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Foreword

This report describes the work of the Swiss Federal Statistical Office (SFSO) for EU-
REDIT project workpackages 4.2 and 5.2 under the Information Society Technology Pro-
gram (IST) of Framework Program 5 of the European Union. The patrticipation of SFSO
to EUREDIT is financed by the Swiss Federal Office of Education and Science.

EUREDIT workpackages 4.2 and 5.2 have been unified into workpackage x.2, now called
"Develop and evaluate new methods for statistical outlier detection and outlier robust mul-
tivariate imputation”. The main effort of SFSO for EUREDIT goes into this workpackage
and SFSO is the leader of it.

This draft of 31 August 2001 describes the outlier detection methods that SFSO has ex-
plored or developed until that date. These methods have been tested with real and artificial
data sets and they have been adapted to cope with sampling weights.

Future updates of the report will describe the adaption of the outlier detection methods to
missing values and the development of imputation methods based on the outlier detection
methods. The evaluation with the data sets and in the formal frame work established in
EUREDIT workpackages 2 and 6 will also be added.

We would like to thank Werner Stahel, Ali Hadi and Yves &ids well as our partners in
workpackage x.2 and in EUREDIT overall for fruitful discussions on multivariate outlier
detection. We would like to thank our colleagues from the Statistical Methods Unit of
SFSO for their support and understanding.
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Summary

EUREDIT will develop, evaluate and disseminate new tools aimed at improving the qual-
ity of statistical data through improved data editing and imputation. In EUREDIT the term
editing means error localization, i.e. identifying doubtful or erroneous data values. In this
report we are looking at a particular type of error, namely outliers. Error localization is
usually achieved via the calculation of indices that measure the potential for particular
data values to be in error. In our case such an index is a measure of outlyingness. Pre-
viously, in many cases these indices have been based on strong assumptions about the
nature of the population from which the data values were obtained. For example, with
univariate continuous data one can apply an outlier test based on the standard deviation.
Such tests typically assume that the data are generated from a low dimensional symmetric
distribution (e.g. the bivariate normal). This is at odds with the high dimensional mixed
categoric-continuous nature of modern data sets. EUREDIT will evaluate and compare
a range of both currently used as well as new methods for outlier detection and robust
imputation.

The objectives of the EUREDIT project as a whole are described in six different points.

1. To establish a standard collection of datasets.
2. To develop a methodological evaluation framework.

3. To evaluate current "in-use” methods for data editing and imputation and to de-
velop and evaluate a selected range of new or recent techniques for data editing and
imputation.

4. To compare all methods tested and develop a strategy for users of edit and impu-
tation leading to a "best practice guide”. This evaluation is made using criteria
developed in 2. applied to the results given by the methods selected in 3. acting on
the data sets chosen in 1.

5. To disseminate selected methods on a project-wide basis by developing prototype
software.

6. To exploit the results of the project by developing planned routes to exploitation.

This report will concentrate on points 3 and 4 and editing is interpreted as outlier detection
while imputation is interpreted as robust imputation. In order to avoid excessive "tuning”

of methods to a particular situation (one of the major concerns in EUREDIT) SFSO’s
strategy is to clearly separate these two phases. Therefore all methods selected for the
project are developed totally independently of the two datasets on which they will be
evaluated. The first chapters are concerned with the development phase (point 3). Future
updates of this report will describe the evaluation phase (point 4).

After a short introduction recalling the classical knowledge and well known concepts of
outlier detection and introducing the notations used in this report, the second part will ex-
plain how the different multivariate outlier detection methods chosen for EUREDIT were

(0]



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

selected. Five methods are emphasized, one classical method (minimization of scale), two
modified existing methods (forward search and projection pursuit) and two new methods
(simple and nonparametric). The third part will show a comparison of these methods ap-
plied to development data sets (none of the evaluation datasets of EUREDIT). The fourth
part will describe how these methods have to be modified to account for sampling weights.
The fifth part adds the problem of missing values, but by lack of resources and time only
three methods are modified to cope with missing value. Finally the sixth part will in-
troduce an imputation method that takes into account outliers, edit failures and missing
values.

10
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Part |
Introduction

A very important aspect of statistical data editing is outlier detection. Besides graphical
tools, robust mathematical algorithms can be used to detect outliers. Imputation in the
presence of outliers has to control the influence of the outliers on the imputation model
and must prevent from imputing (non-representative) outliers. Dealing with outliers is
considered an essential part of the edit and imputation process. Most outlier-detection
and imputation methods are univariate or bivariate in nature and can handle only contin-
uous data. However, real errors in data are usually multivariate and consist of a mix of
categorical and highly skewed continuous variables. Furthermore real data usually have
missing values. Often the data stem from sample surveys, therefore the sample design
should be taken into account by outlier-detection methods and by imputation methods.
The idea here is to concentrate on the outlier-detection methods and then to develop rel-
atively simple imputation methods based on the outlier-detection methods. The aim of
the combination of outlier-detection and imputation will be to develop procedures that
preserve the distributional structure as far as possible while remaining robust to outliers
in the data.

The problem of outliers becomes much more difficult in two or more dimensions than
in only one dimension. While an outlier can only be very small or very large in one
dimension (at least for unimodal distributions) in higher dimensions the "direction” of
the outlier becomes more and more difficult because there are infinitely many directions.
Outliers may be quite close to the bulk of the data or to a model if the distance is measured
in a Euclidean metric. However, if a metric appropriate to the distribution of the bulk of
the data is used it may immediately show up. Thus in higher dimensions the form of the
point cloud of the bulk of the data must be well represented in the metric used to detect
outliers.

In what concerns sampling the approach of SFSO is mainly design-based. However,
models are inherently necessary for a meaningful discussion of outliers. Even if the model
can be as vague as "outliers are far from a center of the data” the definition of what "far”
and "center” mean needs a model.

An important aspect of the models used for outlier-detection is the sub-population that it
applies to. For larger data sets one usually has to subdivide the data set in order to obtain
a meaningful model for the bulk of the data and then to detect outliers. We call such a
sub-population aeference population In other words usually our model is a mixture of
models for the different reference populations. The definition of the reference populations
is a crucial point in outlier-detection and robust imputation. In this version of the report
we shall only treat the case where the reference population is fixed beforehand.

For finite population sampling in addition to the problem of accounting for the sample
design, and related to the problem of the modelling of the bulk of the data, we face the
guestion ofrepresentative and non-representativeoutliers (Chambers, 1986). In fact,

we may have outliers in the population with respect to a model for an infinite underlying

11
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super-population. For the purpose of outlier-detection the distinction between representa-
tive and non-representative outliers is not of prime importance because even if an outlier
is a correct observation belonging to the finite population, we would like to detect it be-
cause we will have to check it, it may be influential and we may want to treat it specially

in the estimation procedure. Anyway, in the face of a detected outlier one usually is not
sure whether it is representative or not. The nice thing would be to have a measure of the
degree of belief we can have that the outlier is a good observation, some sort of a value
of representativity. However, usually we do not have such a value on a continuous scale
and we have to take a dichotomous decision: representative or not. Thus after checking
an outlier to a certain extent one often assumes that an outlier is representative. Neverthe-
less, when it comes to imputation and estimation, one treats these representative outliers
specially. For example in imputation one would not impute representative outliers in the
same way as normal observations because they probably are rare in the population.

For our outlier-detection methods we do not distinguish between representative and non-
representative outliers at all. We will introduce some flexibility to consider the "represen-
tativity” of an outlier for the imputation phase.

When selecting outlier-detection methods for this study we had four guiding principles in
mind:

Good detection capability: Ideally all outliers are detected but no good observations
declared outliers.

Sufficient speed: The algorithmic complexity should make the methods feasible also for
large data sets. The computing time should be at most moderate.

High versatility: The assumptions on the data (how much missingness, categoric and
continuous variables) should be low, adaption to sampling and missing values
should be feasible.

Simplicity: The methods should be simple to teach and apply. Few tuning should be
necessary, the know-how needed by users should be limited and simple to explain.

For robust imputation methods the first principle is replaced by

High preservation capability: Ideally the imputed data should be as close as possible to
the true data.

1 Definitions and notations

This section will set up a list of the definitions and notations that will be used throughout
all this report. The reader should be able to refer to it whenever he’ll need it.

General notations All matrices will be denoted by capital letters, e4y. while vectors
will always be column vectors and denoted by small letters, e.g./, will denote the
identity matrix in dimensiomp and1, the vector ofl’s in the same dimension.

12
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Usual distributions The univariate normal distribution with meanand variancer?
will be denoted byN (u, o2). Similarly the multivariate normal distribution will be de-
noted byN (i, ) where this time. is the vector mean and the covariance matrix. The
chi square distribution withp degrees of freedom will be denoted lQ% and itsl — «
percentile byy? .

Data The data will be encoded ina x p matrix X. Then lines of X denoted byz;
will correspond to the: observations of the dataset and theolumns denoted by’ to
thep variables observed.

Equivariances Letz,...,z, be a set of observations IR?, letb € IR” be any point in
the Euclidean space and létbe any non singular x p matrix. Lety,, ...y, be the images
of thez;’s through the affine transformation

R?P — IR?
r +— y=Ax+0b.

Let M be some estimator of location and ebe some estimator of scatter. Th&hand
S are said to baffine equivariant if

M(yi, .o, yn) = A~ M(zy,...70,) +bandS(y1, ..., yn) = A- S(xq,..2,) - A",

If the property is true when restricted to orthogonal transformatibroithogonal and
b = 0) the estimators are said to behogonal equivariant.

If the property is true when restricted to scale transformatiba=(a/, a non zero scalar
times the identity matrix antl = 0) the estimators are said to beale equivariant

If the property is true when restricted to shift transformatidn=€ 0) the estimators are
said to beshift or location equivariant.

2 Robust editing

Outlier detection requires a "metric” that somehow measures the "outlyingness” of a data
point. Typically, the metric arises from some model for the data (for example, a center
or a fitted equation) and some measure of discrepancy for that model. A classical way of
computing a measure of discrepancy and identifying multivariate outliers is to calculate
the Mahalanobis distance. Recall that this distance uses estimidtofdocation andS

of scatter of a set of observations and is defined for an observabyn

MDy5(x) = (x — M)'S™Hx — M).

Unfortunately both estimators of location and scatter are very sensitive to outlying ob-
servations. Therefore robust estimators of both location and scatter have to be used to
remedy that problem. Several methods have been reported in the literature for a number

13
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of different approaches always with their advantages and disadvantages. Smooth esti-
mators such as maximum likelihood and estimators (Huber, 1981), (Maronna, 1976)
have the advantage of being relatively simple to compute with a straightforward itera-
tion from a good starting point (Rocke and Woodruff, 1993). But on the other hand
their breakdown point - i.e. the smallest fraction of the data whose arbitrary modifi-
cation can carry an estimator beyond all bounds - is at mogt + 1) wherep is the
dimension of the data (Donoho, 1982), (Maronna, 1976), (Stahel, 1981). This handicap is
almost eliminatory when dealing with official statistics, most of them being high dimen-
sional data.\ -estimators were therefore not considered further in this study. Many other
affine equivariant estimators were studied by Donoho (Donoho, 1982) but all have break-
down points at most/(p + 1). Other approaches ended up with affine equivariant high
breakdown point estimators but had the disadvantage of being computationally expensive.
The first of these approaches was related to the projection pursuit principle: the Stahel-
Donoho (SD) estimator (Stahel, 1981), (Donoho, 1982). Other approaches followed like
the ones based on the minimization of a robust scale like the Minimum Volume Ellipsoid
(MVE), the Minimum Covariance Determinant (MCD) estimators (Rousseeuw, 1985),
(Rousseeuw and Leroy, 1987) afdestimators (Davies, 1987). The affine equivariance
and high-breakdown point properties seem clearly to imply very high or even infinite com-
puter costs, therefore a robust outlier detection must either approximate the solution, like
the "Fast MCD” (FMCD) (Rousseeuw and van Driessen, 1999) or the Modified Stahel-
Donoho (MSD) (Patak, 1990) (both methods will be part of this study in section 8 and
7) or sacrifice affine equivariance. Different ideas for the second solution can already be
found in (Gnanadesikan and Kettenring, 1972). Two approaches of Gnanadesikan and
Kettenring will be further developed in this study. The first one is based on the fact that
each component of a covariance matrix can be computed as the covariance between two
variables. Gnanadesikan and Kettenring proposed to robustify this component by com-
ponent computation and then use a final transformation of the obtained matrix to ensure
positive definiteness. We used this idea to define new simple robust estimators of location
and covariance in section 5. Note that Maronna and Zamar have also worked in the same
direction re-actualizing the ideas of Gnanadesikan and Kettenring, see (Maronna and Za-
mar, 2001). Another idea found in (Gnanadesikan and Kettenring, 1972) gave birth to the
so-called forward search methods (Hadi, 1992), (Atkinson, 1993). The two most recent
forward search methods (Kosinski, 1999) and (Billor et al., 2000) are studied in section 6,
and a slightly modified version of the BACON (Billor et al., 2000) algorithm is selected
for the rest of the study.

The methods based on the Mahalanobis distance will be adapted to cope with missing
values by an EM-algorithm. For the MCD-method this has been done by Cheng and

Victoria-Feser (Cheng and Victoria-Feser, 2000). The adaption to sampling is relatively

easy for these methods.

Nonparametric or semi-parametric approaches of outlier detection like data depth (Liu
et al., 1999) or multivariate quantiles seem also very attractive and promising, but unfor-
tunately due to the lack of resources these methods were not included in SFSO’s work
for EUREDIT. Nevertheless an alternative nonparametric method that seems to be new is
introduced in section 9 (Hulliger andéguin, 2001). The idea is to start an epidemic in

14
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the population at some well chosen point and let it grow. The last infected points should
be outliers.

Some authors do think that only hybrid methods using elements from the different ap-
proaches quoted above will have a chance to extend the practical boundaries of outlier
detection capabilities. Trying to combine the different methods was not an option chosen
for this study because it runs contrary to the guiding principles above, in particular sim-
plicity. the reader who'’s willing to measure the effect of a hybrid method is advised to
read (Rocke and Woodruff, 1996). Note that Kosinsky has compared the method proposed
by Rocke and Woodruff with his algorithm (see Section 6).

3 Robust imputation

The idea is to use the outlier-detection methods for the purpose of "outlier’-imputation

as well. Since we have a division of the data in outliers and good data we will impute

good data for the outliers. If we think that some of the outliers might be representative
then we might relax the boundary of the good data somewhat compared with the outlier-
detection phase. Missing values will have to be imputed for observations which are not
considered outliers. We will not use any sophisticated method like logistic regression or
neural networks here. Obviously these could be applied once the outliers are imputed.

The methods that end up with a robust estimate of the center and the covariance of the
data lead to two simple ways of imputation for outliers. The first method is to take a limit
of the good data described by an ellipsoid of equal Mahalanobis distance and to project
an outlier to the closest point of the ellipsoid. In other word we censor the outliers or
still in other words we winsorize the outliers metrically. The second imputation method
would be to impute (may be with probability proportional to the distance) an observation
from the good (non-outlying) observations which is close to the outlier. Thus this is a
nearest neighbour imputation with a restriction on the donors. The limiting distance for
winsorizing or the border of good data for nearest neighbour imputation is a parameter
that can be used to adapt for representative outliers.

The missing values of observations which ar not declared outliers can be imputed ran-
domly by a Nearest Neighbour from the good data.

The Epidemic Algorithm can be run backwards starting from a detected outlier until the
epidemic infects one or several good and complete observations. Then among these in-
fected good observations we may select one at random for imputation. The same process
may be used for non-outlying observations with missing values. Thus the epidemic al-
gorithm run backwards is a nearest-neighbour imputation method with a very particular
type of distance.

15
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4 A modular system for data preparation

The treatment of data from raw input to data which is of defined quality is very complex.
Usually several phases interact and there are loops which individual data or the whole of
the data go through several times. Ideally the system would be completely automated but
in practice manual controls and corrections often must occur. Also the integration of true
values due to call backs is possible. Every survey has its own specialities and therefore
there cannot be a system which covers all of the tasks in the sequence needed. The only
way to make the building of such a system easier is to have modules at hand, which do
specific subtasks, which are parameterised and which can be built easily into a system.
A simple example of such a modular system is shown here. It is merely developed for
the purposes of the EUREDIT project. But of course the modules may be used in a more
complex system.

4.1 The system

We first describe the system in general terms and then look closer at the modules it con-
tains. Modules we may consider are

E: A control module which flags missing values and applies edit rules that control which
of the values of a record might be in error.

C: A correction module which corrects failing items or missing items which fulfill spe-
cific conditions in a deterministic way. For example we may fill in a missing total
if all subtotals are given by just summing the subtotals. Or we may recalculate the
age from the year of birth if there is a contradiction between the given age and the
year of birth.

L: An error localisation module which narrows down the set of values which might be in
error.

D: An outlier detection module which flags possible outliers or calculates a robustness
weight.

I: An imputation module which imputes for missing values, outliers and failing items.

M: A manual correction module which allows correction and imputations by human in-
tervention.

The data that should be treated may be composed of observations on categorical (ordered
and unordered) and continuous variables.

Each of these modules should have a defined standard input and output, a defined set of
parameters and a defined set of informations for the user to judge its performance. Of
course there may be several different possible methods and algorithms for a module. For
example imputation may be done with the help of linear models or with a nearest neighbor

16
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method. Outlier detection may use non-parametric or parametric methods. The point is
that the input and output of each module should be defined in such a way that different
methods can be chained as modules to form a system.

A system like NIM from Statistics Canada resolves the tasks of several of the above
modules in a more interconnected way. E.g. NIM does a check on whether a possible
imputation actually resolves all edit failures at the very moment of the imputation. Thus
the E and | module of NIM are intimately connected. The disadvantage is that NIM cannot
be combined easily with other modules like a D module or an M module.

The system we use for EUREDIT consists of the following sequence: DEIE or EDIE.
A system like EDIE checks only after imputation whether the edit failures actually have
been resolved. In other words, after applying the system EDIE we cannot be sure to obtain
failure free records! We then may have to add a manual correction module followed by
the E module again. This would amount to a EDIEME system. Of course we might also
change certain parameters of the E, D, | modules and rerun the EDIE system in the hope
to get a result we can live with.

The main effort for this report is concentrated on a set of D modules. The | module is
needed to have at least a minimum output to be evaluated with the EUREDIT criteria.

4.2 The modules

4.2.1 Module E

Module E is the module that controls the correctness of data with edit rules.

Input: Then x p matrix of DataX. Then vector of weightsuw.
Parameters: A setof rulesCy,k=1,..., K.

Output: Then x p matrix R of response indicators,. Then x p matrix £ of indicators
e;; of edit passes.

Each ruleCy, is a function which maps; to 0 or 1. If an observation fails the rule, its
result is1, if it passes its result i8. Let J, be the sub-set of variables on which the
functionC), depends. We definegavectorcy;(x;) as follows:

1 ifje JyandCy(z;)
ij(fi) =<0 Ifj e Ji andOk(:vZ)
0 ifjé I

1
0, 1)

In other words the;(x;) = 1 if the observation fails rulé and rulek involves variable
j. Of course a rule cannot be applied to an observatigi jfr;; = 0, i.e. if it depends
on a missing observation. We then sgf(z;) = 0.

17
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The entries of the matri¥’ are calculated as

K .
e = 1 ey () = 0 = {1 Y () =0, o
k=1

0 otherwise

Another measure which might be useful as output would be

K
é" _ Zk:l Ck’](xl)
[/ K . :
Y oner W € Jitri
Thusé,; is the proportion of rules that fail and contain iteryy among the rules that

actually can fail for this item. Thug; might be useful for error localisation or later on in
the distances.

3)

4.2.2 Module D

Module D is the module for outlier detection.

Input: The dataX, the weightsv. The matrix of edit passes.

Parameters: Tuning constants for the severity of outlier detection. Type of weighting
functions. Number of iterations or convergence criterion.

Output: The vector of robustness weights

4.2.3 Modulel

Module | is the module for imputation.

Input The dataX, the sampling weights), the robustness weights the matrix of edit
passed’, the matrix of response indicatofs

Parameters Tuning constants for severity of outlier imputation. Tuning constants for
conditions on donors.

Output The imputed daté .

18
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Part Il

Selected methods for multivariate
outlier detection

As described in the introduction the first four sections of this chapters furnish outlier
detection methods based on robust Mahalanobis distances. Recall that for an egtimate
of location and an estimatg of scatter the Mahalanobis distance of an observatien
computed as

MDys(z) = (x — M)'S™ (z — M).

The first section will introduce new simple robust estimators of location and scatter based
on ideas of Gnanadesikan and Kettenring (Gnanadesikan and Kettenring, 1972). The
second one will report the selection made between the two most recent forward search
method, namely Kosinski algorithm (Kosinski, 1999) and BACON algorithm (Billor

et al., 2000). The third one will describe a modified version of the first high breakdown
point affine equivariant method related to the projection pursuit principle (Stahel, 1981),
(Donoho, 1982). The fourth one will recall one of the most popular and well used high
breakdown point affine equivariant method based on the minimization of a robust scale
of Mahalanobis distances (Rousseeuw, 1985), (Rousseeuw and Leroy, 1987). Finally the
last section will introduce a nonparametric method based on an approach that seems to be
new, the epidemic algorithm.

5 A simple method

In order to evaluate sophisticated methods used to detect multivariate outliers we try to
find simple estimators of the mean and the covariance matrix. We seek computationally
non-expensive estimators that are suitable for detection in large and high dimensional
datasets. In other sections we shall study and compare sophisticated methods with high
breakdown point but also with heavy computation needs: methods based on the minimiza-
tion of a robust scale (Minimum Covariance Determinant, MCD), based on projections
(Modified Stahel-Donoho, MSD) or based on an epidemic spread through the data (Epi-
demic Algorithm, EA). Only one of the studied methods seems to be computationally
economic: the forward search method (BACON). Here the idea is to define estimators
of mean and scatter that do not need any fancy algorithm to be computed and that retain
some direct statistical meaning.

A first step in this direction was made by Gnanadesikan and Kettenring (Gnanadesikan
and Kettenring, 1972). The authors used the fact that the components of the covariance
matrix can be written as:

(*(z +y) —o*(x —y)),

|

cov(z,y) =
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wherez andy are two univariare random variables. Using a robust estimator of univariate
variances™* (they used trimmed or Winsorized variance) they replaced the usual variance
o by o* in the above formula. Doing so they obtained some "covariance” or "correlation”
matrix that is not necessarily positive definite. They then used some transformation to
ensure positive definiteness and obtain an estimator of the covariance matrix; such trans-
formations are detailed in (Rousseeuw and Molenberghs, 1993).

We develop here quite similar ideas. We use rank statistics as robust estimate of correla-
tion between variables and we do a different transformation to ensure positive definiteness
using principal components. Then we propose to add one reweighting M-step to improve
performance.

5.1 Approximation of correlation coefficients

Our idea is to use the Spearman rank correlafioil® approximate the usual correlation
p. We use the following proposition; see (van der Waerden, 197Q.)

Proposition 1 Let X, Y be two normal variables, lep be the correlation coefficient
betweenX andY, letxz andy be two samples ok andY, let R(x,y) be the Spearman
Rank correlation of the two samples. The following estimator is consistept for

R(z,y) = 2sin (%R(:ﬁ, y))
This estimator will be used to construct the correlation matrix coefficient by coefficient.

5.2 Construction of the estimators (SMP and RSMP)

Our construction of simple robust estimators of the mean and the covariance matrix is as
follows:

Let X be then x p matrix of the data, withn observations ang variables.
All vectors will be written in column. Denote by;, i = 1,..,n, the i’ line
(observation) of the matriX and byz/, j = 1, ..,p, the ' column (variable).
Let » anda? be robust estimators of the mean and variance for univariate data.

(i) Construct they x p symmetric matrixS; = SRS where

Y = diag(a(z?)) andRj, = R(a?, a").

(i) Let B be the orthogonal matrix such théit = BAB!, with A diagonal.
Definemn with m; = a((X B)?) andE = diag(a*((X B)?)).

(iif) The simple robust estimators (SMP) for the mean and covariance matfix
arem = Bm andS = BEB!.
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In other words this algorithm computes in (i) some robust but not necessarily positive
definite estimation of the covariance matrix. The "principal components” of this matrix
are then used in (ii) to robustly estimate univariate location and scatter in these directions.
The SMP estimators are eventually constructed from the estimates of location and scatter
obtained on these robust estimates of the principal components by a back transformation
into the original basis.

Remarks:

a) If besides outlier detection variance problematic is of interest we could possibly add
one reweighting step to improve efficiency. Denotelpy (z; —m)'S(z; —m) the
Mahalanobis distances and tebe a weight function, the new estimators (RSMP)
would then just be weighted mean and covariance:

~ i uldi) 5 - > i1 W(di) (i — o) (25 — M)’

TS u(dy) S uldy)

As a weight function we may use Huber weights: R™ — IR", d — u(d) =

d ifd<k _ . . :
L ok wherek is chosen to give an estimator with reasonable perfor-
if d >

mance, or other redescending weights function.

b) In our simulations we usg = median ando = mad with the mad scaled by
a multiplicative constant to be a consistent estimator of the standard deviation at
the Gaussian model. These particular simple (resp. reweighted) estimators will be
denoted bymgyp (resp. mgrsarp) @andSsyp (resp. Srsarp) in the next sections.
Other SMP estimators defined for example with trimmed or Winzorised mean and
variance would have to be explored.

5.3 Properties of the estimators

Lemma 5.1 Suppose that ands? are shift and scale equivariant then the SMP estima-
tors are shift and scale equivariant.

Proof 1. Shift equivariance

Denote byy; = z;+b the shifted observations with= (b', ..., b") € R?,i.eY = X +1,0
where1,, is the n-vector with all components equal to By definition we have that
R(Y) = R(X). As? is shift equivariant we also have tha{Y) = %(X). Therefore
S1(Y) = S1(X) implying B(Y) = B(X). Finally using the assumptions @hands we
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have
m;(Y) = a((YB(Y))) = n((X + 1,b") B(X))?)
= A(XB(X) + L' B(X))’) = f(XB(X))7) + (B'(X)b);
= m;(X) + (B"(X)b);
—
m(Y) = m(X)+ BY(X)b
—
m(Y) = BY)m(Y)=B(X)(m(X)+ BY(X)b) =m(X)+b
and

[1]

Y) = diag(c*((YB(Y))’)) = diag(a*(((X + 1,0")B(X))”))

= diag(c*((XB(X) + 1,b'B(X)))) = diag(c*((XB(X))’)) = E(X)
&
S(Y) = B(Y)ZE(Y)B{(Y) = B(X)Z(X)B'X) = 5(X)

2. Scale equivariance
Denote byy; = az; the scaled observations withe IR\{0}, i.eY = aX. By definition

we have thaR( )= R(X) As5? is scale equivariant we also have thah’) = a3 (X).
ThereforeS, (V) = a25,(X) implying B(Y) = B(X). Finally using the assumptions on
1 ando we have

my(Y) = (Y BY))Y) = fi((aX B(X)))
— af(XB(X))) = am,(X)

_—
m(Y) = am(X)
.
m(Y) = BY)mY)=B(X)anm(X))=am(X)
and
E(Y) = diag(c*(YB(Y)))) = diag(5*(aX B(X))7))

Remark However as the rank statistics do change when the data are rotated, the SMP
estimators are neither orthogonal nor affine equivariant.

The construction was made to make the estimators consistent at the multivariate normal
model:
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Lemmab.2 If 1 and o are consistent estimators for resp. the location and the scale
at the univariate normal modéV (u, o%) then the SMP estimators are consistent for the
location and the shape at the multivariate normal madi¢f:, 32).

Proof By proposition 1 and the fact thatis consistent, we have thAt is a consistent
estimator for the covariance matrix under multivariate normal distribution. By continuity
of the eigenvectors of a matrix, the estimated principal components will be consistent for
true real principal components. TherefdBewill be a consistent estimator of the matrix
that orthogonally diagonalizes the covariance matrix. The assumptiof thadl o are
consistent concludes the proof. |

6 A forward search method

In this section we deal with methods based on the concept of "growing a good subset
of observations”. By "good subset” we mean a subset free of outliers. The idea is to
start with a small subset of the data and then add non-outlying observations until no more
non-outliers are available.

The first criterion to check the outlyingness of one single point in multivariate data can be
tracked back to the article of Wilks in 1963 (Wilks, 1963). The author used the so called
one-outlier scatter ratio as a measure of outlyingness. This ratio is defined as a ratio of
determinants of sample covariance matrices in the following wayxLet., z,, be a set
of points inIR”, denote byr = = > | z; andS = - >" | (z; — Z)(z; — )" the usual
sample mean and covariance matrix. Let’s gde IR? to the set of points and denote by
z, and.S, the new sample mean and covariance matrix. The one-outlier scatter ratio of
Wilks is defined as
_ 5]

5]

where| - | is the determinant function. Wilks studied this criterion and extended it to two

or three added points but did not include any iterating process in his article. The idea of
a forward search algorithm was suggested by Wilks and Gnanadesikan in 1964 (Wilks
and Gnanadesikan, 1964). We report here the description made in (Gnanadesikan and
Kettenring, 1972).

The first step in the procedure is to rank the multiresponse observationsx,, in term
of their Euclidean distancg x; — z* || from some robust estimator of locatiari. A
subset’, of the observations whose ranks are the smalledtl — ;)% is then chosen
and used to compute a sum-of-product matrix

Ag, = Z(a:l — ") (z; — %)

i€Go

R,

The size ofG, is chosen big enough in order to ensure thaj} is not singular. Then att
observations are ranked in terms of the values of the quadratiafgrr*) A, (z;—2*)".
A new subset, of the observations whose ranks are the small&gtl — 3,)% is chosen.
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The steps are then repeated with névandG;. The process is iterated until a "stable”
estimator of the covariance matrix is obtained :

* k * *\1
SGizmiezG:(fﬂi—ﬁ)(%—x),

wherek is some constant chosen to make the estimator unbiased.

Probably due to the lack of computer resources these ideas were not developed any further
by Wilks and Gnanadesikan. Let us remark here that to grow the good subset we need
some ranking of all the observations based on the good ones. It would seem possible
here to use either the Wilks one outlier scatter ratio or the Mahalanobis distances type
criterion. These two rankings are actually equivalent. This result is very well known to
all specialists but we felt that it was worthwhile to write it once in details.

Lemma6.1LetG = {zy,...,x,} € R andB = {y1,...,ym} C IR? be two sets of
observations, leR?,, = 'SG*’”, y; € B, be the one outlier scatter ratios of the elements

e
of B based on3, letd? = MD? . (y:), y; € B, be the Mahalanobis distances of the

zg,5q
elements oB3 based o7, then

—1\?
Ryi:(nn ) (1+n2n_1dz2)

in particular the rankings of the observationsihassociated tdz,, andd, are the same.

Proof To simplify the notations, let us denate= 7, = % >, x; and
S =8 =5 (v — 2)(z; — ).

Similarly fory € B denoter, = = (37, z; + y) and

Sy = % (Zznzl(xz — Zy) (i — jy)t +(y —2y)(y — jy)t) :

1 1 =

We have the trivial relations, = 257+ —5y = 7+ 15 (y—7) and withe = —= (y—7)

WS, = Y7 - a—7— o)+ (y— 5 — )y — e
= (n—1)S—eX " (v —2) = >0 (2 — T)et + nee!
+y—z)(y—2) —ely—12) — (y — T)e" + e
= (n—1)S—0—0+ nee
+(n+1)%c’ — (n+ lee’ — (n+ L)ee’ +ec'
= (n—1)S+n(n+1)ee

Sy =15+ L(y—z)(y—1)
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A classical result of determinants computation states that fonaxy: square matrix4
and anyn vectorb we have

|A+bb'| = |A|(1+ b A7'D).
Applying this result to the last equality gives
Syl =[S (14 5 ly —2)' 32557 (y — @)
= ()8 + 5w —2)'S vy - 7).
And finally

Ry = o= () 1+ 250 -2 s (v - 2))
- (%)p(l_{' 21i)' n

After the articles of Wilks and Gnanadesikan almost 30 years will pass before the interest
for a forward search algorithm grew up again. Articles by Hadi (Hadi, 1992) and Atkinson
(Atkinson, 1993) will start to demonstrate the efficiency of such methods. In both articles
the growth of the "good subset” is one point at a time using Mahalanobis distances to rank
the observations. Several articles will follow developing faster and more sophisticated
methods based on the same idea. The last two and most efficient were developed by
Billor, Hadi and Velleman (Billor et al., 2000) and Kosinski (Kosinski, 1999). Both will

be presented in the next two subsections. The third subsection will present a comparison
that was made to select the most efficient one for our purpose.

6.1 BACON algorithm

The BACON algorithm is presented in (Billor et al., 2000). Two versions are included:
one for multivariate data in general and one for regression data. Our interest here will
be the first case. The BACON acronym (Blocked Adaptative Computationally-efficient
Outlier Nominators) was chosen after the last name of Sir Francis Bacon who wrote in
1620:

"Whoever knows the ways of Nature will more easily notice her devia-
tions; and, on the other hand, whoever knows her deviations will more
accurately describe her ways”

The idea of the algorithm is similar to the ones presented above. We shall present the
detailed algorithm and some properties underlined by Billor et al.

The algorithm  The first step will be the choice of an initial basic subset of "good data”.
Two versions are proposed. Let us first describe these two initializations and then state
the steps of the algorithm.

The data are stocked in a mattk of n rows (observations) anacolumns (variables).
The assumption on the data is that they should be unimodal and roughly elliptical sym-
metric.
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Version 1 (V1) (Initial subset selection based on Mahalanobis distahces
Fori =1, ...,n compute the Mahalanobis distances

di(z,9) = \/(x; — 2)tS~ Yy — Z), i=1,..,n

wherez andS are the mean and covariance matrix of thebservations. ldentify
them = cp observations with the smallest valuesdpf Nominate these as a po-
tential basic subset. is an integer chosen by the data analyst and set by default to
3.

Version 2 (V2) (Initial subset selection based on distances from the meglians
Fori = 1,...,n compute|| z; — med ||, wheremed is a vector containing the coor-
dinatewise mediany; is the ith row of X and|| - || is the Euclidean norm. Identify
them = c¢p observations with the smallest values|af; — med ||. Nominate these
as a potential basic subset.

In both versions ifS¢; (the covariance matrix of the selected data) is singular then increase
the basic subset by adding observations with smallest distancesgmts full rank.

6.1.1 Steps of the algorithm

Step 1 Select an initial basic subsétof sizem using either V1 or V2.

Step 2 Compute the discrepancies

di(Zc, S¢) = \/ (2 — T6)'S5 (@i — T),  i=1,.m
wherez; andSg are the mean and covariance matrix of the observatio6s in

Step 3 Set a new subsét to all points with discrepancy less thag),. xp./x. wherexg’ 5
is thel — 3 percentile of the chi square distribution withdegrees of freedom,
Cnpr = Cnp + Cpy 1S @ COIrection factor with

chr = max{0,(h—r)/(h+71)}, h=[(n+p+1)/2], r = |G|

+1 1 +1 2
— 1+ 27y —1+ 27y .
n—p mn—h—p n—p n—1-—3p

Cnp

Step 4 The stopping rulelterate Steps 2 and 3 until the size of the basic subset no longer
changes.

Step 5 Nominate the observations excluded by the fiials outliers.
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6.1.2 Properties of the algorithm

We report here properties of the methods presented in (Billor et al., 2000).

This outlier detection method is computationally efficient. The version with starting point
V1 is affine equivariant but less robust. Nevertheless simulations show that it has an
empirical breakdown point ne@0%. It has a lower computational cost than the other
version. The second one with starting point V2 is more robust but only nearly affine
equivariant. In simulation trials it offered a breakdown point in excesi®#f.

The small computing effort required by the BACON algorithm, and in particular the fact
that this effort grows slowly with increasing sample size, makes this method particularly
well-suited for large datasets.

6.1.3 Remark and modification of the step 3 selection criteria

The selection criteria of step 3 is designed for a multivariate normal distribution. In fact
under normality it is well known that the Mahalanobis distances follow asymptotically a
x? distribution withp degrees of freedom. Suppose all points are derived from a multivari-
ate normal distribution and that the Mahalanobis distance is computed using the all sample
mean and covariance matrix, therefore testing the number of pointsWuidfiz;) > x2 ,

should end up with about)0« percents of points detected. The test defined in step 3 is
designed in a different way, testing the number of points Wit (z;) > X?),a/n' Us-

ing Bonferroni inequalities we can show that under normality this test will not detect any
point with probabilityl — « (i.e. P(MD(z;) < X3,/ Vi € {1,....,n}) = 1 —a). Now

if this test defined this way detects very rarely points that are not outliers it also reduces
its sensitivity to close outliers whenbecomes large. As we shall have to deal with very
large datasets and we are worrying about contamination close to the "good data” we shall
prefer a test usinqgva instead ofxfm/n. This solution decreases the number of non de-
tected outliers but accepts that under normality ald@0tx percents of good points are
detected as outliers. As BACON algorithm is computationally cheap the analyst should
always have the possibility to run the method with both tests and compare the results.

6.2 Kosinski algorithm

In 1999 Kosinski tried to push further the ideas of Hadi and Atkinson to create a method
that could cope with high contamination (Kosinski, 1999). We shall present the algo-
rithm in detail after having given several new notations and definitions required for it's
understanding. Finally we shall report some conclusion drawn by Kosinski.

Definitions and notations As usualn observations, ..., z,, € IR? are considered. For
anyE C D ={1,...,n} the number of element i will be denoted by E|. A partition-
based Mahalanobis distance of element®a$ given by a partitior{G, B) of D and the
distances

MDl(G, B) = (:Ez — fg)t(cfg‘pSG>il<Ii — fg).
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where the constani,, is defined as in BACON and was originally suggested by Hadi in
(Hadi, 1994). Ana-partition of D is a partition ofD such that

1. |G| >h=[(n+p+1)/2];
2. MDy(G,B) > x; , fori € B,
3. max MD;(G,B) < min MD;(G, B);
4. if |G| > hthenM D;(G, B) < x; , foralli € G.
The levely of ana-partition is defined as = magx P,(G, B) where

P,(G, B) = Prob{x;, > MD;(G, B)}.

Remark here that by property 2 the lewebf an a-partition has to satisfyy < a. This
fact will be used in the algorithm. The pd¥tis named for the "good data points” and the
part B for the "bad data points”.

The algorithm is rather sophisticated. Before giving all the technical steps that might not
help greatly the understanding of the method we shall try to clarify the progress of the
method.

6.2.1 Progress of the algorithm

The algorithm will try to find thex-partition with all the good points i’ and all the bad
points inB.

1. Start The ideal algorithm would start with all the so called elemental partitions
(|G| = p+ 1) and would try to construct the sougtpartition from each of them. But

this solution would be computationally too expensive, therefore only a random subset
of all these elemental partitions will be used. The number of these starting elemental
partition, denoted by (n, p, 0.99, ¢), will ensure with a.99 probability that at least one

of the chosen elemental partition has its "good pé#rtfree of outliers § denotes the
number of good points in the full dataset).

2. Forward search (outer cycle) The algorithm then applies to each of the selected
elemental partition the classical forward search algorithm (Hadi, 1992) adding observa-
tions one by one until it reaches anpartition. J(n, p, 0.99, g) a-partitions are obtained.

At that point the algorithm may have obtained the sougpfrtition as well as non-valid
a-partition (obtained if the initial partition already contained outliers). A treatment of the
resulting partitions is therefore needed.
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3. Treatment of the a-partitions  Three different cases can occur:

a) All obtaineda-partitions are trivial B = ()). In that case the algorithm declares no
outlier at thex level.

b) Only one non-trivial partitioG, B) is obtained. In that case the algorithm declares
the points inB as outliers at ther level.

c) Different distinct non-triviakv-partitions are obtained. Here is the point where the
algorithm differs from other existing ones. Kosinski argues that simply choosing
one of the patrtition using for example a criteria like minimizing a volume (like
MCD or MVE) may occasionally fail to detect the correct outliers in particular
under high contamination. Therefore he eliminates first the more extreme outliers:
the algorithm computes all the levels of thesgartitions and select the minimum
value~ (recall thaty < o). The algorithms then applies again the classical forward
search methods to the obtaine¢partitions but this time to obtaim-partitions and
it goes back to the beginning of 3 (inner cycle).

4. Treatment of detected outliers If no inner cycle have been used all the outliers are
detected at the level and the algorithm proceeds to the final check. If one or more inner
cycles have been used then all the outliers are detected kvel withy < « therefore

the algorithm removes them from the data and starts all over again at point 1 but with a
smaller dataset.

5. Final check If several outer cycle have been used (i.e.dhgartition has been found

on a smaller dataset after removing the more extreme outliers) then the algorithm applies
one more time a forward search to this partition to be sure to obtairartition of the

whole dataset (in simulations this check has never changed anything).

Comments By taking several starting partitions Kosinski tries to solve the main prob-
lem of the classical forward search method, namely the choice of a small subset of good
points. His treatment of the possible distinct found partitions is not based on a criteria like
MVE or MCD but first removes the more outlying points and then reapplies the algorithm.
We shall see later that the simple forward search methods are rather fast algorithms there-
fore clearly the speed of Kosinski's method will depend on the nuniberp, 0.99, ¢g) of
starting partitions. As an example, using Kosinski’'s formula, we computed the number
of starting partitions witm = 10’000 observationsg = 9’000 good points angh = 100
variables. We got .J(10000, 100, 0.99,9000) = 203'840. This number shows that we
have to be aware that with large dataset we might have to take a probability smaller than
0.99 : for exampleJ (10000, 100, 0.95,9000) = 132'601.

We are now able to describe the algorithm with all the technical details.
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6.2.2 The algorithm

Even if the author does not state any assumption required by the algorithm it is clear that
as the classical ideas of a forward search methods are used we should assume that the data
is unimodal and roughly elliptical symmetric.

Consider type | errov = 0.01 and assume that there are at madst- h outliers. Start
with outer cycle numbem = 0 andD(0) = {1,2,..., N}.

Step 1 Incrementm by one and set the inner cycle numberndto= 0. Randomly form
J(|D(m — 1)|,p,0.99, h) distinct elemental (i.e|G| = p + 1) partitions of data
D(m —1). To each elemental partition apply the classical forward search algorithm
adding one observation at a time and stop when you getgertition of D(m —1).

Let K'(m,w) be the number of resulting distinetpartitions. If ' (m, w) = 0 then
defineD(m) = D(m — 1) and go to step 5, otherwise move to step 2.

Step2If K(m,w) = 1, denote the single available partition @ (m — 1) by
(G(m), B(m)) and go to step 4, otherwise move to step 3.

Step 3 Denote the levels of thé(m,w) available partitions byy,(m,w) with k£ =
1,..., K(m,w). Chose the partition corresponding to the most significant level
y(m,w) = min ~v&(m,w). Apply the forward search procedure to all available

partitions with the new = ~(m, w). Incrementw by one. Denote by (m, w) the
number of resulting distinet-partitions of D(m — 1) and return to step 2.

Step 4 Form the reduced data(m) = G(m). If w > 1, i.e. step 3 was used, then return
to step 1 as long g&-| > h, otherwise (v = 0 or |G(m)| = h) move to last step.

Step 5If D(m) = {1, .., N} declare no outlier. If observations were removed only during
the first outer cycle, declar8(m) as outliers. If observations were removed in
more than one outer cycle, then apply one last time the forward searctawith
the partition(D(m), D — D(m)) of D and declare as outliers the "bad part” of the
resulting partition.

6.2.3 Properties

Kosinski does not state many properties of its algorithm. It seems to have empirically a
very high breakdown point but may be computationally intensive for large datasets due to
the large number of elemental partitions. Simulations were run to compare the algorithm
to an hybrid method given by Rocke and Woodruff (Rocke and Woodruff, 1996). Kosin-
ski's methods performed better than the Rocke and Woodruff's one. These tests are used
in the next section to select which method between Kosinski and BACON will be chosen
for the rest of the study.
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6.3 Comparison between BACON and Kosinski

Kosinski's method and Bacon have been compared individually to the original forward
search methods (Hadi and Atkinson) and have performed better. As we wished to study
only one forward search method in the following, we ran some tests to select the most
efficient one. We used the tests ran by Kosinski himself in his 1999 article. That saved us
the time to implement the Kosinski algorithm. Let us start by describing these simulations.

6.3.1 Description of the tests

Recall that these tests are designed and described in (Kosinski, 1999). For each test
T = 100 datasets are generated wittigood data” points and outliers, i.eN = g + b
and the contamination fractioh= b/N. The performance is evaluated on three criteria:

T T T

1 1 m; 1 S;
:—E 1(m; =0), :_E — andp; = — =,
P1 T (m 0) P2 T b P3 T 2y

i=1 =1

wherem; is the number of undetected outliess,the number of swamped "good obser-
vations” andl(m; = 0) = 1 if and only if m; = 0. In other wordsp; is the proportion
of simulation runs which resulted in identification of all the outliess,is the average
proportion of undetected outliers, apgl is the average proportion of swamped "good
observations”. A perfect method would ggt= 1, p, = 0 andps close to its nominal
significance levelv. Remark here that, < 1 — p; and that the equality occurs only when
in every run where not all the outliers were detected actually none was detected.

Initial tests were run to check if the value pf is close to the nominal significance level
when no outlier is present. Tests were therefore run with 100 andb = 0. The
significance level was set to= 0.01 and tests were run in dimensions frgm= 2 to 10.
Table 1 shows the results.

Two similar series of tests were then run, one in dimengioa 2 (see Table 2) and
one in dimensiorp = 5 (see Table 3). The number of "good observations” was fixed
atg = 100, the contamination fraction varies frofn= 0.10 to 0.45 by steps 0f0.05.
The "good points” were generated from a multivariate normal distributip(0, o71,,),

and the outliers froniV,(d - 1,,031,), wherel, is the p-vector ofi’s and I, the identity
matrix. The tests were run with} = 40, o2 = 1 andd = 20, 25 or 30. The significance
level was set tev = 0.01.

6.3.2 Results of the tests

The following tables display the results obtained by Kosinski for his algorithm (KOS)
and reported in his paper (Kosinski, 1999) and the ones we obtained for BACON with
non-robust start (V1) and robust start (V2).
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Table 1: Values of ps in initial tests, significance level setto o = 0.01

Method| p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10
KOS | 0.012 0.009 0.010 0.009 0.007 0.009 0.009 0.008 0.007
V1 0.012 0.011 0.011 0.009 0.008 0.007 0.007 0.006 0.006
V2 0.011 0.011 0.010 0.008 0.009 0.008 0.008 0.007 0.006

Table 2: Tests in dimension p = 2, significance level set to a = 0.01

Values of D1 D2 D3
f KOS V1 V2 | KOS V1 V2 | KOS V1 V2
Distanced = 30
0.45 1.000 0.970 1.000 | 0.000 0.030 0.000 | 0.013 0.013 0.011
0.40 1.000 0.990 1.000 | 0.000 0.010 0.000 | 0.011 0.011 0.013
0.35 1.000 0.990 1.000 | 0.000 0.010 0.000 | 0.011 0.012 0.014
0.30 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.012 0.014 0.012
0.25 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.012 0.012 0.014
0.20 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.012 0.015 0.014
0.15 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.010 0.015 0.013
0.10 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.013 0.012 0.011
Distanced = 25
0.45 1.000 0.860 1.000 | 0.000 0.140 0.000 | 0.012 0.226 0.015
0.40 1.000 0.930 1.000 | 0.000 0.070 0.000 | 0.010 0.015 0.015
0.35 1.000 0.890 1.000 | 0.000 0.110 0.000 | 0.010 0.023 0.014
0.30 1.000 0.970 1.000 | 0.000 0.030 0.000 | 0.011 0.015 0.014
0.25 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.012 0.012 0.013
0.20 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.012 0.013 0.012
0.15 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.011 0.012 0.013
0.10 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.009 0.012 0.014
Distanced = 20
0.45 0.530 0.700 0.810 | 0.470 0.300 0.190 | 0.428 0.054 0.022
0.40 0.970 0.620 0.990 | 0.030 0.380 0.010 | 0.036 0.053 0.014
0.35 0.990 0.730 1.000 | 0.010 0.270 0.000 | 0.019 0.018 0.013
0.30 1.000 0.890 1.000 | 0.000 0.110 0.000 | 0.010 0.013 0.013
0.25 1.000 0.920 1.000 | 0.000 0.080 0.000 | 0.013 0.013 0.011
0.20 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.009 0.014 0.011
0.15 1.000 0.980 1.000 | 0.000 0.020 0.000 | 0.010 0.013 0.013
0.10 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.013 0.020 0.011

6.3.3 Conclusions of the tests

The initial tests confirm thaps is very close to the nominal significance level for all
methods.
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Table 3: Tests in dimension p = 5, significance level setto o = 0.01

Values of D1 D2 D3
f KOS V1 V2 | KOS V1 V2 | KOS V1 V2
Distanced = 30
0.45 1.000 0.000 1.000 | 0.000 0.996 0.000 | 0.008 1.000 0.010
0.40 1.000 0.000 1.000 | 0.000 0.998 0.000 | 0.010 0.806 0.008
0.35 1.000 0.000 1.000 | 0.000 1.000 0.000 | 0.008 0.806 0.012
0.30 1.000 0.200 1.000 | 0.000 0.800 0.000 | 0.010 0.102 0.012
0.25 1.000 0.990 1.000 | 0.000 0.010 0.000 | 0.008 0.013 0.011
0.20 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.009 0.011 0.010
0.15 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.010 0.009 0.012
0.10 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.011 0.011 0.009
Distanced = 25
0.45 1.000 0.000 1.000 | 0.000 0.996 0.000 | 0.008 1.000 0.009
0.40 1.000 0.000 1.000 | 0.000 0.999 0.000 | 0.009 0.999 0.010
0.35 1.000 0.000 1.000 | 0.000 1.000 0.000 | 0.009 0.883 0.010
0.30 1.000 0.110 1.000 | 0.000 0.890 0.000 | 0.010 0.110 0.011
0.25 1.000 0.950 1.000 | 0.000 0.050 0.000 | 0.008 0.013 0.012
0.20 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.009 0.010 0.012
0.15 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.007 0.010 0.012
0.10 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.009 0.008 0.010
Distanced = 20
0.45 0.690 0.000 0.980 | 0.310 0.996 0.020 | 0.279 1.000 0.012
0.40 1.000 0.000 1.000 | 0.000 0.999 0.000 | 0.008 0.999 0.010
0.35 1.000 0.000 1.000 | 0.000 0.999 0.000 | 0.008 0.872 0.011
0.30 1.000 0.010 1.000 | 0.000 0.990 0.000 | 0.009 0.154 0.010
0.25 1.000 0.880 1.000 | 0.000 0.120 0.000 | 0.008 0.014 0.010
0.20 1.000 0.920 1.000 | 0.000 0.080 0.000 | 0.010 0.012 0.013
0.15 1.000 0.950 1.000 | 0.000 0.050 0.000 | 0.009 0.012 0.010
0.10 1.000 1.000 1.000 | 0.000 0.000 0.000 | 0.008 0.012 0.010

The main tests showed clearly that BACON with a non-robust start (V1) is not as efficient
as Kosinski’'s method (KOS). Looking for example at the tests run with2 andd = 25

we see that V1 is no longer perfect when the contamination proportion is higheriftan
while KOS remains perfect. With the same distance in dimensierb V1 breaks down

even with25% of contamination. This breakdown comes from the fact that the overall
mean is attracted more and more by the contamination cloud when the latter grows. It is
even so attracted by it in some cases that V1 will end by considering the outliers as "good
data” and the remainder as "outliers”: you can see this particularity for example in the
test withp = 5, d = 30 andf = 0.45 wherep; = 1, which means that all good points are
always considered as outliers.

On the contrary the main tests showed that BACON with a robust start (V2) is even more
efficient than Kosinski’s algorithm. V2 is almost perfect in all cases. It only omits a few

33



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

outliers whend = 20 and the contamination is very high= 40 or 45. But in any cases

it is as efficient as KOS. Moreover, even if we did not implement KOS we can see that
V2 has to be quicker: for example Kosinski presented the results on the Bushfire dataset
(Maronna and Yohai, 1995) and showed that it took several outer and inner cycle to find
the outliers; BACON tookt iterations (in 0.12s in S-Plus on a 600MHz PC with 128Mb
RAM) to get the same outliers (see next section).

6.3.4 Summary

Simulations with the same test bed as Kosinski used (but of course with different real-
isations) showed that BACON algorithm with a robust start is superior to the Kosinski
algorithm. For the rest of this study, BACON with a robust start was selected as our for-
ward search method. In all tests ran by Kosinski to show the superiority of his algorithm
over the hybrid method designed by Rocke and Woodruff in (Rocke and Woodruff, 1996)
BACON with a robust start performed always as well and even better when the contam-
ination is high and relatively close to the good data. BACON is a very fast algorithm
and is very efficient when the good data comes from some unimodal multivariate normal
distribution (in that case it's the best algorithm we have tested). BACON with a robust
start has a very high empirical breakdown point and is computationally very efficient but
is not affine equivariant (see the introduction for some comments on that fact).

6.4 A new graphical tool based on forward search to analyze outliers

The methods exposed above give us tools to detect outliers by splitting the data in two
parts: "good” and "bad” points. Robust estimates of the mean and covariance matrix are
obtained by taking the sample mean and covariance matrix of the subset of the "good
points”. These estimates allow us to calculate the Mahalanobis distances and identify
outliers but do not give any more information on these outliers. We are proposing here
to use a plot of the oldest criterion on outlyingness to get a more precise overall picture
of the outliers situation. Atkinson used also graphical techniques in his article but only
as a detection tool: he kept for all points the history of the Mahalanobis distance

As he used a forward algorithm growing one observation at each step he had to stock
n x (n — k) distances where is the number of observations used for the first estimate

of the covariance matrix. What we propose here is to memorize at each step only the
Wilks’s one outlier scatter ratio of the added observation. This will give us an idea on the
growth of the ellipsoid volume when the observation is added. To visualize this "Volume
History” (VH) we plot the percentage of growth at each step for the second added half of
the data. To illustrate this we used the VH of one example of the above testgi €ase

d = 20, f = 0.25. We plotted first the VH of such a set without outliers and then the one
generated for the test. We clearly see on the outlier-free VH (see Chart 1) that only one
point seems suspicious with a volume growth of ahi@it which is higher than the other
ones. On the other hand the second VH history (see Chart 2) shows a typical pattern of
concentrated contamination: we see an "hyperbole-shaped” curve indicating the presence
of clear outliers close to each other. The first detected outlier has a volume growth of
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Chart 1: Volume history for a multivariate normal distribution with
100 points in dimension 5
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more thard0%. This pattern is exactly the same with a real point mass contamination.
VH gives us a general picture of proximity of the outliers to each other. Let us look at our

Chart 2: Volume history for a multivariate normal distribution with 75
points in dimension 5 contaminated by 25 points as in Kosinski's test
with d = 20
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favorite example of the Bushfire data (see the second chapter) to see the utility of VH (see
Chart 3). The first outlier seems isolata@) with a big growth rate§7%) followed by
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Chart 3: Volume history for the Bushfire data
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observatiori also isolated 26%). Then outlier11 (221%) might be close to outliet0
(70%). Similarly 8 (144%) might mask9 (40%) while outlier31 seems isolated®20%).
Finally observatior82 (402%) seems to lead by far a concentrated contamination with
observations3 to 38.

The Bushfire dataset h&s observations in dimensiohand allows a two dimensional
plot (in variable2 and 3) that reveals almost all the outliers (see Chart 4). On this
scatter plot we see that the VH diagnostic is pretty accurate. ObsernVatsactually

far from observatiori0 and 11 on other variables thad and 3, 31 is outlying also on
other variables, and2 is not very close t®33 — 38 but indicates the direction of the
contamination.

The disadvantage of the Volume History is of course the speed of the algorithm. In fact
using the relation of Lemma 6.1 the computation of the Wilks’s one outlier scatter ratios
correspond to the computation of the smallest Mahalanobis distances, therefore the speed
of such an algorithm is the same as the first versions of Hadi and Atkinson of forward
search methods. But with moderate size the VH could give interesting information on the
outliers.

7 A projection pursuit method

Among the methods for computing a robust estimate of the covariance matrix for a uni-
modal elliptical distribution some of them are using a simple geometrical idea: "If a point

is a multivariate outlier, then there must be some one-dimensional projection of the data
for which the point is a univariate outlier”. These methods fall under projection pursuit
techniques. Two different approaches are here possible. The first approach computes
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Chart 4: Bushfire dataset
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directly estimates of the eigenvectors and eigenvalues of the covariance matrix using a
robust measure of univariate scatter. This method of robust principal component analysis
has been mentioned by Huber (Huber, 1985), developed by Li and Chen (Li and Chen,
1985) and studied further by Croux and Ruiz-Gazen (Croux and Ruiz-Gazen, 2000). The
other approach use the geometric idea to find the "interesting directions for outlyingness”,
to identify outliers and then to compute an estimate of the covariance matrix using this
information. This second approach gave birth to the first affine equivariant multivariate
estimators of location and scatter robust enough to tolerate Gp%oof outliers in the
sample before they break down. They were discovered independently by Stahel (Stahel,
1981) and Donoho (Donoho, 1982).

In this work only the second approach is followed. It was selected because it has al-
ready been used in official statistics by a national statistical office (Statistics Canada) in
(Franklin et al., 2000). Moreover at the beginning of that study we were not aware of the

existence of the new algorithm given by Croux and Ruiz-Gazen and therefore didn’t com-

pare its performances to the Stahel-Donoho method. We implemented a modified version
of the original Stahel-Donoho estimator, starting from a version given by Patak (Patak,

1990) and reported in (Franklin et al., 2000).

7.1 Modified Stahel-Donoho (MSD) estimators

We start by recalling the construction of the original Stahel-Donoho (SD) estimators, and
some properties obtained by Maronna and Yohai in (Maronna and Yohai, 1995).
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7.1.1 Original SD estimators and some properties

The SD estimators are defined as weighted mean and covariance matrix, where each has a
weight that is a function of an outlyingness measure, with points having large outlyingness
receiving small weights.

As usual letX be then x p data matrix withn observations#;, ..., x,,) andp variables. Let
w ando? be affine equivariant univariate estimator of location and scatter, the outlyingness
measure-; of each observation; is given by

latx; — p(a* X?)|
ri= su
A o(atX?)

Eachr; measures the maximum standardized one-dimensional deviation from the esti-
mated locationu for all directions inIR?. Then the weights are computed as

u; = u(r;) whereu : RT — IR* is a weight function

The SD estimators are then defined as

Z?:l U; T andSSD _ Z?:l Ul(l’, — TTLSD)<.TZ' — mSD)t

msp = —=n———
Z?:l i Z?:l Ui

By definition and by the assumptions prando? the estimators are affine equivariant.
Actually if  ando? are the usual mean and variance and i the identity then the

SD estimators are the usual sample mean and covariance matrix. Stahel (Stahel, 1981)
showed that the SD estimators have an asymptotic breakdown pdiy2 at continuous
multivariate model ifu ando have the same property and Donoho (Donoho, 1982) de-
rived the finite-sample breakdown point in the case in which median ando = mad.

In (Maronna and Yohai, 1995) Maronna and Yohai studied the finite sample breakdown
point of the latter estimator but with the outlyingness measutaken only on a ran-

dom subset of sizéV of all a € IR? with || a ||= 1. They computed the siz& needed

for the breakdown of this approximate estimator to be as good as the usual one with
a probability 0f0.999. They showed thaivV grows exponentially wittp implying un-
avoidable computing difficulties for large For example, fop = 4,6,8, and10 one
needsV = 210, 1’050, 5000, and26'260. Their study also determined what was the best
weight function to use according to their quality measures (biases and efficiencies) and
the following "Huber-like” weight was selected:

1 if r <
u: RY —IRY, r—ulr) = 9 . h=e Withc:\/X;%o.%
(¢)" ifr>c ’

7.1.2 Modified SD estimators

We start by giving the modified Stahel-Donoho estimators proposed by Patak (Patak,
1990) as reported and used in (Franklin et al., 2000). This construction is as follows:
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1. The data are centered using theestimate of the location vector. THg-estimate
of the location vector is defined as the solution of the minimization problem:
miny Y ., ||z; — T'||2. Itis often named the spatial median.

2. The initial weights are all settoone; = 1,7 =1, ..., n.

3. Fork = 1tom (m usually set tal0) do

a) Randomly generate a unit vectgre IR” using a uniform distribution on the

unit sphere inR?.

b) Calculatev,, ..., v, in such a way that the;'s form an orthonormal basis of

IRP
c) Fori=1,...,nandj =1, ...,p compute

_ [viz; — med vl X")|
madv; X?)

Tij

Finally compute

!

<

E i
=]

<

j=1""4

d) If uf < u; then setu; = u?.

and thenr;; =

Tij if 0 < i < 2.5

4. Compute the weighted estimates of location and scatter using the weights

5. Reset all weightstoone; =1,i=1,...,n.

6. Redo the loop in 3. but this time by replacing the random orthogonal basis (points
a) and b)) by the computation of the principal components of the current weighted
covariance matrix. Stop when the weights do not change significantly (in practice

one iteration has been found to be sufficient).

Our version of the modified Stahel-Donoho will differ in several points from the Patak’s

algorithm:

(i) As the computation of the weights use some centering on the one-dimension pro-

jections, the weights are location invariant. Therefore the weighted estimates of

location and scatter are location equivariant and the initial centering is useless. We

removed it from our algorithm.

(i) Following Maronna and Yohai we decided to use "Huber-like” weight function in-

stead of the non-continuous weight function proposed by Patak (see Chart 5 for the

picture in dimension 1), i.e. we change the computation ofthito:

. Tij if 0 S Tij <c .
T = with ¢ = /x% ;05
ij { i if ¢ < ris Xp,0.95
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Chart 5: Weights used by Patak and "Huber-like” weights in dimen-
sion 1
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(iii) Following Maronna and Yohain is set by default ton = |exp(2.1328 + 0.8023 =
p)/p]. Of course in high dimension the user might have to choose a much smaller
m.

(iv) We did not reset the weights to one in 5. The reason here is that according to our
experience outliers that are not on the principal components directions might be
masked if we do reset the weights.

8 A minimization of scale method

After Stahel and Donoho, Rousseuw (Rousseuw, 1984), (Rousseeuw, 1985) intro-
duced a second affine equivariant estimator with maximal breakdown point, by putting
"T(X) =center of the minimal volume ellipsoid covering (at ledspoints of X, where

h can be taken equal t0:/2| + 1. This estimator is called the minimum volume ellip-
soid estimator (MVE). The corresponding covariance estimator is given by the ellipsoid
itself, multiplied by a suitable factor to obtain consistency at multivariate normal data.
Rousseuw noticed however that for= 1 the MVE reduces to the shortest half, 50X)
becomes the one-dimensional least median of squares which convergegijlsee The-

orem 3 in Section 4 of Chapter 4 in (Rousseeuw and Leroy, 1987). Assuming that MVE
will not have a better rate Rousseuw then proposed to generalize the least trimmed squares
which converges like:'/?, see Theorem 4 in Section 4 of Chapter 4 in (Rousseeuw and
Leroy, 1987), and ended up with the minimum covariance determinant estimator (MCD)
defined this time by minimizing the determinant of the covariance matrix computed from
the h points. This estimator will be included in this study or actually a reweighted form
of it that is standard implemented in S-Plus.
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8.1 Reweighted minimum covariance determinant estimators
(RMCD)

As usual letX be a sample ofi observations4;, ..., xz,,) with p variables. The MCD
estimators are determined by selecting the supset..., z;, } of sizeh which minimizes

the determinant of the covariance matrix computed from that subset. The location and
scatter estimators are then defined as

h

1
marep = 3 E x;; andSyep = ¢,
j=1

SRS

h
Z(iﬂij - mMCD)(%j - mMCD)t
j=1

with ¢, the consistency factor at multivariate normal. Nowan be chosen by the user
determining the breakdown point of the estimatork if= n(1 — ) the estimator has a
breakdown point off. Typically 5 is sett00.5 or 0.25. As itis usually not feasible to find

the exact minimum several algorithms have been proposed to approximate the solution.
The best one was proposed by Rousseuw and van Driessen (Rousseeuw and van Driessen,
1999), itis called the FAST-MCD algorithm. The major drawback of the MCD estimators
remains its low efficiency at the normal distribution (Croux and Haesbroeck, 1999). To
overcome this problem a reweighting step can be added to the MCD estimators. Weights
are computed using a cut-off value on the Mahalanobis distances:

y — 1 if (ZEz — mMCD)tS]T;CD(xi - mMCD) < X?),a
0 otherwise

Then the reweighted minimum covariance determinant estimators (RMCD) are defined
by
2?21 Ui 2?21 uz<$1 - mRMCD)(fEi - mRMCD)t

MepMep = w=— andSgyep = d
Z?:l ;i g >

i=1 Wi

with d,, the consistency factor at multivariate normal. The RMCD estimators inherit the

breakdown point of the MCD estimators. The RMCD estimators are standard imple-
mented in S-Plus as the "cov.mcd” function with= 0.025.

8.2 FAST-MCD algorithm

We report here the FAST-MCD algorithm as described in (Rousseeuw and van Driessen,
1999). We shall need this description in the next sections when we’ll adapt the algorithm
to sampling weights and missing values. In this algorithm a C-step is like a BACON-step
but with the number of point in the subset fixed: if you have a subsgtatfservations,
compute the Mahalanobis distances of all the points in the set using the mean and covari-
ance matrix based only on the subset and select a new subset éfcresponding to

the k smallest obtained Mahalanobis distances.

1. By default set = (n+ p+1)/2 or let the user choose, report the breakdown point
of (n —h+1)/n.
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2. If h = n return the usual mean and covariance matrix and stop.

3. If p = 1 compute the exact MCD using the algorithm given in (Rousseeuw and
Leroy, 1987), pages 171-172, then stop.

4. If n < 600 then

e repeath00 times:

— construct an initial subset of sizestarting fromp + 1 randomly cho-
sen points then adding randomly one point at a time until the covariance
matrix of this subset is non-singular and finally selecting/iremallest
Mahalanobis distances based on these randomly chosen points,

— carry out two C-steps,

e among thes&00 subsets select thi) with lowest determinant of the covari-
ance matrix,

e apply C-steps until convergence to all these subsets,

e among thesea0 subsets select the one with lowest determinant of the covari-
ance matrix,

e report the meamn and covariance matri¥ based on that subset and go to
point 7.
5. 1f 600 < n < 1500 then

e construct as many disjoint random subsets as possible with all these subsets
being of sizeu,,;, > 300 (orng,,+ 1), denote by the number of these subsets
(le.2 <k <4),

e inside each subset repe@l/k times:

— construct an initial subset of siZze,;, = ns,h/n asin point 4,
— carry out two C-steps, using,,, andh,
— keep thel0 subsets with lowest determinant of covariance matrix,

e from thesel 0% subsets of sizé,,;, form 10k subsets of sizé using the small-
est Mahalanobis distances,

e apply two C-steps to all these subsets,

e among thes&0k subsets select thé) with lowest determinant of the covari-
ance matrix

e apply C-steps until convergence to all these subsets,

e among thesé0 subsets select the one with lowest determinant of the covari-
ance matrix,

e report the meamn and covariance matri¥ based on that subset and go to
point 7.
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6. If n > 1500 select a random subset of size = 1499, then apply point 5 to that
subset withn; andh; = 1499k /n except that when the la$t subsets of sizé,
are selected (fifth step) their sizes are extendeld igsing Mahalanobis distances
and the last steps are applied to the all dataset.

7. In order to obtain consistency under multivariate normal distribution set

med (M D, s(z;))

2
Xp,0.5

S

mycp = M and SMCD =

8. To improve efficiency under normal distribution set finally

n n .
MRMCD = ﬁ andSR]\/[CD = szl Z( ¢ gj\ﬁ D)( ? RM D)
=1 "1

with
_ 1 if MDmMCD,SMCD (xl) < X270-025
0 otherwise

9 A nonparametric method

9.1 Introduction and motivation

As noticed in the introduction our first intention was to include diverse nonparametric or
semi-parametric approaches of outlier detection like data depth (Liu et al., 1999) in this
study but we had to renounce by lack of resources. Nevertheless we are proposing a new
non-parametric method for the detection of multivariate outliers, the Epidemic Algorithm
(Hulliger and Beguin, 2001).

The idea of the Epidemic Algorithm (EA) is the following: We want to detect outliers in a
population ofn points inp-dimensional space. We start a simulated epidemic from a well
chosen point. The epidemic will spread through the population and eventually all points
will be infected. In this process the outliers should either not be infected or be infected
late due to their isolation. We use the infection time to judge on the outlyingness of a
point. In other words the epidemic defines a random mapping from the population into
the time axes which should give high values for outliers.

9.2 Distances, center and infection probability

The probability of transmission of the epidemic depends on the distance between obser-
vations and decreases with it. The transmissions are independent. The time is discrete.
An infected point can transmit the epidemic as long as the epidemic lasts.
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Denote the population with/. The points are described by the vector valued variable
x; € IRP, (i =1,...,n). The distance between poiritand; is the Euclidean distance:

» 1/2
dij = d(2;, ;) =[|z;i — j[]2= <Z(m - ijk)2> = ((z: — m)" (s — ;)%

k=1

The matrix of these distances/is To avoid unbalanced effects of the different variables,
their variances shall be standardized before calculating the distances, e.g. by

= LTik — meC(ZL‘Zk)
ik mad ;)

Alternatively one may weight the contribution of each variable to the distance by the
inverse of a robust measure of scale:

» 1/2
dij = d(z;, ;) = (Z Q. (T — xjk)g) :
k=1

where e.gg, = (madz;,)) 2

The starting point of the epidemic shall be the "sample spatial medianamely the
sample point that has the characterizing minimal property of the usual spatial median:

¢ = {x; : wherei is such thatz dij = rkmél (Z dkj)} = arg min d(z;, x;).
S

ieU
jeu jeu jeu

Note that the sample spatial median is not necessarily close to the real spatial median.
E.g. for a uniform distribution on a circle the spatial median will be near the center and
the sample spatial median will be on the circle. However the sample spatial median will
be in the bulk of the data. Moreover as all the distantewill be needed anyway for the
Epidemic Algorithm, the computation e&m is cheap.

Given a point that is infected, the probability that a non-infected pgiig infected by:
at any timet is

P[j’i] = h(dij> = P[Z’m,
where the functiork is monotone decreasing for growid@nd0 < h(d;;) < 1. We write

h;; = h(d;;) for brevity. There are many possible choices for the transmission furiction
Three examples are:

a) The step function

1 ifd<d
h(d) = na=d
0 ifnot

corresponding to a total infection in the ball with radiigsand no possible infection
outside this ball. This yields a deterministic epidemic or rather a minimum journey
with day-trips between points at maximal distange
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b) A simple linear transmission function

W) — (1—pd) ifd< g
1o if not

This function becomes exactlyat d;; = 1/ and thus no transmission is possi-
ble beyond this distance. The parametemay be chosen in the following way.
Calculate the maximum distance to a nearest neigliper max { min {d;;}}.
Thens = (1 — 1/n)min{dy, 2,/p}. Thusg is chosen such that the transmission
probability is1/n atd, or at2,/p if d, is inflated by one or several single outliers.

c) The inverse power function:
h(d) =1/(8d + 1)*.

We propose to choose such thati(dy) = 1/(8dy +1)? = 1/n, i.e.f = (n*/? —
1)/do.

d) The logistic function:
B exp(a + ﬁd”)
Y (14 exp(a+ fdiy))

with o > 0 and < 0. The transmission probability is close tdor d;; = 0 and
= 0.5 atd;; = —a/3. The slope at this latter distanceidg4. We propose to choose
the parameters andj in such a way that the transmission probability is at the
median of the interpoint distances ahth at the maximal distancé,.

In the following examples, the transmission function a) is used. The choice of the trans-
mission function and its parameters is crucial for the detection capability of the algorithm
and for its speed.

If a subsetl C U of points is infected at a certain time then the total infection probability
that an uninfected pointis infected at the next step is

P} = 1= 1] = PLili) =1 =] = hsy).

el el

Thus we do not have to simulate each infection from point to point but only from the set
of infected points to the each non-infected point.

9.3 The steps of the Epidemic Algorithm

Denote by!, the subset of all the points infected up to timel, = {i : 0 < t; < t}.
Denote the index of the sample spatial mediavith i(c).
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1. Set the infection time of all points to zerg::= 0, Vj € U.

2. Set the time to one t := 1. Choose the sample spatial mediaias
the starting point, i.e. set its infection time to ong;, := 1 and thus

I = {i(c)}.
3. Increase the infection time by one:=¢ + 1.

4. Calculate the total infection probability[j|/;_;] for all non-infected
pointsj & I; 1 :
P[j|-[t—1] ,\V/] Q -[t—l‘

5. Realise independent Bernoulli trials with success probaliflify; ;] for
the points; ¢ I, ;. A success means that the point is infected at tme
and its infection time; is set tot: ¢; := t.

6. If || = nort—max{t; : i« € I} > [then set,,, = t and stop.
Otherwise go to step 3.

The algorithm stops if all points are infected or if no infection occurs during a period of
lengthi. The non-infected points will keep infection timg= 0. The integer numbdris
chosen by the statistician. In the next Section it is sé0toAlternatively the choice of

may be guided by an upper bound on the probability of no infectidtrials: (1—h(dy))".

In the following we sometimes abbreviate Epidemic Algorithm to EA.

9.4 Computational complexity

In the beginning we have to calculate thé: — 1)/2 distances, each involving + 1
operations. We cannot speed up this part because we need all distances.

However, we can avoid the recalculation of the products involved in the total infection
probability because the sefsare nested. For this we have to introduce a vector of prod-

ucts H;, = [, (1 — P[i|j]) for each time point and we have to change the Epidemic

Algorithm slightly:

Instep 1) setd;, =1Vj € U.
In step 4) do the following for each¢ I,_; : SetH,;;, 1 := H;; Hiezt,l\ft,g(l — hyj)
and calculate the total infection probabiliBf[j|/;—1] =1 — H; 1.

The point is of course that for computer implementation one needs to keep in memory
only one vector which is updated.

At each stage there arek, = |I;_,| infected points andn — k;) non infected points.

For each non infected point the total infection probability must be calculated. This in-
volves a product with(k;, — k;_1) + 1 factors. Thus for the whole epidemic for each
observation at most + t,,,,, multiplications are needed and at magt, experiments are
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needed. Therefore the order of complexity of the epidemi@ iSogether with the initial
distance calculation the epidemic is of complexify{p + 1). In other words the order
of complexity of the Epidemic algorithm is quadraticsrbut only linear in the number

of dimensiong!. The dimension of the space only affects the initial calculation of the
distances. Nevertheless for large populations the computation may be very slow.

9.5 Behavior of the Epidemic algorithm with normally distributed
data

To analyze the behavior of the algorithm in the absence of outliers several datasets were
simulated with a multivariate normal distribution IR?, with mean at the origin and
covariance matrix equal tb, (identity matrix). The following table gives the total number

of infected points at each infection time for 10 different datasets wittnging from 100

to 2000 ang from 2 to 100 (see Table 4).

Table 4: Infection times for multivariate normal distribution

Data n|{| 100| 100| 500| 500| 1000| 1000| 1000| 2000| 2000| 2000
sets p| 2| 10| 10, 20| 10| 20| 50 20 50| 100
1 1 1 1 1 1 1 1 1 1 1
2| 13| 15| 53| 81| 78| 79| 75| 199 96| 136
3| 52| 61|369|435| 715| 665| 516| 1758| 1027| 1335
4| 78| 89|477|489| 948| 943| 900| 1981| 1815| 1887
5| 89| 95|490|495| 980| 965| 950| 1990| 1909| 1963
6| 95| 97|494|497| 989| 976, 970| 1996| 1938| 1975
71 97| 97|494|498| 992| 987| 980| 1998| 1952| 1982
8| 99| 97|496|499| 992, 991| 985 1962| 1984
Infection 9 98| 497 994| 992| 989 1972| 1987
time 10 497 994| 992| 990 1976| 1987
(9] 11 498 995| 992| 991 1977| 1989
12 996| 992| 992 1982| 1990
13 996| 993| 993 1984| 1990
14 996| 996| 992 1985| 1990
15 997 993 1988| 1990
16 993 1990| 1991
17 993 1990| 1991
18 996 1990| 1992
19 997 1991| 1993
20 997 1991| 1995
Largest inf. time| 8 9| 11, 8 15 14| 25 7 47 34
Non-infected 1 2 2 1 3 4 2 2 3 2
Comp. time 0.7| 0.8| 3.4| 3.4| 9.2| 10.4| 15.0|/388.5| 776.1| 252.3

This table shows that under normal distribution the median infection time is afays
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that after time7 more thar5% of the population has been infected in all cases for any
values ofn andp (the worst case occurred when= 100 where only97% is detected at

t = 7). We therefore usé = 7 as critical time under normal distribution. The number
of non-infected points does not seem to depend @n p; in all simulations it has never
exceeded. In contrast the length of the epidemic does vary very much, even if half of
the population has been infected after titni all cases! It seems that for a fixedthe
largest infection time increases with The three computing times far = 2000 are not

too relevant because a large part of them is due to memory swapping.

9.6 Remarks

e The distance matriX0 = (d;;) contains all the necessary information on the popu-
lation. Thus if two point clouds have the same distance matrix the Epidemic Algo-
rithm should detect the same outliers apart from random variation. This is in order.
However, in a situation where the good observations follow a model like a multiple
regression the Epidemic Algorithm may be worse than an algorithm which builds
on this model (see the Stackloss data example in the next section).

e \We may integrate ordinal categorical variables in the distance by introducing some
scale. For nominal categorical variables we may set the distance to O if the cat-
egories coincide and to 1 if not. Other possibilities exist for example with the
nomenclature of economic activities. There you may count the nodes you have to
pass in the classification tree for moving from one category to the next.

e An observation which is outlying in only one or two dimensions but an inlier in all
other dimensions may have an overall Mahalanobis distance which does not show
it as an outlier. This sort of outliers could be detected better with distances Jike
or L, instead of the Euclidean distance.

e The infection process is a Markov process but it is not time homogeneous because
the infection probability changes over time. In fact for the infection probability of
a point at a certain time the whole history of the epidemic is important. And this
history depends on the spatial configuration of the points as it is reflected by the
distance matrix. The infection probability of a pojitvhen it is the only remaining
non-infected point, i.eP[j|U\j] = 1 — [[,;(1 — hy;), gives no direct hint to its
infection time because the infection time ptlepends on which of the points in
U\ j become infected at what time.

e Theoretically one could calculate the expected infection thiie] by considering
all possible epidemics which lead to the infection of pgintHowever, since the
number of possible epidemics is exponentiakithis is not feasible in practice.

The Epidemic algorithm is computationally feasible. It is somewhat slower than the most
efficient algorithms. However its computing time does not grow exponentially with the
number of dimensions. It does not need any assumption on the data except that the good
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data is not divided into well separated clusters. No transformation is necessary to apply
EA. Itis based on the intuitive notion of an outlier as an isolated point or group of points.
The starting point of a sample spatial median seems to be very fruitful.

The EA has connections to clustering algorithms and to nearest neighbor methods. How-
ever, by exploiting the dynamics of the epidemic, it takes into account local and global
properties at the same time.

The choice of the transmission function is crucial for the efficiency of the algorithm. Our
simple and first choice will have to become more sophisticated to be able to cope with all
types of masking problems.
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Part Il

Application to real and synthetic
datasets

All the above selected methods were developed and tested on several datasets that are not
the ones chosen in EUREDIT for the evaluation phase. Most of them have been found in
the literature and were known to be somehow challenging for multivariate outlier detec-
tion. Some of them were created to test particular configurations (compact contamination,
non-elliptical data). In most articles where a new method is proposed, the authors usu-
ally present one particular dataset on which their method behaved relatively well. Our
goal here is to gather several of these datasets and compare the results of all the above
methods on all of them. The results are presented below, with cases of real and synthetic
datasets as well as symmetric and non-symmetric datasets. Conclusions are drawn in the
last subsection.

The results obtained by the methods using a robust Mahalanobis distance (SMP, BACON,
MSD and RMCD) will be illustrated by Q-Q plots of transforms of Mahalanobis distances
(M D;) using the following approximation for normal data :

1
n+1

MD;
media{M D;)

D; = F710.5,p,n — p) ~ fi=F"Y , P, — D)

whereF'~(a, k, 1) is thea-quantile of the” distribution withk andi degrees of freedom.

For the epidemic algorithm the infection times are plotted versus the indices of the obser-
vations. Points which are not infected are plotted with an infection timg-ef[1.2-#,,. |
instead oft; = 0 to show their outlyingness.

It is difficult to compare detection capabilities of different methods for real data sets be-
cause no "gold method” tells us which are the "true” outliers. What we do is to compare
the sets of points which are declared good and outlying by the different methods and even-
tually we will come up with a consensus measure to quantify the degree of coincidence a
particular method has with all the other competing methods.

All algorithms have been implemented in S-Plus 2000, on a PC with a 600 MHz Intel Pen-
tium Processor and 128 Mb RAM. ThHelanguage is not efficient for EA and MSD as
any use of loops should be avoidedinTherefore one should not consider the compari-
son of computing times as totally relevant. Moreover memory problems were sometimes
encountered in particular with EA when dealing with the n distance matrix: the 128

Mb RAM were not enough as soon as= 2000 and the processor used virtual memory

on the hard disk making the computing time explode.

Let's emphasize finally that parameters could vary according to the data in most of the
methods to get better results. As we are trying to develop some automatic editing proce-
dure we decided to fix once for all the parameters of the method throughout the tests. Of
course this decision is open to criticism but its justification is the fact that EUREDIT tries
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to develop methods that users could use without any specific statistical knowledge. Only
in one of the last examples we emphasized how important the parameters’ tuning can be.

Let’s recall the parameters used in the following:

SMP No parameter, version with median and mad as described in the preceding section.

BACON The version with a robust start, a starting subset of 3jzand a signification
level of 0.01 (see the preceding section).

MSD Huber’s weights are used. The number of projections is just reduced for high
dimension to avoid very long computations.

RMCD Standard implementation in SPlus with58% breakdown point, reweighting
with a cut-off point witha: = 0.025.

EA With a simple linear transmission function and a maximum transmission distance
automatically computed as described in the preceding section.

10 The Bushfire data

The first real dataset ha8 observations in dimensioh It was used by Campbell in

1989 (Campbell, 1989) to locate bushfire scars. It contains satellite measurements on five
different frequency bands corresponding to eacl3®pixels. It has the advantage of
having been well studied (Maronna and Yohai, 1995) and of allowing a two dimensional
plot (in variable2 and 3) that reveals almost all the outliers (see Chart 4). The data
contains an outlying cluster of observatidgizsto 38 and a few other outlying valuex

and7to 11, eventually alsd 2 and13.

A classical multivariate analysis using the sample mean and covariance estimator would
not detect anything. Chart 6 shows that the results obtained from the three comparative
methods are quite similar. Table 5 gives the observations with the lavgPsin decreas-

ing order for the three methods. All of them detect the above mentioned outliers. MSD

Table 5: Highest Mahalanobis distances for the Bushfire data

SMP 38|37(36/35|{34/33| 98|32 7 10|11
BACON | 38|35|37|33[34/36|32| 9|8 10|11 7
MSD 9|87 (32381037 |35|/36|34|33|11
MCD 33/35/34/38/37[36/32| 9|8 3110|117

does not consider th&2 — 38 group as more outlying than the other outliers and MCD
detects als@1 as an outlier. The EA applied to the Bushfire data did not infect any points
after timet = 6 (see Chart 7). Only non-infected observations will therefore be declared
as outliers, namely pointsto 11 and32 to 38. Clearly in that case all methods are equiv-
alent. Finally, due to the small size of the dataset all computing times are moderate : SMP
0.11s, BACON 0.08s, MSD 6.75(0 projections), MCD 0.22s and Epidemic 0.40s.
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Chart 6: D, for SMP, BACON, MSD,

RMCD for the Bushfire
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11 The lonosphere data

The second real dataset was taken from the UCI Machine Learning Database Repository
(Bay, 1999) and was suggested to us by Ricardo Maronna (Maronna and Zamar, 2001).
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This dataset was part of a study of the lonosphere carried out by the Space Physics Group
of the Applied Physics Laboratory of the Johns Hopkins University (Sigillito et al., 1989).
Radar data were collected by a system in Goose Bay, Labrador. The targets were free
electrons in the ionosphere. "Good” radar returns were those showing evidence of some
type of structure in the ionosphere. These good radar measurements form the dataset
which is studied here: there a2@5 observations in dimensiai2 (two variables with no
variance were eliminated).

The EA was run first and gave results shown on chart 8. Two observations were not in-

Chart 8: EA infection time on the lonosphere dataset
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fected (2 and95) and10 others were infected after tinte= 10. To compare these results
with the other methods, the Q-Q plots are given in Chart 9. Note here that according to
Maronna and Yohai MSD should have used aboift x 10'? different directions which is
computationally unfeasible, therefore we restricted ourselvé80. These plots show

that about60%(= 135 observations) of the data behave like normally distributed. The
picture for SMP differs from the other ones as SMP is the only estimator not based (by
selection or downweighting) on only this supposed normal part. Note that aftet tinge

the EA had infected34 observations! Clearly something is happening for the remaining
data. Choosing a value where to cut for outlyingness would require more knowledge of
the data.

To compare all the results we give two tables with the number of common points in the
"central part” of each method and in the "extreme part” (see Table 6). The central part
of a method consists of thE34 observations which are least outlying (lowégtD, or
infection time< 3) while the extreme part consists of th2 most outlying observations
(highestM D; or infection time> 10 or non-infected).

Amazingly SMP is the most consensual estimator for the central part sharing always more
than103 points (7%) with any other estimator. The four other methods seem to pair off:
MSD and RMCD sharé 25 points 03%) of their central parts while BACON and EA
sharel19 points 89%). But the two pairs of methods seem to diverge somehow: for
example RMCD and EA only shai&) points £9%) of their central parts. A possible
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Chart 9: D, for SMP, BACON, MSD and RMCD for lonosphere
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explanation to that phenomena could be the ideas behind the methods: both MSD and
RMCD are based on geometrical ideas while both BACON and EA are based on growing
the good part of the data.

For the extreme part there is no consensus, but if we look closer at the Q-Q plots or the
infection times, SMP has five clear outliel7( 62, 85, 95 and202), BACON has only

one @7), MSD has four £7, 62, 95 and96), MCD has also fourg, 27, 95 and96) and

EA has eight 27, 41, 56, 62, 95, 96, 182, 202). If all methods detected observation,
BACON missed everything else. The other four methods detectedda/sehile two

other observations where only missed by one metttgdmissed by SMP (but ranked

only one observation behind) af@ missed by RMCD (but ranked only two observations
behind). Observatiof02 was detected by both SMP and EA. Finally RMCD added

SMP added5 and EA added!1, 56 and182. If we except BACON that probably fails
because of the total lack of normality of the data we see that only four observations appear
in all twelve most outlying points for all method27, 62, 95 and96 (all detected as more
outlying by MSD).

To give another way to see these results we introduce a new measure called a consensus
measure. For a fixed numbgr denote byX (k) the set ofk first outliers declared by
the methodX, X € {SMP,BACON,MSD,RMCD,EA and byali(k) the union with
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Table 6: Comparison of central and extreme parts for the lono-
sphere data

Central part (134 points) Extreme part (12 points)
[ SMP|BAC|[MSD[RMCD| EA [ SMP|BAC|MSD|RMCD[EA
SMP | 134 | 118 | 111 | 103 |108|] SMP | 12 2 7 7 7
BAC | 118 | 134 | 98 90 [119|| BAC 2 | 12| 2 2 2
MSD | 111 | 98 | 134 | 125 | 87 || MSD 7 2 12 9 7
RMCD| 103 | 90 | 125 | 134 | 80 ||RMCD| 7 2 9 12 6
EA || 108 | 119 | 87 80 |[134|| EA 7 2 7 6 12

repetition (i.e. {a;b} U {a;c} = {a;a;b;c}) of the X (k)’s. Our consensus measure is
defined as:

1 #occurrences af in all(k) — 1
(xK=7 3 u

Xt #methods- 1

In other wordsem (X, k) measure the average frequency that a given outlié¥ (k) is
detected by another method. Note that if you have the above tabley, k) is just the
average of the quotients of the non-diagonal elements of the lin& fdivided by k.
When all methods detects the same firstutliers therem (X, k) = 1 for all X and when
for a given methodX none of theX (k) is detected by another method then(X, k) =

0. Table 7 gives the values of then (X, 12) and confirm that for the lonosphere data
BACON is very isolated and that/.S D is the most consensual.

Table 7. Consensus measures for the lonosphere data

X SMP | BACON | MSD | RMCD | EA
cm(X,12)| 0.48| 0.17 | 052| 0.5 |0.46

The computing times diverge. SMP took 0.6s, BACON 0.41s, MSD 342s, MCD 22s and
EA took 2.1s. Note that even if our implementation of MSD is not optimized we can
see that when the dimension of the data grows, the computing time of MCD and MSD
grows too. This was expected as well as the fact that the computing time of EA is not
much affected by the growth of dimension (remember that the dimension appears in the
algorithm only in the distance computation). SMP and BACON remain by far the fastest
but in such a case with a large part of non-normal data BACON seems to fail to detect the
outliers.
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12 The Low Resolution Spectrometer (LRS) data

The third real dataset is also taken from the UCI Machine Learning Database Repository.
These data were gathered in the Infra-Red Astronomy Satellite (IRAS) project, that was
the first attempt to map the sky at infra-red wavelengths. It consisi8lofigh quality
spectra measured &3 different frequencies.

We encountered two problems when running the different algorithms. As the number of
points 631) is not important relatively to the dimensiof3] of the data, BACON totally

failed to work out : all the considered subsets did have a singular covariance matrix and
therefore the algorithm was unable to compute Mahalanobis distances. Moreover, the
S-Plus function cov.mcd does not allow more thii@nvariables but as the LRS dataset
has already been analyzed using RMCD by Maronna and Zamar (Maronna and Zamatr,
2001) we are just referring to these results for RMCD. MSD was run 0t different
directions. We do not show the Q-Q plots of the's or the infection times as they are
similar to the preceding ones except that this time the normally behaving part of the data
seems bigger. For example orttyobservations were infected after timieand only3

not infected with EA. As the other methods also hador 12 clear outliers, we give

the comparative table of the extreme part in Table 8. The results are here very similar.

Table 8: Comparison of the extreme parts for the LRS data

Extreme part (11 points)
[ SMP| MSD | RMCD | EA
SMP 11 10 10 10
MSD 10 11 9 9
RMCD | 10 9 11 9
EA 10 9 9 11

SMP is the most consensual method and eight observations are simultaneously detected
by all methods. The differences here are rather the measures of outlyingness given by
the methods. Table 9 lists thd observations in decreasing order of their measure of
outlyingness.

Table 9: Most outlying observations for the LRS data

SMP | 210| 90 | 112| 173| 307|281 |451|193| 2 | 67 | 382
RMCD | 210|173 | 112| 90 | 307| 2 | 281|193 |451| 67 | 370
MSD | 307 |382|210|281|280| 90 | 173|112 2 | 67 | 451

EA 210| 307|281 |451|398| 90 | 382| 67 | 112| 173| 193

The consensus measures are here very high (see Table 10).
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Table 10: Consensus measures for the LRS data

X SMP | MSD | RMCD | EA
cm(X,11) | 0.91| 0.85| 0.85 |0.85

The computing times diverge. SMP took 2.1s, MSD 398s, MCD 616s and EA took 5.7s.
With that dimension the computing time of MCD and MSD start to get very big while EA
is not much affected by the growth of dimension. SMP keeps performing fast and well.

13 The Restaurants data

As business surveys are often encountered in official statistics we felt that it was necessary
to include in these preliminary tests a dataset of such a kind. The problematic point of
such data is that they always need some transformation, usually some log transformation,
prior to any analysis and that they often do not have some nice elliptical or symmetric
distribution. The following dataset is a subsample of restaurants of the 1995 Swiss census
of the enterprises. The largest restaurants were removed for confidentiality reasons. As
we wished to present graphically the results only two variables were retaingdwill

denote the number of employees andn the turnover of the restaurants. As usual a log
transformation is performed first. A scatter plot of 1271 observations is given in Chart

10.

Chart 10: Scatter plot of the restaurants data after a log transforma-
tion
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Such a picture is common in business surveys. No symmetry appears in the dataset and
therefore the methods needing that assumption will clearly have trouble to cope with that
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characteristic. Looking at the plot we could consider as potential outliers the restaurants
with a high number of employees or for the other ones with high or low turnover.

In that case the results obtained by all the methods using a Mahalanobis distance are so
close that there is no point to try to compare them. To illustrate that fact we gave some
consensus measures for these methods in Table 11.

Table 11: Consensus measures (without EA) for the restaurants

[ X [ SMP[BACON [ MSD [RMCD |
cm(X,10) | 1 1 1 1

cm(X,50) | 0.97| 0.97 | 0.97 | 0.97
cm(X,100)| 0.94| 0.96 | 0.94 | 0.96
cm(X,150)|| 0.98| 0.98 | 0.96 | 0.98

Therefore we restrict our comparison between one of them (BACON) and EA. We gave
first the Q-Q plot of theD; for BACON and the infection history for EA (see Chart 11).

Chart 11: D, for BACON and infection times for the restaurants
dataset
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Looking at these charts we could consider ttiabbservations seem to be really outlying
for BACON while EA found23 observations with infection time greater than We
plotted the data with these outliers for BACON and EA (see Chart 12). As EA infected
only 75 observations after timg, we also plotted th&5 most outlying points for both
methods (see Chart 13).

On these pictures we clearly see the difference between EA and the other methods. BA-
CON bases its measure of outlyingness using what should be the symmetric (elliptical)
part of the good data. Therefore here we clearly see that BACON does not detect as well
as EA the observations located in the direction of the main axis of the ellipsoid (high
emp and high turn) because these observations seem to fit the normal model sought by
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Chart 12: Outliers for BACON (22) and EA (23) for the restaurants

dataset
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Chart 13: Outliers (75) for BACON and EA for the restaurants

dataset
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BACON. On the contrary EA doesn't look for a model and therefore found very well the
observations that we considered as outliers when we first looked at the scatter plot.

The computing times here show clearly that EA is more affected by the number of obser-
vations than other methods. SMP took 0.6s, BACON 0.5s, MSD 2.1s, MCD 0.7s and EA
took 11s.

14 Dataset with high concentrated contamination

In (Rocke and Woodruff, 1996) Rocke and Woodruff made two observations: 1) it is
very hard to detect outliers in data with a contamination fractiof56f or higher; 2)
compactly spaced outliers are harder to find. To test the quality of the different methods
we combined here the two difficulties: we generated a dataseth@fittobservations in
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IR' with observationd to 300 that followed a multivariate normal distribution centered
at the origin with a covariance matrix set 10 x /1, and two contaminations formed
by two other clouds centered at two randomly chosen poiniR'fh one at distanc&0
(observations301 to 400) and the other at distand®0 (observationslO1 to 500), both
with multivariate normal distribution with covariance matrix Qf.

Here, as we know the indices of the outliers, the results of all methods are just plotted
with the Mahalanobis distance or the infection time versus the index (see Chart 14). We
restricted MSD t&000 projections.

Chart 14: M D; or infection time for SMP, BACON, MSD, RMCD, EA
for the dataset with concentrated contamination
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The results are very different:

SMP The more distant outlier cloud and some other good points were detected with high
Mahalanobis distances, but the closest cloud was not.

BACON The detection is perfect even adding the distinction between the two clouds.
This is no surprise since BACON is designed to be perfect in such cases.

MSD Nothing is detected except good points. Of course here by changing the weighting
function the results could be totally different.
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MCD The 200 outliers got the smallest Mahalanobis distances and had no chance of
being detected. The Q-Q plot looks very strange but can only tell that there is a
problem...

EA The 200 outliers have not been infected and they are therefore perfectly detected.
Three other points are infected after tithand are therefore suspicious. The algo-
rithm did not make any difference between the two clouds.

The computing times were the following: SMP took 0.18s, BACON 0.14s, MSD 140s,
MCD took 5.1s and EA 11s.

15 Other datasets

We have tried the methods on several other datasets found in the literature and consid-
ered as challenging for multivariate outlier detection. The methods tested here worked
perfectly well in most of the cases. Only with few data relative to the dimension some
methods failed to identify the outliers. We do not report in all details the tests, only the
references for the data, the computing times and the encountered problems are given.

The Hertzsprung-Russell data This dataset is given in (Rousseeuw and Leroy, 1987),
Table 3, Chapter 2. A scatter plot can be found on page 261. The datad&tpaats in
dimensiom2. All the methods found perfectly the 6 clear outliers with computing times:
SMP in 0.08s, BACON in 0.09s, MSD in 0.63s, RMCD in 0.15s and EA in 0.32s.

The Hawkins-Bradu-Kass data This dataset is given in (Rousseeuw and Leroy, 1987),
Table 9, Chapter 3. The dataset fagoints in dimensios (we did not use the response
variable). All the methods found perfectly the 14 outliers with computing times: SMP in
0.14s, BACON in 0.17s, MSD in 1.36s, RMCD in 0.23s and EA in 0.45s.
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The Modified Wood Specific Gravity data This dataset is given in (Rousseeuw and
Leroy, 1987), Table 8, Chapter 6. The dataset2tapoints in dimensiory (we did not
use the response variable). BACON (with a smaller starting subset,+¢€.), MSD and
RMCD found perfectly the 4 artificial outliers with computing times: BACON in 0.5s,
MSD in 7s and RMCD in 0.18s. EA did not infect the four outliers but also four other
good points. BACON with the default starting subset of sizeand SMP did not detect
anything.

Remarks The last example shows that with very small datasets SMP, BACON and EA
might encounter some problems while the two methods based on geometric ideas are
performing relatively well.

In the cases of regression data robust multiple regression methods should rather be used
and in several cases the multivariate methods we present here will totally fail to detect the
regression outliers. Nevertheless we can always try to find the outliers in the explanatory
variables using the multivariate methods just simply by deleting the response variable as
we did in the two preceding examples. Sometimes the multivariate methods will also end
up with the right outliers in a regression context as in the well known next example.

The Stackloss data This dataset is well-known and can be found in several articles but
also in (Rousseeuw and Leroy, 1987), Table 1, Chapter 3. The datas&t pasts in
dimensiond. Most analysts agree that observatidng, 4 and21 are outliers and some

of them add observatiohh SMP, BACON, MSD and RMCD found the five outliers with

2 as the least outlying. EA was run several times, always fdyrdand3 as outliers but
sometimes missetlor 21 and sometimes added. The computing times were: SMP in
0.09s, BACON in 0.06s, MSD in 2.8s, RMCD in 0.15s and EA in 0.4s.

The Philips data This dataset is an illuminating example to show how important the
parameters’ tuning can be. This dataset has been used by Rousseeuw and van Driessen
(Rousseeuw and van Driessen, 1999) to test their FAST-MCD. The analysis using RMCD
shows78 clear outliers (observatiorz97, 298, 433 and some concentrated contamination
from 491 to 565) and some other suspicious points in 3.1s. SMP detects clz@tlgnd

298 as well as some other suspicious points (among #i&nbut totally fails to detect the
concentrated contamination of observatiafs to 565. BACON with our default param-

eters detect838 outliers indicating that we have to take a much smaller significative level
than0.01. Actually with this level set t@®.0001 BACON detects exactly the same outliers

as MCD in 0.66s (In fact with its original parameters BACON would have obtained these
results). MSD got the same results as SMP, missing the concentrated contamination. By
changing the weighting function we could of course improve the detection of closed con-
tamination of MSD but then of course we would also increase drastically the number of
good observations declared as outliers. EA with the default settings detects only three
points as clear outlierd {5, 297 and298). The maximum transmission distance is then

dy = 3.05. By settingd, = 2.4 all the concentrated contamination also appears clearly as
outlying, nevertheless EA missdd3.
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16 Conclusions

Let's try to summarize the diverse advantages and disadvantages pointed out up to that
point.

SMP The behavior of SMP has been quite a good surprise. By construction it is very
fastin all cases and seems to get very satisfying results comparing to the other methods. It
has problems to deal with very small datasets and with close concentrated contamination.
No parameters are needed. It does need the assumption of symmetric data.

BACON BACON is very fast in all cases. It is the best method when the good part of
the data is normally distributed. It starts to behave strangely when an important part of
the data is not normal (lonosphere data). It's major problem is that it cannot work when
the number of observationsis not large relatively to the dimensign It has problems

to deal with very small datasets. Some knowledge of the algorithm is needed for a good
parameters’ tuning. It does need the assumption of symmetric data.

MSD MSD is a relatively slow algorithm. It's computing time explodes with the dimen-
sionp and therefore approximation using less projections has to be taken. The choice of
the weighting function decides the sensitivity to close outliers. It does need the assump-
tion of symmetric convex data.

RMCD RMCD is a relatively slow algorithm. It's computing time explodes with the
dimensiorp. It has major problems to deal with concentrated contamination. It does need
the assumption of symmetric data.

EA EA is a relatively slow algorithm. It's computing time does not grow witbut

with n. It has problem to deal with very small datasets. The choice of the maximum
transmission distance is crucial. It compares very well with the other methods. It is the
only tested methods that work well with non-symmetric data.
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Part IV
Adaptation to sampling weights

All the methods developed in EUREDIT will have to be able to analyze data from sample
surveys. In consequence they should all take sampling weights into account. This section
is dedicated to the adaptation of the methods selected above to the sampling weights. We
shall keep the same notations throughout the section. The population will be denoted
by U and will have N units numbered by, 2, ..., N. We shall assume that the sample

s is drawn fromU according to a sample desigiis). The size ofs will be n and its

units labeled by, 2, ..., n. This is a slight abuse of notation as the sample indices should
rather be written as$,, ..., 4, with i; € {1, ..., N}. The first and second order inclusion
probabilities will be denoted by; andr;;. We shall assume that the weightsgiven with

the data are just the sampling weights= 1/x;. If a quantity is measured on the sample
with valuesz,, ..., =, the classical Horvitz-Thompson estimator of the tofak= 3" | ;

is then given by)?HT = > " wz,. Ifthere is a more complex procedure behind the
weights, e.g. calibration, we simply assume thgt , w,x; yields a good estimate of the

total >N | ;.

17 SMP

The adaptation of SMP to sampling weights will require some more sophisticated esti-
mation methods. We shall only give a general outline of the construction of the diverse
estimators. For more details on the estimators and the estimation of their variances the
reader should refer to (Deville, 1999).

17.1 Substitution estimators

We shall work in a measure space ¥ denoted byM containing at least all point
measures denoted by with x € IR? (in the following we shall only deal with discrete
measures). A functional’ on M associates to every measuvé € M a real number
T(M). We shall work only with homogeneous functionals, i.e. those for which there ex-
ists somev = a(7T) € R" such thaf'(tM) = t*T'(M). A set of real value$z,, ..., zx }
taken on the populatiofi defines a measurkl;; = vazl 0., € M. Similarly the val-
ues{x, ..., z,, } taken on the samplewith given sampling weights); defines a measure
MS = Z?:l wzé;tl e M.

Definition With the above notations thsubstitution estimatoof some functional value
T(My)is T (Ms).

In the case of a total this definition is nothing else than the classical expansion estima-
tor (r-estimator or Horvitz-Thompson estimator): the functional is defined'y/) =
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[ xdM (x). The value of the functional on the population distribution is the sought to-
tal T(My) = SN 2; = X and therefore the substitution estimatoris= T(M,) =

>, w;z;. Several estimators cannot be directly defined as a functional value but are
actually solution of an implicite functional equation (maximum likelihood estimators for
example). Generally the estimating equation can be writtéfi(a4,, A\) = 0 where this

time the functional has a real parameterThis equation is supposed to have a unique
solution for My, fixed. In that case the substitution estimator\as the solution of the
equation?’(Ms, A) = 0.

Even if we shall not estimate the variance of our estimators in this report, let us note here
that a tool developed in the field of robustness becomes a very powerful tool in estimation
theory for variance computation. Actually the influence function of a functional defined
here adT'(M,z) = lim +(T(M + té,) — T(M)) can define a linearized version of the
substitution estimate and therefore can be used to compute the variance of the estimate
using classical formulas. The variance of all the estimators we shall use here can be
computed this way, see (Deville, 1999).

Substitution estimators will be used here to adapt SMP to sampling weights. In fact as
SMP uses the Spearman Rank correlation we do need an estimation of the ranks in the
population to be able to compute the estimator. An easy way to estimate the ranks is to
express them as functionals and use substitution estimators. Similarly the median and
the mad will be expressed as solution of implicit functional equation and the substitution
estimators are nothing else than the classical weighted median and mad.

As usual denote byzy, ..., zx } and{y, ..., ynv } the values of two quantities measured on
the population and byz, ..., z,} and{yi, ..., y,,} the values in the sample( y; € IR).
Define the two following functionals

M) = / Loca, (2)dM () — % / 5, ()dM (z) +
/1|z<y VM (z /5 R)aM (@) + 3.

The two functionals evaluated on the two population measures given hy’'shend the
y;’S are nothing else than the ranks in the population:

N
Z ]Iav<xZ xk Z (le Rz

k=1

and

l\DIH

and

l\DI»—

N
1
Z 1<y, (uk) kz Oy, (Y § =Qj

whereR; (resp.Q);) is the rank Ofri (resp.y;) in the whole population values. Note that

in the literature the formula for the ranks is often simply giverEg:1 1.<.,(zx). The
formula we proposed here is slightly more complicated but has two advantages. Firstly
the formula is exact when some values are tied giving in that case the mean rank of these
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values (when no equality appears it reduces to the usual formula) and secondly when we
shall look at the estimation this formula gives a better estimation in particular with very
large weights. The substitution estimators are

j‘%\ Z]I;,le Zlfk; k——Z(le Tk wk—l——: Z u)k—|—— Z wk+_

1<k<n 1<k<n
zp <T; TE=T;
and
= 1 1 1 1
Q; = Z]Iy<yj Y)Wk — B 6yj<yk)wk+§: Z wk+§ Z wk+§.
k=1 1<k<n 1<k<n

yk<yj Tp=2;

Using these estimated ranks we are now in a position to calculate the Spearman Rank
correlation. Recall that by definition

(R -R)(@Qi-Q)
@113 Ry Y, (Qi- Q)

Using the relations Y R, = 37, i = N(N +1)/2andY " R? = SN 2 =
N(N + 1)(2N + 1)/6 it reduces to

R(x,y)

N N+1 1
R(x,y) = ZR@Z — ZRQZ
When N is large the last approximation is accurate. SettNig\/) = [ dM we define

the functional
R(M N3 / R,(M)Qi(M)dM — 3

which satisfyR(My ) = R(x,y) and we obtain the estimator

12 A
W/ (M) Qi (Ms)d M, 3_mzwiRiQi_3-

Note that by using the functional form &f we actually have double integrals involved in
this formula. But this is straightforward once the functional form is used. Inserting the

above formula foﬁ%\i and@\z- we have finally

R(z,y) = R(M,) =

~ 12 = 1 1
R(z,y) = —(2?21 mE ;wi Z (e > Z wy, + 5

1<k<n 1<k<n
zp<T;i TE=x;
> i > L
W - Wi - — .
2 2
1<k<n 1<k<n
Y <Yj Tp=1T;
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Note that we have used the fact that the mean and variance of the ranks are known on the
population to simplify the correlation formula. We might obtain a more efficient estimator

if we estimate these quantities using the sample values. Finally let us underline the fact
that we have no guarantee that the value of our estimator is betweand1 but in such

a case we would clearly set the value-td or 1.

To end the adaptation of SMP to sampling weights we still have to estimate the median
and mad for univariate data. In the above context this is done very easily. Define the
functional T (M, \) = m [ 1,<x(x)dM (z). Then the median of the population data is
the solution of the functional equatidi(M;, A) = 0.5 and therefore its estimator is the
solution of T(M,, A) = 0.5, i.e. (3 1cken wi | = 0.5 > 1<k<n Wk- NOW in general

:L'kS/\
this equation does not have a solution. Different approximations can be used, the one we
choose is defined as follows. Lef be the smallest value such that

1<k<n 1<k<n

and letx; be the smallest value such that

Z w | >0.5- Z Wk,

1<k<n 1<k<n
zp <z

then the weighted median is defined as

— ‘ z; if x; =
med(x) = weighted.med(z,w) = vy by
W if X < I

As the mad is defined using medians only, its estimation follows in the same way.

18 BACON

The adaptation of the BACON algorithm is almost straightforward. The initial subset is
selected the same way except that the usual median is replaced by its estimate defined
in the preceding section 17, namely the weighted median. For the main iterations of the
algorithm the mean and covariance matrix of the population are estimated each time by
mg andSg and the observations are ranked using this estimation. We only have to follow
the same scheme except that we shall work in the sample. Suppose that we randomly
chosek element of the sample We can estimate the mean and the covariance matrix

of the population with the Hjek estimator using the fact that the probability that the
observationc; appears in this subsét of the samples is simply given byr; = km;/n =
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k/(w;n). The estimates are therefore

Ve T e D ieq Wil
mag = =

ZiEG %z’_l ZiEG w;

and

5 = Diese T (T — Tﬁc)(% —ma)" _ Pieqwilzi — me)(xi — mc)t.
>ica 7Ti_1 > ieq Wi
Finally we have to determine the correction factors used to do the selection of Step 3 of
the algorithm. The first factar,. measures the correction if the sizef the part on which
we made the estimation is smaller than "half” of the observatioas[(N + p + 1)/2].
As r (resp. h) can be estimated using the Horvitz-Thompson estimater .. w;

(resp.h = (> _ies wi + p + 1)/2) we may estimate this correction and use
ZiESwi +p+ 1— QZieri}
Eieswi +p+1+ QZiEGwi

instead of;,,.. In the same way we use the estimate

Chy = Max {0,

p+1 n 2
ZiEswi -p Zieswi -1-3p

instead ofcy, to take into consideration the size pfproportionally to the size of the
population.

/C\Np:1+

19 MSD

In (Franklin et al., 2000) a comparaison of the effects of multivariate outlier detection
using MSD with and without considering sampling weights is made. The approach chosen
by Franklin et al. will not be followed here: to avoid burdensome reprogramming they
decided simply to multiply each observation by its sampling weights and then to apply the
algorithm. It didn’t seem to us that we could find a theoretical justification to that scheme.

We propose to make the following adaptations to the algorithm given in 7.1. The pro-
jections are unchanged but the computation of the weights for a given one-dimensional
projection need the value of the median and the mad for the whole population. We replace
here these two values by their estimate obtained using the estimators defined in the pre-
ceding section, namely the weighted median and the weighted mad. With this correction
Points 1 to 5 of the algorithm remain the same. Finally Point 6 and the final estimation
are obtained using the usual estimates of the mean and covariance matrix of the popula-
tion computed with robustness weights. We shall do the same just by replacing the usual
estimators by the Biek estimators, i.e. using the following estimates:

2?11 UW; T4 Z?zl Uzwz(% - mMSD)(xi - mMSD)t

mMSD:WandSMSD: Zn L
i=1 Wity i=1 Y1 e
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20 RMCD

The adaptation of the FAST-MCD algorithm described in section 8 is also straightforward.
As in BACON the C-steps use computations of the meanand covariance matris

of a subset< C U to rank all the observations according to the Mahalanobis distance. In
each step the idea is that the mean and covariance matrix of the population are estimated
by mx and Sk and the observations are ranked using this estimation. We only have to
follow the same scheme except that we shall use the sample. Suppose that we randomly
chosek element of the sample We can estimate the mean and the covariance matrix

of the population with the Bijek estimator using the fact that the probability that the
observatione; appears in this subset of the samples is simply given byr; = km; /n =
k/(w;n). The estimates are therefore

ZiESk %;1‘1’1 o Ziesk W;iT;

Ziesk fﬁ;l ZiESk W

mp =

and

D s Ti (@ —mg) (s —m)t S, wilw — myg) (2 —mg)’!

Ziesk %;1 Ziesk wi

In the casér = n (point 2 of the algorithm) the Biek estimatesr;, and.S; are returned.

In the casey = 1, the same arguments give a clear adaptation of the algorithm given in
(Rousseeuw and Leroy, 1987) replacing the- h + 1 means by their Hjek estimates

and the sum of squares by thé&jek estimate of the corresponding variances. With these
corrections the structure of Points 1 to 6 of the algorithm remains unchanged. Note here
thath = (n+ p+ 1)/2 is computed using the sample sizand therefore the breakdown
point is expressed according to the proportion of outliers in the sample and not in the
population. Once the subset is chosen the Bjek estimatesn; and S, are used and
points 7 and 8 become:

Sk =

7. In order to obtain consistency under multivariate normal distribution set

weighted.med;(M Dy, s, (x;))

2
Xp,0.5

Sh

Mmycp = Mp and Smep =

where theweighted.med denotes the weighted median defined in 17.

8. To improve efficiency under normal distribution set finally

MpMCOD = M andSruop = Z?:l ww;(z; — meCD)(l’i — mgrymep)t
2 Wi D i Uiw;

with

- Lif MDmMCD,SMCD (x%) < X?),OA975
' 0 otherwise
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21 EA

As usual we assume that a samplef sizen is drawn from the populatiofy of size N
according to the sample desigfis). The first and second order inclusion probabilities
are denoted; andr,;. We assume that the sampling and the epidemic are independent.

The initial standardization of the data, designed to avoid unbalanced effect of the dif-
ferent variables, should be done using the median and mad computed on the population
data. We therefore estimate these quantities using the sample data with the weighted.med
(defined in 17) and the weighted.mad (defined as the mad replacing the median by the
weighted.median), i.e

xji, — weighted.med;cs(xik, w;)

ik = weighted.mad;ecs(xik, w;)
To determine the starting point of the epidemic according to the algorithm we should
use the population spatial median= arg min > icv A(wi, z;). As the sum over the
population is not known we use its Horvitz-Thompson estimate and therefore our starting
point will be

¢ = arg min ijd(xi, ;).

' Jj€Es

Denote byl the set of infected points in the populatibhat timet. The set/; is a
domain. Its intersection with the samplas I, = s N Iy, the set of infected points
in the sample. What we actually observejs. In order to infer on the infection in the
population, we have to estimate the infection probabilifg ;] = 1 — [[,c;, (1 —
hij) Vi € s\ I;;. Thus we have to estimate the proddg;., (1 — hi;) from the
sample and from knowing ;. Taking the log of this estimand we can see that we have to
estimate the exponential Qﬁ]w log(1 — h;;). This sum can be estimated by the Horvitz-

Thompson estimator
1

7T. .
Is,t K

Exponentiation of this unbiased and consistent estimator leads to a consistent estimator
of the product. Thus the estimator of the transmission probability becomes

Plj|Iys) = 1= ] (1 = hij)"/ms.

iEIs,t

In theory the problem is solved: We use these transmission probabilities for the epidemic
in the sample. Since the transmission probabilities estimate the transmission probabilities
of the population infection, the infection times will estimate the corresponding infection
times in the population.

In practice we seldom have the second order inclusion probabititjes hand. Often we

just have for each point a sampling weight which is approximately the inverse'r;

of the inclusion probabilities. We propose to use the approximatipng ~ 1/(m;7;) ~

w;w;. The first approximation holds exactly for simple random sampling with replace-
ment and for Poisson Sampling. It holds approximately for large samples, where the
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dependence of inclusion between elements usually is small. This leads to the following
estimator of the population infection probability

Pljlt) = 1= T (1= hiy)s.

i€ly

A more heuristic approach assumes that at the same place as the sampledherat
arew; points of the population which are infected and transmit the infection at the same
time as the sampled point. In other words we assume an immediate transmission if the
distance is zero. Thus one would havepoints which are already infected and instead

of one candidate at; to be infected there are; of them. The transmission probability
becomed —[],. Is,t(l — h;j)""i, exactly as above.

We may standardize the weights to sumntdo obtain an infection probability which
compares better with an epidemic in the sample alone. This may also help in the choice
of the maximal infection distancg,.

Another heuristic approach compares the density in the population with the density in the
sample. The density is decreased by a factor which corresponds to the sampling fraction
for simple random sampling. In the same way the average distance decreases by the
sampling fraction. Thus an approach for accounting for sampling would be to transform
the interpoint distancé;; to d;; = 2d;;/(w; +w;). This would correct the distance by the
average sampling rate at poiritand;.
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Part V
Adaptation to missing values

In this part we approach one of the critical problem encountered with real data: the miss-
ing values. In survey data we can distinguish two kinds of non-response that lead to
missing values in a dataset. In fact not all units in the sample respond to all the study
variables; some co-operate with the survey, but fail to supply answers to some question -
we talk abouitem non-responseand others do not co-operate at alinit non-response

Different sampling techniques exist to deal with unit non-response. The methods devel-
oped here will not cope with that kind of non-response, it will always be assumed that
the unit non-response has been taken into account by sampling techniques and that the
sampling weights have been corrected according to unit non-response. All units that have
all items missing will therefore be removed from the dataset.

Most of the edit methods that deal with item non-response do need strong assumptions
on the missingness mechanism. That will also be the case here even if we still have to
study further two methods to see if the hypothesis could be weakened. The first section
will fix the notations and definitions for the missingness mechanism, while the next three
sections will present the proposed solutions for three methods, each of them retaining the
philosophy of the initial method: SMP will be adapted using simple imputations based on
bivariate statistics, BACON will use a method designed to estimate a covariance matrix for
incomplete multivariate normal data (BACON is best designed for this framework) and
EA will simply compute distances using the available coordinates and correcting them
with a proportionality factor to calibrate for the fraction of missing information. We did
renounce to go further with the other two methods developed in the preceding parts. The
projections in MSD couldn’t be applied without some previous imputation of the missing
data and we were not willing to merge together the edit and imputation phases at that
point. Regarding MCD, an algorithm was developed in (Cheng and Victoria-Feser, 2000)
using MCD at each step of the ER algoritm (Little and Smith, 1987) which combines
the EM algorithm and and M-estimator. However this algorithm was not designed for
survey data and we were lacking ressources to make the adaptation to sampling weights.
Finally a very short exploration of that algorithm seems to show that it could have some
difficulties to treat large size datasets.

22 Missingness mechanisms

The notions and notations for this section are largely taken from (Schafer, 2000). To
make the following text readable we shall use the following abuse of notafiowill
denote simultaneously a p-dimensional random variable (we shall always refer to the
"variable X”) and the N x p matrix containing the realized values of the variade

of the populationU. The variableX follows a p-dimensional probability model with
parameterg. If a census was taken of the whole population to measure the vaiable
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it would result in some observed and missing valiés= X, U X,,. We shall model
this behavior by a zero-one response varidbleith the same abuse of notatioR: also
denotes théV x p matrix containing the values of the varialdkeon the populatiord/,

o 1 if z;; is given,
L7 = . . .
! 0 if z;; is missing.

The parameters of the missingness mechanism will be denotéd Wye would not in
general expect the distribution of the varialdteto be unrelated to the variabl¥, so

we posit a probability modeP(R| X, ¢). We shall always assume that the paramefters

of the data model and the parametérare distinct. In most methods the assumption is
that the missing data are "missing at random” (MAR) or "missing completely at random”
(MCAR). The reader should be aware that the definition of MAR may vary depending on
the context and the author, while the definition of MCAR is standard. We shall use the
definition given in (Rubin, 1976) and used in (Schafer, 2000).

Definition 2 The missing data are MAR if the distribution 8fdoes not depend oX,,,
i.e.
P(R|X,, X1, &) = P(R|X,,€)

If both MAR and the distinctness of the parameteend ¢ hold, then the missing-data
mechanism is said to be ignorable.

Definition 3 The missing data are MCAR if the distribution®fdoes not depend ok,
ie.
P(R|X,§) = P(R[S).

MCAR is a particular case of MAR, occuring for example when the missing data are a
simple random sample of all data.

As the methods will use the survey data and not the population data we shall need an
assumption on the relation between the missingness and the sampling mechanisms. If we
denote byS the sampling variable, we shall always assume $hahd R are independent
variables : in other words we suppose that the missingness patterns do not depend on the
sample: one unit; of the population would have the same observed and missing items
regardless of the sample. dfis the sample obtained as a realizatiorbofre shall simply

useX; (resp.X?) to denote the observed (resp.missing) values of the survey data.

23 SMP

Almost every step of the SMP method is perturbed by missing values. We shall assume
here that the data are MCAR; a more careful study should be carried out to see if this
hypothesis can be weakened. Two different kinds of problems are encountered: the com-
putation of univariate or bivariate statistics &nd R) and the projection of the observa-
tions onto the new basiB. The first issue is solved just by restriction to the observed
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cases. The second issue could be avoided by using another way of transforming the ma-
trix S, into a definite positive matrix. But we prefer our transformation, which has some
statistical interpretation, to a purely algebraic transformation. We propose a solution that
keeps the "robust bivariate” spirit of SMP. A missing item in an observation is imputed by

a robust regression using another observed variable selected by the robust bivariate rank
correlations. This imputation is then used to obtain the coordinates of the data in the new
basis and the end of the algorithm remains unchanged. The final measure of outlyingness
is the Mahalanobis distances computed on the observations without the imputed values.
All the details are given by going through the algorithm step by step. The notations of
Section 5.2 remain unchanged.

(i) The univariate statistic§ of z! is computed on thé’s such thatr; = 1. For
our choice ofs we therefore have to define how the estimation of the median is
computed.

Let x;; be the smallest value af such that-; = 1 and

Z w, > 0.5- Z Wi

1<k<n 1<k<n
’I’kl:l rkl:I
T ST4)

and letz;; be the smallest value af such that;; = 1 and

Z wg > 0.5- Z Wk,

1<k<n 1<k<n
=1 =1
TS

the estimation of the median is given by

— B Tl if Ty = Tj
med(z', w) = K

witgtwiTy e '

w;+w; If Tip < x]l

As the mad is defined using medians only, its estimation follows in the same way.
For the Spearman Rank correlation we restrict all the computations to the common
observed values of two variables. Using the formula developed in 17.1 we obtain

~ 12 1 1
L ,.m . _ —
R(z', z™) = 5 oo W) E w; g wy, + 5 E wy + 5

Ty 1<i<n 1<k<n 1<k<n
it TiiTim =1 TR =1 TRi=1
TR <z TRI=T4]

wk—l—l wk+1 —3,
2 2

1<k<n 1<k<n
rkmzl rkmzl
ZTlm <Tim Tlm =Tim
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if {i : ryrin = 1} # @. If there is no common observed variable betweeand
™ then a warning is sent to the user and the correlation rank is set to zero

ﬁ(xl,xm) =0if {i:ryrim =1} = @.

The sizes of the set on which the correlations are computed are kept in the variable
Cim = Z i im -
=1

(i) The second step contains the projection problem. The computation of the new basis
B is straightforward but the matrix produéf B corresponding to the change of
basis is impossible as soon as one item is missing. We use imputation by fitting
a value using a robust regression. We set the following "quality” condition for a
variablez” to be a regressor for a variahté:

n
i = Zrijnk > yn for some parameter) < v < 1.
=1

For each variable’ the algorithm will impute a value for a missing valug (r;; =
0) with a robust fit using the variable which has the highét*, z/) among the
variablesz* satisfying the "quality” condition and;;, = 1. The following pseudo-
code describes this imputation process.

- for all variables 27 having missing values ( S ri; <n) do
- select the m (0 <m <p-—1) variables z¥ such that  c;, > yn;
- if  m=0 next
- rank these variables according to R(z*, 29):
R(z*, 27) > R(x*2,27) > ... > R(aFm, 27);
- reg =1,
- while (Y r;<n) and reg< m do
-if > (1 —rij)rik,., >0 fit @ robust regression of 27 on
xFres and impute all x;; where (1—r;)ri,,, =1 with the
robust fit plus a randomly chosen residual error;
- reg=reg+1 ;
- next;
- hext;

- if some missing values are left ask the user to relax his quality
condition or to exit.

Once all missing values have been imputed all the computations of the step can be
performed.

(i) Unchanged.
Remarks:

1) All regressions are fitted with the initial data, no imputed values are included in
these computations.
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2) In our implementation we use an M-estimator for regression which bounds the in-
fluence of residuals and of the explanatory variaiile

The detection is performed using Mahalanobis distance only on the initial data.

23.1 Mahalanobis distances

Once estimations of the meainand covariance matrig are available the estimation of
the full Mahalanobis distance of an observation= (z;), U (z;), is based on the partial
Mahalanobis distance computed on the components (x;), and inflated by a factor
inversely proportional to the proportion of observed vaﬂ%ési.e.

p _
MD%/[,S(%) = W((ajl)o - MOi)t(S 1)01-((372')0 - M,,),
where M, is the orthogonal projection a¥/ to the subspace defined byand (S—!),,

is the restriction to that subspace of the quadratic form giveAHy Using the response
variableR, this can be rewritten as

p

P
=1

MD?\LS(%‘) = (x; — M)tdiag(ri)S_ldiag(m)(xi - M),

Tij

wherediag(r;) is the diagonal matrix with diagona), thei'" line of R corresponding to
ZTi.

24 BACON

The "growing a good subset of observations” principle is not disrupted by item non-
response as long as the measure that is used to grow the subset at each step is available. In
BACON this measure is given by Mahalanobis distances based onaje& Eistimators

of the mean and covariance matrix computed on the subset. The missing values will
interfere with the three computations: the estimation of the mean, the estimation of the
covariance matrix and the computation of the Mahalanobis distances using the other two.
One problem - the Mahalanobis distances - is easily solved while the other two - the
mean and the covariance matrix - are more delicate to deal with. The solution to the first
problem has been presented in the preceeding section 23.1. For the other two problems we
had to select estimators of the mean and the covariance matrix computable with missing
values. We choose a method that is known to work well for multivariate normal data
when applied to the whole population: the EM algorithm. In the second subsection we
shall describe how we adapted the EM-algorithm to survey data to obtain EM estimators
of the variance and covariance matrix. The reason of the choice of this algorithm was
to maintain the efficiency of the BACON algorithm when applied to multivariate normal
data. The last subsection will describe how the BACON and EM algorithms were merged
together to create the "TBACON-EM for survey data” algorithm.
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24.1 EM estimators for survey data under multivariate normal
model

In this subsection we shall adapt the EM algorithm to the context of survey data. We shall
begin by stating general points on the algorithm. This summary will present briefly the
theory underlying the algorithm and some results for regular exponential families. All

details can be found in (Schafer, 2000).

24.1.1 Generalities on EM

Model assumptions In order to justify the different steps of the algorithm, some as-
sumptions on an underlying model of the population data are needed. We shall consider
population datasets whose observations can be modeled as independant, identically dis-
tributed (iid) draws from some multivariate probability distributife, §). The proba-

bility function of the complete data may therefore be written as

P(x16) =[] (2:.0),

where N is the size of the population. This is called the complete-data model. Recall
that X denotes simultaneously the random variable and the matrix of the values and that
the same holds foR the response variable. In the following we shall assume that the
missingness mechanism is ignorable, i.e. MAR and distincness of the parathetexs

and¢ of R.

The EM algorithm  The ignorability assumption allows us to factor the distribution of
what we really observ® (R, X,|0, ) into two pieces:

P(R, X,|0,¢) = /P(R7X|¢9,§)de
= /P(R\X,f)P(X]G)de

~ PRI, [ POXB)AY,

R|X07 g) ’ P(Xo|9>

(
:P(

This factorization shows that likelihood-based inferences athoah be performed with-

out regard to the missing-data mechanism. The factor pertainifigvith be called the
observed data likelihoodZ (0| X,) oc P(X,|0).

The distribution of the complete dafa can always be factored as
P(X|6> = P(XO‘G)P(XmLXOaG)
Viewing each term as a function éfand taking the log, we obtain

H0]1X) = 1(0]1X,) + log(P(Xm| X0, 0)) + ¢,
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where [(6|X) = log(P(X|0)) is the complete-data loglikelihood](6|X,) =
log(L(0]X,)) is the observed-data likelihood amds an arbitrary constant. The term
P(X,,|X,, ) is crucial and plays a central role in EM. It captures the interdepen-
dence betweenX,, and # on which EM capitalizes. As this predictive distribution
P(X,,|X,,0) cannot be calculated each expectation step (E-step) will take an average
over P(X,,| X,,0®), whered) is a preliminary estimate of the unknown parameter, i.e.

if we set

QI8") = [ 161X)P(X0 X, 00X,y

and
H(0|6W) = /zog(P(Xm|Xo,9))P(Xm\xo,9<t>)dxm

we then have
Q(016W) = 1(8|1X,) + H(A|0Y) + c.

The maximization step (M-step) will find the maximu#fi*!) of Q(0|6V). A central
result (Dempster et al., 1977) shows th&t") is a better estimate that®) in the sense
thatl(04+Y|X,) > 1(0| X,). The EM algorithm is then described as follows.

The EM algorithm Choose a starting valug® of the parameter to be estimated, then
iterate the following steps until convergence up to some desired precision:

E-step Q(6]6®) is calculated by averaging the complete-data loglikelind@iLX ) over
P(Xon] X,,00);

M-step 6%+ is found by maximizin@(6|6®).

Conditions under which this sequer#€ converges to a stationary point of the observed-
data likelihood are provided in (Dempster et al., 1977). In well-behaved problems this
stationary point is a global maximum.

EM for regular exponential families EM uses the interdependence between missing
dataX,, and the unknown parametetsThe E-step uses the value@f to fill in some-

how the missing data and the M-step uses these values to re-estimate the parameters and
obtaing“+1) ., If in most cases the M-step is straightforward (no computational difference
from finding the MLE in the complete-data case), the E-step can be a real burden. This
is not the case when the complete-data probability model falls in a regular exponential
family. For these families the complete data loglikelihood may be written as

H01X) = n(0)'T(X) + Ng(6) +c,

wheren(0) = (11(0),n2(0), ...,nx(#))" is the canonical form of the paramet@érand
T(X) = (T1(X), T2 (X), ..., T(X))" is the vector of complete-data sufficient statistics.
Moreover, each of the sufficient statistics has an additive fofaX) = S, h;(z,),
for some functiom;. Becausé(6|X) is a linear function of the sufficient statistics, the
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E-step replace®}(X) by E(T;(X)|X,,0"). In other words the E-step fills in the miss-

ing portions of the complete-data sufficient statistics. In the case of multivariate normal
data, these expectations will be available in closed form and thus the E-step will also be
straightforward.

With these results we are now able to adapt the algorithm to survey data.

24.1.2 EM for survey data

Assumptions on the study population In order to adapt the EM algorithm to the con-
text of survey data, we need assumptions on the study populdtioiVe shall assume
that we have an underlying multivariate normal superpopulation model for the variable of
interest, i.e.

X ~N(0)=N(u,X).

Again X (resp. R) will denote simultaneously the random variable (resp. the response
variable) of the superpopulation and tNex p matrix containing the values of the variable

on the populatiorU. If we denote byS the sampling variable, we shall assume that
andR are independent variables.slfs the sample obtained as a realizatiorbofe shall
simply useX; (resp.X;,) to denote the observed (resp.missing) values of the survey data.

Our strategy is then termed aguwl information maximum likelihood approach (Cham-
bers, 2001y opposition to anaximum sample likelihooapproach where the EM al-
gorithm would be run just by using the information containedXif Our idea is very
simple : every time the EM algorithm run on the whole population would need a quantity
T computed fromX, we shall estimate it by" using X;.

The complete data case To establish the notational conventions of this section we shall
begin by looking at the complete data case for which we won’t need the EM algorithm
to estimated). Recall thatX (resp. X*) denotes the population (resp. sample) data.
An element of the matrixX' (resp. X*) will be denoted byr,;; with: = 1,..., N and
J=1,...p(resp.z;; withi = 1,....,nandj = 1, ..., p). All vectors will be expressed as
column vectors, for example thith row of X is

T = (T, ey Tip)
We assume that,,...,z y are independent realizations of the random varidbjee.
Ty, .., oy ~ iid N(0) = N(u,X).
Discarding a proportionality constant the likelihood function is
N 1 &
L(0|X) o [X]" = exp {—5 D (i — ) (i - N)} -

=1
Expanding the exponent and taking the logarithm we can write the loglikelihood function
as
N N 1
1(0)X) = — log 15| — Eutz—lu + pt ST — §tr(2_1T2)
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where
. N
t N N
Ty =X"1y = (Zi:ﬁil, R Zi:lxip) = E (il?z'l, e 7$ip)
i=1
and
N o N N
Zi:1 L5y 21:1 TinZiz - 21:1 Ti1Tip
N N o N
SN rprn S, c SN apw
i=1 "2t i=1 Vi2 i=1i2ip
TQ - XtX - . . .
N N N o
Y oict TipTil D ;g TipTig * > oic1 Lip
2
Ty TaLiz o TiZip
N 2
Z Ti2T41 Lo R DM 7
i=1
2
Tiplil  Tipkio - Tip

are the sufficient statistics. As these statistics will be needed to find the MLE Yoe
have to estimate them from survey dafa if the population dat& is not available. The
Horvitz-Thompson estimates of both quantities are simply given by (recalliteat the
sampling weights)

n
T, = Zwi(xfl, T
i=1

and

s \2 S .8 S .S
(x3)? xhxdy - Ti1Tip

n S S s \2 S S
ES Tty (Th)° - LioTip

T2 = E Wi . .

i=1

S .S S .8 s \2

Tiplil  Liplio =~ (‘/Eip)

In the complete data case we have seen that because the multivariate normal is a regular
exponential family and the loglikelihood function is linear in the elements;dnd 7,

we can find the MLE by equating the realized value§pfind7; to their expectations

E(T)) = NpandE(Ty) = N(X + ppt). This leads to the well known MLE estimator of

0= (u,0): X
MLE(u) = —=1T;
(1) Nl
and .
MLE(X) = NT2 —~ MLE(p)MLE(p)*
If NV is known (i.e. X ,w; = N) we estimate these quantities by the classical Horvitz-
Thompson estimates

L —

1 ~
MLE(u) = <1
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and

— —  t

1 ~ _—
MLE(Y) = T, — MLE(u)MLE(j)

If N is not known the Hjek estimator is used estimatingby X7, w;.

The incomplete data case - The EM algorithm We shall proceed in the same way to
adapt the EM algorithm to the survey data. We shall analyze the EM algorithm &rd

at each step where it is needed we shall use estimates based drne presentation of

the EM algorithm given in (Schafer, 2000) is used here. We shall first give some matrix
tools that will simplify the description of the algorithm.

The sweep operator If a multivariate normal random vector distributed a8/ (u, ) is
partitioned in two parts’ = (2!, z4) then thez;'s are distributed a8/ (y;, 2;;) with

b >
= H1 ands, — 11 12 1
M2 o1 Yo

It is well knows that the conditional distribution ef|z; is normal with momentg,., =
a9 + Ba.1z; and covariance matriX,.; where

Q1 = flg — S X717

By =YXy (4)

Y1 = Top — 1 U1 Ty
Now specifying the distribution of (parametrized by, ) is the same as specifying
the distribution ofz; (parametrized by, ;) and the conditional distribution of;|z;
(parametrized byis.; = an.q + Ba.q21, Y0.1). The transformation from the first parameters
to the second ones is therefore one-to-one with inverse given by

fo = Q.1 + Baqp

Z]12 = 21135.1 (5)

Yop = Yo + By Y11 BE
Both transformations will play a crucial role in the realization of the EM algorithm and
the essential tool to implement it in an easy way is the sweep operator. This device was

first introduced by (Beaton, 1964) and is commonly used in linear model computations
and stepwise regression.

Definition 4 Let G be ap x p symmetric matrix with elements;, the sweep operator
SW P[k] (for 1 < k < p) replacesG by anothemp x p symmetricd = SW P[k]G matrix
with elements given by

Pk = —1/ g

hik = hij = gji/grr fOr j # k

hji = hi; = gji — girgrt/ grr fOr j # kandl # k
After the application of the operata#IV P[k|, the matrix is said to have been swept on
positionk.
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It is convenient to define a reverse-sweep operator that returns a swept matrix to its origi-
nal form.

Definition 5 Let H be ap x p symmetric matrix with elements;, the reverse-sweep op-
erator RSW k] (for 1 < k < p) replacesH by anothemp x p symmetriaG = RSW[k|H
matrix with elements given by

Jkk = —1/hpp
Jik = Gkj = _hjk/hkk forj 7& k
gi1 = gij = hﬂ — h]khkl/hkk forj 7é k and! 7é k

By definition we have therefore
RSW[k]SW P[k|G = G = SW P[k]|RSW [k]G.
Both operators are commutative, i.e.

SW P[ky|SW Plks] = SW P[ko] SW P[ky],
RSW k| RSW [ks] = RSW [ko] RSW [k1].

Thus we can extend the notations to

SW P[ki|SW Plks] - - - SWP[ky] = SW Plky, ks, . . ., ki,
RSW [ky)RSW ko] - - - RSW k)] = RSW [k, ks, . . . ki).

Among several properties of these operators let us quote the followiggslpartitioned

as
Gn G
G — 11 12
G21 G22
with G1; ap; x p; matrix then the swept matrix on the figst position is given by

e Gl Gha )

SWP[L 2, cee ,pl]G =
GQlGﬂl Gag — G21Gf11G12

In particular we haveSW P[1,...,p|G = —G~'. Moreover the determinant is ob-
tained through the process of sweeping on all positiongy= [[}_, 7% with 7, =
(SWP[L,...,k—1]G)kk-

Both transformations 4 and 5 can be expressed very easily in a matrix form using the
sweep and reverse sweep operators. With the above notations let us write the patameter
asa(p+1) x (p+ 1) matrix

o =1 pi
92( )Z M1 211 22

fo a1 292
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The reason for placing-1 in the upper-left corner is given at the end of the section. To
keep unchanged the indices Bfwe shall number the lines and column of this matrix
from 0 to p. Using the above properties we swekpn positionsl, . .., p; and we obtain
the following matrix

—1— S S ph — S S
SWP[L,....pi0 = St o WP

pa — Yon X Ty Bop — By By T
—1- Mtizfll,ul NtiEﬁl agl

= Y1 -Xy Bj,

Q9.1 By Yo

Now as we also have

S tz—l tz—l -1 t
RSWIL,...,p] S o
Y m =X p1 X

we see that just by sweepifigon positionl, 2, ..., p; and then by reverse sweeping the
upper-left(p; + 1) x (p; + 1) submatrix on the same position we obtain the matrix

t t
-1y gy

¢ = pio X1 B§_1
az1 By Yo
We have then realized the transformation 4 fréto ¢ with the sweep and reverse-sweep
operators.
The reason for placing thel results from the following relation

RSW[O]GzRSW[O]<_1 “t>=<1 4 t).
P poX A+ pp

The last matrix contains the natural representation of the MLE, i.e using the notation
developed in the complete data case we have

1 MLE(i) 1(N T\ T
MLE(y) MLEXS)+MLEWMLEw?! ] N\ T, T, )] N

. Tt . . - -
with T' = Tl > being the matrix form of the sufficient statistics. In the case of
1 2
multivariate normal data we have thus showed that the MLE can be computed from the
sufficient statistics using the sweep operator

MLE(6) = SW P[0] (%) .
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The EM-algorithm for survey data Recall thatX is the NV x p matrix of the population
data andX* then x p matrix of the survey data. We shall numberdby- 1, ..., A the
missingness patterns appearing among the rows.oAA pattern for a rowz; of X can

be represented as a p-vector)& and1's with 0 values corresponding to missing items
and 1 values to observed items. For examplevjf = (23, NA,2,7, NA, NA,12,8)"

its missingness pattern is describednas(z;) = (1,0,1,1,0,0,1,1)". The number of
different possible missingness patterhgs bounded by? — 1 (the trivial pattern with all
values set t@)'’s will never be used because the completely missing rows obntribute

to nothing to the observed-data likelihood and should be removed from the data). The
A x p matrix M will be the matrix having as rows the missingness pattengswith
a=1,...,A. Letm, be one of these missingness patterns we shall need the following
notations

I(a) = {i : mis(x;) = m,} = {row labels ofX havingm, as missingness pattérn
O(a) = {j : m,; = 1} = {column labels of pattera with observed items
M(a) = {j : mq; = 0} = {column labels of pattera with missing item$

For the patterru given above as an example we would have:) = {1,3,4,7,8} and
M(a) = {2,5,6}.

The E-step With a model of the regular exponential family we have seen that the E-step
just replaces the sufficient statistics by their expectation 8Véf,, | X,, #) for an assumed
value off. As theses statistics are linear combinations,pfandz;;z;; the crucial point

is to find their expectations.

As the rowsr; are independent for a givéhwe have

N
P(Xm|Xoa 9) = H P(xi(mis)|xi(obs)a 9)

i=1

wherez; ) (resp.z;imis) denote the observed (resp. missing) subvectoy.dfiow in the

case wheré”(z;|0) is a multivariate normal distribution we have seen that the moments of
P(i(mis)|Ti(obs), @) can be obtained using the sweep operator. More precisely for a given
patterns if i € I(s), j,k € M(s) and if we set

C = SWP[O(s)]0
with 6 the parameters matrix seen above we then have

E(SEij\Xm 9) = E(xij|xi(obs)> 9) = Coj + Z CkjTik
keO(s)

and
Cov(xij, vix| Xo, 0) = Cov(zij, Tir|Ti(obs), 0) = Cji-

If j € O(s), z;; is fixed and we have trivially that
E(2ij| Xo,0) = E(2i|2i(obs), 0) = i
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and
Cov(zsj, Tik| Xo, 0) = Cov(xij, Tik|Tiobs), ) = 0.

Using E(zy) = E(z)E(y) + Cov(z,y) we obtain the final general expressions fof
I(s)

Tij forj S O(S)
x;, forj e M(s)

v

E(xij|X079) = E($ij|$i(obs)79) = {

and
E(xijxi] Xo,0) = E(xi2m|iobs), 0)
Tij ik for j, ke O(S)
=9 Tk forj e M(s),k € O(s)
cir + xjay, forj ke M(s)
where

= Cpj + E CkjTik

keO(s)

Remark:We emphasize here the fact that in both equations the independence of the ob-
servations:; implies the first equality and in consequence the fact that these moments can
be calculated from one; without any knowledge of the other ones. This means that these
relations are the same for thg/'s:

s forjeO
E(xfﬂXo,@) = E(xfj|xz$(obs)79) = { " f ’ ]\4(;))
x:* forj e 5

v

and
E<xfjxfk|X07 6) = E<:C xzk|xz (obs)» 9)
T3, for j, k € O(s)
=9 ziwy, forj e M(s),k € O(s)
cjr +xg gy forj k€ M(s)
where

5 = E
z] = Coj + Ck] zk

keO(s

We are now in a position to write the E-step in a matrix form (to shorten the expression
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we shall writeE (- - - | X,,0) = - - - |);

N T!
E(T|X,,0) = E 1X,,0
T T

N 35i1| $121| $i1$i2| ce £E¢1!17ip|
= Z 9€z‘2| xi2xi1‘ $32| s | xiQxip’
i=1 .

Tip| TipTir| TipTio| oo T

By the remark above we know that all coeﬁicie@ can be computed the same way for
the population and the survey data therefore we can use the Horvitz-Thompson estimator
to write the "estimated E-step” for the survey data:

1 J’3151| Ifz‘ T x{fp‘

wh| (z5)? whah| - T X7,

E(T|X,,0) = sz vl wpry| (wR)?] | wh,
'Tzspl ‘T $11| mfprQ| (xfp)Q‘

The M-step The M-step is relatively trivial in the multivariate normal case. We have
shown that for a given sufficient statistics matfixthe MLE is simply obtained by
MLE(#) = SWP[O]N~'T. A M-step is therefore nothing else than

0(k +1) = SWP[O)N'E(T|X,, ") for the population data

and

Bk +1) = SWP[0 ]N_lﬁ(T|XO79k) if NV is known
" SWPO] (X", w) "t E(TIX,.0%) if N is unknown

for the survey data.

24.2 The "BACON-EM for survey data” algorithm

Merging both algorithms is relatively straightforward if computation time is not an issue.
Each time estimations of the mean and the covariance matrix are needed, the EM algo-
rithm described above is run up to some pre-fixed convergence criteria. Such an approach
is clearly too naiv when evaluating the computation time. Firstly the "growing” structure

of the BACON algorithm would not be used to avoid extra-computations of EM at each
step , secondly a restrictive convergence criteria of EM could slow down much the algo-
rithm only to make improvements of the estimation at each step when they are probably
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not needed (the crucial point at each step is that the estimations of the mean and the co-
variance matrix allow the algorithm to exclude outlying points from the good subset and
this does not need these estimations to be extremely close to the real values).

The "BACON-EM for survey data” algorithm is desribed at the end of this subsection.
Our approach towards the two issues quoted above is the following. According to our ex-
perience of the BACON algorithm we decided tu re-use as much information as we could
from one step to the next one. In fact estimation of the sufficient statistiosomputed

on some good subseét (it is actually simply the restriction of thé;, = Zf\il h(z;7) to

the elements i, i.e. T = >, h(z;j)) usually has a paff with points having no
missing values estimated @9 that can be computed straightforward and a problematic
part T¢ with points having missing values estimatedﬁg that can not be computed.
The expectation computed by the E-step can therefore be written as

E(T%XS,0) = TS + E(TS|XE,0).

As the subsets&; are growing, we do not compuﬁéf”at each step of the BACON loop,

but we keep a global variable fdAToG that is simply updated each tiniechanges (adding
points, and sometimes removing a few to the statistic). Concerning the convergence cri-
teria selection, we choose to fix the number of iteration of EM at each step of the Bacon
loop, by default this number is set 5adbut the user is allowed to change it. At the end of
the Bacon algorithm EM is run once more but this time with more iterations (by default
10) and this is also the case for the initial subset selection if the user chooses Version 1 of
BACON.

24.2.1 The algorithm

- Default constants

a = 0.95
c=3
it.em.1 = 10
it.em.2 =5
- Starting point
Version 1 .
- Compute M and 5 using EM with  it.em.1 iterations on X;
- Compute the n (Mahalanobis) distances MDﬁ’g(xi) (see 23.1);
Version 2
- Compute the coordinatewise median med ignoring in each variable
the missing values;
- Compute the n distances ||z; — med|| based on the observed components
of z; and corrected by a factor as in 23.1;
- Select the m = cp smallest distances to form the first good subset G,
- Compute Mg and Sg using EM with  it.em.2 iterations on G, and stock TC;
-If S is singular, exit and ask the user to increase c;
- Main loop
- Compute the n (Mahalanobis) distances MDJW@SG (z;) (see 23.1);

- Set a new subset NG to all points with Mahalanobis distances smaller
than  (Cnprxp.a)?;

- If NG =G then exit the loop;

- Upgrade TS to TNG,;

- Reset G = NG;

- Compute Mg and Sg using EM (with TG already computed)
with  it.em.2 iterations on G,

-If Sgis singular, exit and ask the user to increase a;

- Restart the loop;
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- If a better estimation is seeeked . it.em.1 more iterations of EM on G are
run with starting parameters Mg and Sg;
- Nominate the observations excluded by the final G as outliers.

Once all the distances (i.e. the infection probabilities) are available, the EA algorithm
works regardless of the underlying data values. Therefore only the distances computation
has to be adapted to the absence of some values. We shall assume here that the data
are MCAR; a more careful study should be carried on to see if this hypothesis can be
weakened or not. The adaptation here is done similarly as in 23.1 simply by computing
the distance between two points on the common observed variables and inflating it by a
factor inversely proportional to the proportion of observed values, if no observed variables
are in common the distance is set to infinity. The standardization of each variable is done
using only the observed values. Recall tikats the response variable, i.e;, = 1 if
variablek is observed for observationandr;, = 0 if not, then the distance between
observationg; andz; is given by

12
di; = (# 2 hemt QerinT (i — xﬂf)2> ;1D Tk # 0
i =

b1 TikTk

00, if not

where
_ -2
e = (mady,, —1Ti) "

Whencil-j is set to infinity the infection probability is forced to be zero forbidding a pos-
sible infection between both points. This is actually what we want as we don’t have any
information on the distance between the two points. Why should we standardise with
> . Tkrik? The point is that if an observation is an outlier in some dimensions but has
missing values in many other dimensions, then it could be masked without the standardi-
sation. Why should we divide by, r;zr;x and not by> ", gxr7;,? The second solution
would imply that the distance is a weighted mean of the contributions of the dimensions,
the weight beingy,. In the extreme case of an observation with only one observed vari-
able the distance with this observation would correspond to an unstandardized distance in
the observed dimension. This is undesirable because then outliers in dimensions with a
small dispersion may remain undetected.
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Part VI
Robust nearest neighbor imputation

26 Introduction

In this section we describe an algorithm which can impute values for detected outliers
and for missing values. Furthermore edit rules and sampling weights should be taken into
account. The algorithm should be a module in a system of modules which contains also
an edit stage controlling edit rules, an outlier detection stage, and a preliminary stage of
imputation which imputes deterministically if possible (e.g. in the case of balance edits).
The module should be nearly automatic. Thus we do not want to use any modelling of
missing values. This is a serious drawback in many instances. The only device we want
to use are distances and therefore the imputation is based on nearest neighbor methods.
The Fellegi-Holt principle of minimum change is embedded in the nearest neighbor dis-
tance. We use the Mahalanobis distance and assume therefore that the bulk of the data is
approximately elliptical. The second method we planned to implement was a backward
epidemic algorithm. However, due to lack of ressources, this was not possible.

27 Input

The input to the imputation module is the data, a vector of flags on whether the observation
is an outlier, a matrix of the same dimension as the observation which indicates edit
failures, and a vector of sampling weights. More formally the inputs are:

1. An x p matrix X of observations. In the first place we assume the variables con-
tinuous but in principle also categorical variables could be treated. Together with
X we get or may calculatena x p matrix R of indicators of response with

1 =z is given
Tij = . .
! 0 x;; is missing
2. An x 1 vectorw of sampling weights.
3. An x 1 vectoru of outlier flags which have been set in a previous outlier detection

phase. Instead of the outlier flagsmay contain a measure of outlyingness like
robustness weights. For the moment we assume that

0 observation is declared an outlier
Ui = .
1 otherwise
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4. An x p matrix E of flags (see Section 4.2.1). We assume that any error localisation
has been done beforehand. Thus the flags mean

0 x;; fails one or more edits and is deemed in error
“ 1 x; passes all edits

If a value is missing, i.e. if;; = 0 thene;; = 1. In fact edit rules which involve a
missing value usually cannot be applied to an observation.

In the EUREDIT data set¥; which contain only missing values but no errors we have
e;; = 1 for all i andj but for the data setg; we have some;; = 0.

The objectives of the imputation module are:

1. Imputex;; if r;; = 0, i.e. impute missing values.

2. Imputez; if u; = 0, i.e. impute outlying observations.
Optionally we may set;; = 0 if e;; = 0 beforehand, i.e. we may want to impute a new
value whenever a given value failed any edit. A problem with this option is that if no

efficient error localisation has been done beforehand it may be very inefficient because
too many values are imputed.

28 The imputation module POEM

The idea is to use a weighted Mahalanobis distance which is adjusted for missing values
and for edit failures. We call the algorithm POEM for weighted imPutation for Outliers,
Edit failures and Missing values.

28.1 Center and standardization

First we calculate the mean of good observations for each varjable

1—e;;
E iuiwmja( ”)xij
Hj =

(6)

17 ..
> uiwirgot—e)

Herea is a reduction factor betweérand1. Thus if a value failed edits then its weight in

the mean is reduced by a factdf —¢i) = o while there is no weight reduction fey; = 1.

Of course this factor is useless if we haveset= 0 if e;; = 0 beforehand. Reasonable
values fora are0, i.e. we treat failures as missings, Igri.e. we ignore the matrix E. A
factora = 0.5 might represent our relative confidence in the failing items. Missing values
are left out by the sums due tg = 0 and outliers are left out or downweighted due:to

Thus we get a robust mean which takes into account as much reliable values as possible.
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We will come across the fact@gja(l‘@ij) several times and we call it;; to shorten the
notation. Thus the mean of good observations becomes

D Uithi i T 7
p=<5———. (7)
> Uwiu;

Instead of taking a different weight for each variable we may join the reduction factors of

an observation to
a; = [J a0, ®)
j

Then we get another estimator of the mean of good observations:

P D UithiTij 04T
;= N
D UiiT 0

(9)

In what follows we stick to the first definition of a mean (6).

The different dimensions (variables) should have the same order of magnitude in the dis-
tance. This is particularly important because of possible missing values. We calculate the
variance of the good observations for each variable:

aneve (e — 17.)2
o2 — > wiwiovij (i — 1) _ (10)
’ > Uiwiu;

Then we standardize the observations:

Fi = @ (11)
J

From now on we work with the standardized observations only.

28.2 Covariance Matrix

The second step is to estimate a variance-covariance matrix of the good observations. To
avoid computational problems we sgf = 0 if r;; = 0, i.e. we replace missing values by
0 (the mean of the standardized observations).

The terms of the variance-covariance matrix of good observations is calculated as

1—eij) o (1—ei) 5 =
>0 wgwgririp e o) gy

D), =
( )Jk Ziuiwirijﬁka(lfeij)a(lfeik)
_ ZZ U W; 005 O T T w2

Zi U; Wi O O,
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Note that this is a slightly different formula as the one used for outlier detection since now
we take into account missing values much more simply and we add a downweighting for
edit failures.

The covariance matrix for standardized observatiBis() is the correlation matrix of
the unstandardized observations.

This matrix D may lack positive-definiteness in particular if many values are missing,
outlying or failing. In that case we cannot proceed further without analysis of the situa-
tion.

The standardization in the numerator/of;,, could be even more sophisticated, taking into
account the effective degrees of freedom.

28.3 Redefinition of outliers

The observations that have been declared outliers bhyay be representative. We would
like to have a way of relaxing the outlier conditions in order to avoid imputation for
representative outliers (or simply for too many outliers). This is necessary for very skew
data where rejecting outliers may lead to a large bias.

We calculate the Mahalanobis distance of each observation.

~ 1~
Dk Qi ik Dy i

d2 _ p2
D i i

(13)
Note that we have included the downweighting for failing items.
Now we may define a second outlier indicator or robustness weight

1 d<
u:{ d<¢ (14)

0 otherwise
wherec is a tuning constant to be chosen. It is clear that we may choose to use a smooth
downweighting of outliers with,; = ¢/d for d > ¢ like for an Huber M-estimator.

The total robustness weight {5, w;u;. The total robustness weight is less than the
population sizeN if the weightsw; are calibrated accordingly. Usually we want that

> wit; > Y w;u; because of the relaxation of outlyingness. Looking at the total ro-
bustness weight may help in choosing

28.4 Conditions for donors

Now leti be an observation which has to get imputed valuestaagossible donor. We
impose the following conditions on the donor:

1. The donor should not be an outlier, ivg. = 1. Note that we use the original,
because we would not want to impute representative outliers.
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2. The link between andh must be sufficiently strong, i.e.
Z rijTpiolt e q1men) = Z Qi Ol (15)
j j
should be sufficiently large.

3. Donors for outliers must be complete with no failing items and donors for obser-
vations with missing or failing items must have enough items, i.e; i= 1 the
condition is

D (L= ri) (L —eg)rmgen; = ) (1 —riy)(1 - ey) (16)

J J
and ifu; < 1 the condition is

> rnjen; = p. (17)

j
We combine the first two criteria into one:

Z upijanj > Pp, (18)
J

where0) < ( < 1 is a parameter to determine the severity of the donor condition. An
alternativ would be to use only complete non-outlying observations as donors.

The set of donorg/; may be empty. Then we have to refrain from imputation or relax the
donor condition.

28.5 Nearest neighbor

The (squared) distance between an imputand, i.e. the observation to impute, and a donor
is

o Dk QijOhj ik ik (Tij — i”hj)Dj_kl (Tik — Thi)

(19)
Zj,k Qi W ik Ch

d(i.“ jh)2 =p
Note that it was important to standardize the data beforehand because if different variables
are missing for different donors we account for the number of missing variables but not
for the variability of the different variables. We calculate the distaf(ag, z,,) for all 1
in H;. Then we choose the donor with minimal distance, i.e.

h(i) = arg min d(z;, Zp,). (20)

heH;

Then k(i) is the nearest neighbor af Instead of this deterministic version we may
determine a small number of nearest neighbors and choose randomly, with probability
proportional to the distance, one of them as donot for
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28.6 Imputation

For non-outliersq; = 1) imputexz;; = x,(;); for all j with r;;e;; = 0, i.e. for all variables

with missing or failing items. We may, of course, impute only for missing values. For
outliers @; < 1) imputex;; = x,(;); for all j. Note that we impute only for the outliers
according to the possibly relaxed definitian If we accept only complete cases and
non-failing observations as donors then we may impute all values always. This results in
a loss of information which goes contrary to the Fellegi-Holt principle. However it is the
simplest way to ensure that the data does not fail any edits after imputation.

29 Controlling the imputation

We have seen that for the imputation we have to choose several tuning constants:
1. The tuning constantfor the redefinition of outlyingness.
2. The tuning constant for the downweighting of failing items in the distance.
3. The tuning constarit for the condition on the link to a donor.
4.

If we choose random nearest neighbor imputation we have to choose the constant
of admissible neighbors.

After imputation we cannot be sure that the imputed data passes the edits. We will have
to run the edits again, which results in new valdgdor the failure indicators and check
whether we have been more or less successful. We may also compare the efigwital

the newe;;. In principle there might be still some missing values left in the imputed data

X if no donor could be found. We therefore will have to comptjfevith an E module to
check for missingness.

We need information on

The number of remaining missing values per varigble-;,.
The number of good values per variable w; ;.

Meany; and variance?.

The covariance matrik.

The number of outliery . 1{w; < 1} and), 1{a, < 1}.
The total robustness weighis, w;u; and) , w;;.

The number of empty donor séts, 1{|H;| = 0}

© N o g & w DN P

The maximal number of times a donor is used.

This information is needed to judge the performance of the imputation. To obtain some
of the informations we need to run a E module on the output.
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