorten the expression
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we shall writeE(· · · |Xo, θ) = · · · |); for the population data:

E(T |Xo, θ) = E

((
N T t

1

T1 T2

)
|Xo, θ

)

=
N∑

i=1




1 xi1| xi2| · · · x1p|
xi1| x2

i1| xi1xi2| · · · xi1xip|
xi2| xi2xi1| x2

i2| · · · | xi2xip|
...

...
...

.. .
...

xip| xipxi1| xipxi2| · · · x2
ip|




By the remark above we know that all coefficients· · · | can be computed the same way for
the population and the survey data therefore we can use the Horvitz-Thompson estimator
to write the ”estimated E-step” for the survey data:

Ê(T |Xo, θ) =
n∑

i=1

ωi




1 xs
i1| xs

i2| · · · xs
1p|

xs
i1| (xs

i1)
2| xs

i1x
s
i2| · · · xs

i1x
s
ip|

xs
i2| xs

i2x
s
i1| (xs

i2)
2| · · · | xs

i2x
s
ip|

...
...

...
.. .

...

xs
ip| xs

ipx
s
i1| xs

ipx
s
i2| · · · (xs

ip)
2|




The M-step The M-step is relatively trivial in the multivariate normal case. We have
shown that for a given sufficient statistics matrixT the MLE is simply obtained by
MLE(θ) = SWP [0]N−1T . A M-step is therefore nothing else than

θ(k + 1) = SWP [0]N−1E(T |Xo, θ
k) for the population data

and

θ(k + 1) =

{
SWP [0]N−1Ê(T |Xo, θ

k) if N is known

SWP [0] (
∑n

i=1 ωi)
−1

Ê(T |Xo, θ
k) if N is unknown

for the survey data.

24.2 The ”BACON-EM for survey data” algorithm

Merging both algorithms is relatively straightforward if computation time is not an issue.
Each time estimations of the mean and the covariance matrix are needed, the EM algo-
rithm described above is run up to some pre-fixed convergence criteria. Such an approach
is clearly too naiv when evaluating the computation time. Firstly the ”growing” structure
of the BACON algorithm would not be used to avoid extra-computations of EM at each
step , secondly a restrictive convergence criteria of EM could slow down much the algo-
rithm only to make improvements of the estimation at each step when they are probably
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not needed (the crucial point at each step is that the estimations of the mean and the co-
variance matrix allow the algorithm to exclude outlying points from the good subset and
this does not need these estimations to be extremely close to the real values).

The ”BACON-EM for survey data” algorithm is desribed at the end of this subsection.
Our approach towards the two issues quoted above is the following. According to our ex-
perience of the BACON algorithm we decided tu re-use as much information as we could
from one step to the next one. In fact estimation of the sufficient statisticsTG computed
on some good subsetG (it is actually simply the restriction of theTj =

∑N
i=1 h(xij) to

the elements inG, i.e. TG
j =

∑
i∈G h(xij)) usually has a partTG

o with points having no

missing values estimated bŷTG
o that can be computed straightforward and a problematic

part TG
m with points having missing values estimated byT̂G

m that can not be computed.
The expectation computed by the E-step can therefore be written as

Ê(TG|XG
o , θ) = T̂G

o + Ê(TG
m |XG

o , θ).

As the subsetsG are growing, we do not computêTG
o at each step of the BACON loop,

but we keep a global variable for̂TG
o that is simply updated each timeG changes (adding

points, and sometimes removing a few to the statistic). Concerning the convergence cri-
teria selection, we choose to fix the number of iteration of EM at each step of the Bacon
loop, by default this number is set to5 but the user is allowed to change it. At the end of
the Bacon algorithm EM is run once more but this time with more iterations (by default
10) and this is also the case for the initial subset selection if the user chooses Version 1 of
BACON.

24.2.1 The algorithm

- Default constants
α = 0.95
c = 3
it.em.1 = 10
it.em.2 = 5

- Starting point
Version 1

- Compute cM and bS using EM with it.em.1 iterations on X;
- Compute the n (Mahalanobis) distances MDcM,bS(xi) (see 23.1);

Version 2
- Compute the coordinatewise median med ignoring in each variable

the missing values;
- Compute the n distances ||xi −med|| based on the observed components

of xi and corrected by a factor as in 23.1;
- Select the m = cp smallest distances to form the first good subset G;

- Compute cMG and bSG using EM with it.em.2 iterations on G, and stock bT G
o ;

- If bSG is singular, exit and ask the user to increase c;
- Main loop

- Compute the n (Mahalanobis) distances MDcMG,bSG
(xi) (see 23.1);

- Set a new subset NG to all points with Mahalanobis distances smaller
than (bcnprχp,α)2;

- If NG = G then exit the loop;
- Upgrade bT G

o to bT NG
o ;

- Reset G = NG;
- Compute cMG and bSG using EM (with bT G

o already computed)
with it.em.2 iterations on G;

- If bSG is singular, exit and ask the user to increase α;
- Restart the loop;
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- If a better estimation is seeeked it.em.1 more iterations of EM on G are
run with starting parameters cMG and bSG;

- Nominate the observations excluded by the final G as outliers.

25 EA

Once all the distances (i.e. the infection probabilities) are available, the EA algorithm
works regardless of the underlying data values. Therefore only the distances computation
has to be adapted to the absence of some values. We shall assume here that the data
are MCAR; a more careful study should be carried on to see if this hypothesis can be
weakened or not. The adaptation here is done similarly as in 23.1 simply by computing
the distance between two points on the common observed variables and inflating it by a
factor inversely proportional to the proportion of observed values, if no observed variables
are in common the distance is set to infinity. The standardization of each variable is done
using only the observed values. Recall thatR is the response variable, i.e.rik = 1 if
variablek is observed for observationi andrik = 0 if not, then the distance between
observationsxi andxj is given by

d̃ij =





(
pPp

k=1 rikrjk

∑p
k=1 qkrikrjk(xik − xjk)

2
)1/2

, if
∑p

k=1 rikrjk 6= 0

∞, if not

where
qk = (madk,rik=1xik)

−2.

Whend̃ij is set to infinity the infection probability is forced to be zero forbidding a pos-
sible infection between both points. This is actually what we want as we don’t have any
information on the distance between the two points. Why should we standardise with∑

k rikrjk? The point is that if an observation is an outlier in some dimensions but has
missing values in many other dimensions, then it could be masked without the standardi-
sation. Why should we divide by

∑
k rikrjk and not by

∑
k qkrikrjk? The second solution

would imply that the distance is a weighted mean of the contributions of the dimensions,
the weight beingqk. In the extreme case of an observation with only one observed vari-
able the distance with this observation would correspond to an unstandardized distance in
the observed dimension. This is undesirable because then outliers in dimensions with a
small dispersion may remain undetected.
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Part VI

Robust nearest neighbor imputation

26 Introduction

In this section we describe an algorithm which can impute values for detected outliers
and for missing values. Furthermore edit rules and sampling weights should be taken into
account. The algorithm should be a module in a system of modules which contains also
an edit stage controlling edit rules, an outlier detection stage, and a preliminary stage of
imputation which imputes deterministically if possible (e.g. in the case of balance edits).
The module should be nearly automatic. Thus we do not want to use any modelling of
missing values. This is a serious drawback in many instances. The only device we want
to use are distances and therefore the imputation is based on nearest neighbor methods.
The Fellegi-Holt principle of minimum change is embedded in the nearest neighbor dis-
tance. We use the Mahalanobis distance and assume therefore that the bulk of the data is
approximately elliptical. The second method we planned to implement was a backward
epidemic algorithm. However, due to lack of ressources, this was not possible.

27 Input

The input to the imputation module is the data, a vector of flags on whether the observation
is an outlier, a matrix of the same dimension as the observation which indicates edit
failures, and a vector of sampling weights. More formally the inputs are:

1. A n × p matrix X of observations. In the first place we assume the variables con-
tinuous but in principle also categorical variables could be treated. Together with
X we get or may calculate an× p matrixR of indicators of response with

rij =

{
1 xij is given,

0 xij is missing.

2. A n× 1 vectorw of sampling weights.

3. A n× 1 vectoru of outlier flags which have been set in a previous outlier detection
phase. Instead of the outlier flagsu may contain a measure of outlyingness like
robustness weights. For the moment we assume that

ui =

{
0 observationi is declared an outlier,

1 otherwise.
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4. A n×p matrixE of flags (see Section 4.2.1). We assume that any error localisation
has been done beforehand. Thus the flags mean

eij =

{
0 xij fails one or more edits and is deemed in error,

1 xij passes all edits.

If a value is missing, i.e. ifrij = 0 theneij = 1. In fact edit rules which involve a
missing value usually cannot be applied to an observation.

In the EUREDIT data setsY2 which contain only missing values but no errors we have
eij = 1 for all i andj but for the data setsY3 we have someeij = 0.

The objectives of the imputation module are:

1. Imputexij if rij = 0, i.e. impute missing values.

2. Imputexi if ui = 0, i.e. impute outlying observations.

Optionally we may setrij = 0 if eij = 0 beforehand, i.e. we may want to impute a new
value whenever a given value failed any edit. A problem with this option is that if no
efficient error localisation has been done beforehand it may be very inefficient because
too many values are imputed.

28 The imputation module POEM

The idea is to use a weighted Mahalanobis distance which is adjusted for missing values
and for edit failures. We call the algorithm POEM for weighted imPutation for Outliers,
Edit failures and Missing values.

28.1 Center and standardization

First we calculate the mean of good observations for each variablej:

µj =

∑
i uiwirijα

(1−eij)xij∑
i uiwirijα(1−eij)

. (6)

Hereα is a reduction factor between0 and1. Thus if a value failed edits then its weight in
the mean is reduced by a factorα(1−eij) = α while there is no weight reduction foreij = 1.
Of course this factor is useless if we have setrij = 0 if eij = 0 beforehand. Reasonable
values forα are0, i.e. we treat failures as missings, or1, i.e. we ignore the matrix E. A
factorα = 0.5 might represent our relative confidence in the failing items. Missing values
are left out by the sums due torij = 0 and outliers are left out or downweighted due toui.
Thus we get a robust mean which takes into account as much reliable values as possible.
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We will come across the factorrijα
(1−eij) several times and we call itαij to shorten the

notation. Thus the mean of good observations becomes

µj =

∑
i uiwiαijxij∑

i uiwiαij

. (7)

Instead of taking a different weight for each variable we may join the reduction factors of
an observation to

α̃i =
∏

j

α(1−eij). (8)

Then we get another estimator of the mean of good observations:

µ̃j =

∑
i uiwirijα̃ixij∑

i uiwirijα̃i

. (9)

In what follows we stick to the first definition of a mean (6).

The different dimensions (variables) should have the same order of magnitude in the dis-
tance. This is particularly important because of possible missing values. We calculate the
variance of the good observations for each variable:

σ2
j =

∑
i uiwiαij(xij − µj)

2

∑
i uiwiαij

. (10)

Then we standardize the observations:

x̃ij =
xij − µj

σj

. (11)

From now on we work with the standardized observations only.

28.2 Covariance Matrix

The second step is to estimate a variance-covariance matrix of the good observations. To
avoid computational problems we setx̃ij = 0 if rij = 0, i.e. we replace missing values by
0 (the mean of the standardized observations).

The terms of the variance-covariance matrix of good observations is calculated as

(D)jk =

∑
i uiwirijrikα

(1−eij)α(1−eik)x̃ijx̃ik∑
i uiwirijrikα(1−eij)α(1−eik)

=

∑
i uiwiαijαikx̃ijx̃ik∑

i uiwiαijαik

(12)
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Note that this is a slightly different formula as the one used for outlier detection since now
we take into account missing values much more simply and we add a downweighting for
edit failures.

The covariance matrix for standardized observationsD(X̃) is the correlation matrix of
the unstandardized observations.

This matrixD may lack positive-definiteness in particular if many values are missing,
outlying or failing. In that case we cannot proceed further without analysis of the situa-
tion.

The standardization in the numerator ofDjk could be even more sophisticated, taking into
account the effective degrees of freedom.

28.3 Redefinition of outliers

The observations that have been declared outliers byui may be representative. We would
like to have a way of relaxing the outlier conditions in order to avoid imputation for
representative outliers (or simply for too many outliers). This is necessary for very skew
data where rejecting outliers may lead to a large bias.

We calculate the Mahalanobis distance of each observation.

d2 = p2

∑
j,k αijαikx̃ijD

−1
jk x̃ik∑

j,k αijαik

. (13)

Note that we have included the downweighting for failing items.

Now we may define a second outlier indicator or robustness weight

ũi =

{
1 d ≤ c,

0 otherwise,
(14)

wherec is a tuning constant to be chosen. It is clear that we may choose to use a smooth
downweighting of outliers withui = c/d for d > c like for an Huber M-estimator.

The total robustness weight is
∑

i wiũi. The total robustness weight is less than the
population sizeN if the weightswi are calibrated accordingly. Usually we want that∑

i wiũi ≥
∑

i wiui because of the relaxation of outlyingness. Looking at the total ro-
bustness weight may help in choosingc.

28.4 Conditions for donors

Now let i be an observation which has to get imputed values andh a possible donor. We
impose the following conditions on the donor:

1. The donor should not be an outlier, i.e.uh = 1. Note that we use the originaluh

because we would not want to impute representative outliers.
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2. The link betweeni andh must be sufficiently strong, i.e.

∑
j

rijrhjα
(1−eij)α(1−ehj) =

∑
j

αijαhj (15)

should be sufficiently large.

3. Donors for outliers must be complete with no failing items and donors for obser-
vations with missing or failing items must have enough items, i.e. ifui = 1 the
condition is

∑
j

(1− rij)(1− eij)rhjehj =
∑

j

(1− rij)(1− eij) (16)

and ifui < 1 the condition is
∑

j

rhjehj = p. (17)

We combine the first two criteria into one:
∑

j

uhαijαhj ≥ βp, (18)

where0 < β ≤ 1 is a parameter to determine the severity of the donor condition. An
alternativ would be to use only complete non-outlying observations as donors.

The set of donorsHi may be empty. Then we have to refrain from imputation or relax the
donor condition.

28.5 Nearest neighbor

The (squared) distance between an imputand, i.e. the observation to impute, and a donor
is

d(x̃i, x̃h)
2 = p2

∑
j,k αijαhjαikαhk(x̃ij − x̃hj)D

−1
jk (x̃ik − x̃hk)∑

j,k αijαhjαikαhk

. (19)

Note that it was important to standardize the data beforehand because if different variables
are missing for different donors we account for the number of missing variables but not
for the variability of the different variables. We calculate the distanced(x̃i, x̃h) for all h
in Hi. Then we choose the donor with minimal distance, i.e.

h(i) = arg min
h∈Hi

d(x̃i, x̃h). (20)

Then h(i) is the nearest neighbor ofi. Instead of this deterministic version we may
determine a small number of nearest neighbors and choose randomly, with probability
proportional to the distance, one of them as donor fori.
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28.6 Imputation

For non-outliers (ui = 1) imputexij = xh(i)j for all j with rijeij = 0, i.e. for all variables
with missing or failing items. We may, of course, impute only for missing values. For
outliers (̃ui < 1) imputexij = xh(i)j for all j. Note that we impute only for the outliers
according to the possibly relaxed definitionũi. If we accept only complete cases and
non-failing observations as donors then we may impute all values always. This results in
a loss of information which goes contrary to the Fellegi-Holt principle. However it is the
simplest way to ensure that the data does not fail any edits after imputation.

29 Controlling the imputation

We have seen that for the imputation we have to choose several tuning constants:

1. The tuning constantc for the redefinition of outlyingness.

2. The tuning constantα for the downweighting of failing items in the distance.

3. The tuning constantβ for the condition on the link to a donor.

4. If we choose random nearest neighbor imputation we have to choose the constant
of admissible neighbors.

After imputation we cannot be sure that the imputed data passes the edits. We will have
to run the edits again, which results in new valuese′ij for the failure indicators and check
whether we have been more or less successful. We may also compare the originaleij with
the newe′ij. In principle there might be still some missing values left in the imputed data
X̃ if no donor could be found. We therefore will have to computer′ij with an E module to
check for missingness.

We need information on

1. The number of remaining missing values per variable
∑

i r
′
ij.

2. The number of good values per variable
∑

i wiαij.

3. Meanµj and varianceσ2
j .

4. The covariance matrixD.

5. The number of outliers
∑

i 1{ui < 1} and
∑

i 1{ũi < 1}.
6. The total robustness weights

∑
i wiui and

∑
i wiũi.

7. The number of empty donor sets
∑

i 1{|Hi| = 0}
8. The maximal number of times a donor is used.

This information is needed to judge the performance of the imputation. To obtain some
of the informations we need to run a E module on the output.
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complexes: lińearisation et techniques des résidus.Techniques d’enqûete, Statistique
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