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Summary 

The aim of the Workpackage 5.1 of the EUREDIT project is to evaluate selected currently used imputation methods. The results of this evaluation will be used as a benchmark to which the results of more advanced methods, such as neural networks, will be compared. In this paper, standard methods for the imputation of three datasets are described: Danish Labour Force Survey (LFS), UK Annual Business Inquiry (ABI) and Swiss Environment Protection Expenditures (EPE). These methods include (multivariate) regression imputation, certain hot deck methods and a combination of regression and hot deck. For the application of these methods, (a combination of) standard software packages can be used such as SPSS Missing Value Analyses, S-plus and several of the software packages in use by national statistical institutes. 

Keywords: Imputation, EUREDIT, Multivariate regression, Nearest neighbour hot deck, Ratio hot deck.
1 Introduction

The aim of the Workpackage 5.1 of the EUREDIT project is to evaluate selected currently used imputation methods. The results of this evaluation will be used as a benchmark to which the results of more advanced methods, such as neural networks, will be compared.

Most imputation methods currently in use at National Statistical Institutes (NSI’s) can be classified as either regression based methods or hot deck methods. Whether a regression or a hot deck method is chosen depends among other things upon the type of the variables to be imputed. Regression methods require continuous target variables whereas hot deck methods are more flexible, they are applicable to both continuous and discrete target variables. On the other hand, when there are strong linear relations between the target variable(s) and the auxiliary variables (predictors), regression type methods can be expected to perform better than hot deck methods.

This paper describes the standard imputation methods that CBS applied to three EUREDIT datasets:

· Danish Labour Force Survey (Danish LFS)

· UK Annual Business Inquiry (ABI)

· Swiss Environment Protection Expenditures (SEPES)

Regression imputation of the Danish LFS data is straightforward. There is only one variable (income) with missing values. A multiple regression model with a single dependent variable suffices in this case, a more involved multivariate regression approach is not needed. Most commonly used statistical software packages can be used for this purpose.

The other two surveys (ABI and SEPES) are business surveys and both have a large number of variables with missing values. So, in principle, a multivariate regression approach could be used for these datasets. In practice, this works well for some of the variables in these datasets but problems occur for other variables.

These two surveys have a number of total variables, for instance, in the ABI data there is a variable purtot (total amount spent on purchases of goods and services). Corresponding with each total variable there are a number of partial variables, for instance (pursale, purhire, purins, purcomp, etc.), that together represent a specification of the total variable. The partial variables must add up to the total variable. Furthermore, these partial variables contain a large number of zero values. 

The multivariate regression approach did work well for the total variables, but problems occurred when it was tried to extend this procedure to also include (some of) the partial variables. In particular:

1 The EM algorithm fails to converge. This not only happens when it is tried to impute, for instance, all (24) variables in the ABI dataset, it also happens for subsets of these variables. For some subsets, however, convergence can be obtained but selecting these subsets is a time consuming trial and error process that depends on the dataset. It is unlikely that producers of business statistics will adopt such a procedure as a “standard method”.

2 The partial variables do contain many zero values but the regression method will not impute any zero values. Furthermore, regression imputations for these non-negative variables will often be negative which, for most users, will not be acceptable.

3 For each record, the partial variables have to add up to the corresponding total variable. This additivity constraint (balance edit) will be violated if one or more of the partial variables is imputed by regression.

Since standard imputation methods at NSI’s belong either to the family of regression methods or the family of hot deck methods we have looked for a suitable hot deck method for the imputation of the partial variables as an alternative for multivariate regression imputation. As a suitable hot deck method we have used to following approach: Select a donor record using a nearest neighbour strategy. Calculate in this donor record the ratio of each of the partial variables to the total variable, i.e. partial variable divided by total variable. These ratios can then be used to determine which proportion of the total variable should be allocated to each of the missing partial variables in a receptor record. 

In the following sections of this report, the selected imputation methods are described in more detail. In section 2, the (multivariate) regression approach is outlined. Details of algorithms are not given here, references that fully describe the algorithms are cited in stead. Section three describes the ratio hot deck method sketched above. As an alternative strategy for some variables a combination of hot deck and regression imputation is described in section four. This combined method consists of a hot deck procedure to determine if a missing value is zero or not and regression imputation to impute values for the non-zero values.

2 Regression imputation methods

2.1 Regression imputation for a single target variable

Regression imputation is straightforward if only one variable (y, say) with missing values is considered and the predictor variables (x1, … ,xp, say) that are used do not contain missing values. This is the case for the Danish LFS. In such a case imputation can be based on the usual linear regression model
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where yi is the value of the target variable for unit i, xi a p-vector with auxiliary variables or predictors for unit i, 
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 the intercept, 
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 the p-vector containing the regression coefficients and 
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 a random disturbance with zero expected value. Alternatively this model can be written as
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with 
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 the expected value of y and 
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 the vector with expected values of the predictor variables.

The parameters can be estimated using the units for which y is observed. In particular, the expected values 
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with 
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 the sample covariance matrix of the x-variables calculated using the units for which y is observed and 
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 the vector with sample covariances between the x-variables and y calculated using these same units.

Using the estimated parameters, deterministic regression imputation of the missing y-value for a unit i entails replacing this missing value with its conditional expected value, given by
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2.2 Multivariate regression imputation

Often, some or all of the predictor variables also contain missing values and these predictor values become also candidates for imputation. In such cases, as for instance the ABI dataset, there is no distinction between predictor variables and target variables. Let the vector with all variables under consideration be denoted by y and the value of unit i on y by yi. For each unit the vector yi can be partitioned in an observed part 
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. Regression imputation can in this case be based on the multivariate regression model that relates each of the missing variables to all of the observed variables:
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where 
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-matrix with regression coefficients for the multivariate regression of the 
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 variables that are missing for unit i on the 
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 (predictor) variables that are observed for unit i. The coefficient matrix 
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 depends on i in the sense that the predictor variables and variables to be predicted may differ between units, but the coefficients are equal for units that have the same missing data pattern. 

Estimates of the parameters of (2.5) can be obtained by using an EM-algorithm. This algorithm is an iterative procedure for obtaining maximum likelihood (ML) estimates (assuming multivariate normality) of the expected value vector and covariance matrix of a set of variables based on data with missing values. This procedure is described by e.g. Little and Rubin (1987) and Schafer (1997). The book by Schafer also gives a detailed account of the implementation of the algorithm (page 168-170) including an example in “pseudo code”.

Let the ML-estimates of the expected value and covariance matrix of all variables be denoted by 
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where 
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 containing the estimated covariances of the variables observed for unit i with the variables missing for unit i.

Using these estimates, regression imputations for the missing variables in a record i can be obtained by 
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3 Hot deck imputation methods

The regression methods are based on a linear additive model for the data. When such a model is not a realistic approximation for the data, regression imputation may give poor results. In the EUREDIT business surveys (ABI and SEPES) there are a number of variables with many zero values (often 50% or more). For such variables, the assumption of a linear model for a continuous dependent variable is problematic. For these variables other standard methods have been applied. 

Two more or less “standard” hot deck methods are considered. The first is a straightforward nearest neighbour strategy. The second is an adaptation of this method for variables that add up to a given total (such as the purchase variables in the ABI dataset that add up to purtot). These two imputation methods are detailed below. 

3.1 Hot deck within classes

Nearest neighbour hot deck methods use a distance function based on some auxiliary values to measure the distance between records. For each record with missing values (the receptor record) on some variables (the target variables) a donor record is selected that (i) has no missing values on the auxiliary variables and the target variables and (ii) has the smallest distance to the receptor record. Imputation is then performed by replacing the missing values of the target variables in the receptor record by the values of these variables from the donor record. To apply this method within classes, the data are first divided into imputation classes that are defined by the categories of a categorical variable that is always observed (non-missing). The imputation is then carried out within each class separately, thus ensuring that receptor and donor belong to the same class. 

The distance function used in the applications is the distance function suggested for this purpose by Little and Rubin (1987, p. 66) and also used by the GEIS software (Generalised Edit and Imputation System) of Statistics Canada (GEIS Development Team, 1998). Before applying a distance function it is customary to scale the auxiliary variables such that they have zero mean and unit standard deviation. This prevents implicit weighting of the variables, in particular if they are measured in different units. Let the values of the scaled auxiliary variables in a record i be denoted by zij (j=1…J), then the distance between records i and 
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A donor record is thus chosen such that the maximal absolute difference between the auxiliary variables of the donor and the receptor is minimal.

3.2 Ratio hot deck

This method is used for variables that add up to a given total. For instance for the long-form ABI-data the purchase variables (pursale, purhire, purins, etc.) together represent a specification of the total amount spent on purchases of goods and services and these purchase variables are “subtotals” that must add up to the total variable (purtot). If the total is observed and only one of the subtotals is missing, this subtotal can be imputed simply by a deductive imputation derived from the additivety constraint: the missing subtotal is set equal to the difference between the total and the sum of the observed subtotals. When more then one of the subtotals is missing, this difference equals the sum of the missing subtotals. This sum can then be distributed over the missing subtotals using ratios obtained from a donor record. In this way the level of the imputed subtotals is determined by the (observed or regression-imputed) overall total but their ratios (to the total of the missing values) are determined by the donor record. Furthermore, this imputation method ensures that the subtotals will add up to the total. 

Let the total variable for record i be denoted by yit and the S subtotals by yis, so that 
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 if all variables involved are observed. Now consider a record r (a receptor record) where yrt is observed but some of the yrs, are missing and thus require imputation. For the receptor record the sum of the missing subtotals, yrm say, is obtained as the difference between the sum of the observed totals (yro, say) and the overall total
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where Or indicates the observed subtotals in record r. This sum must be distributed over the missing subtotals in record r. For this purpose a donor record d is selected using the nearest neighbour hot deck method described above. From this donor record the ratios are obtained that correspond to the missing subtotals in the receptor record. The imputed values for the missing subtotals (denoted by 
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) are then obtained by multiplying these ratios by yrm :
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(3.3)

Note that if only one of the subtotals is missing, the ratio in (3.3) equals 1, so no donor information is used and the method reduces to a deductive imputation rule derived from the additivity constraint. Also if the sum of the subtotals equals the overall total, yrm = 0 and again a deductive imputation rule results.

It can happen that a donor is chosen for which the missing subtotals are zero. Then, (3.3) cannot be applied because the numerator is zero, reflecting the fact that such a donor does not contain information on how to distribute the difference, yrm over the missing subtotals. In such cases another donor (the next nearest neighbour) is used.

If the overall total itself is missing, the regression-imputed value 
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 for the total variable can be used in the procedure described above. However, the sum of the missing subtotals, which in this case is obtained as 
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, can then become negative which would result in negative imputed values for the missing subtotals. A simple solution to this problem is to replace the imputed value of the missing overall total by an adjusted imputed value, 
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So, if the imputed total is less than yro it is set equal to yro (the logical minimum of the unobserved yrt), yrm becomes zero, the missing subtotals will be imputed by zeroes and the additivity constraint is preserved.

In some cases it may be advantageous to impute some of the subtotals using regression imputation and the others by the ratio hot deck (method outlined above). This is for instance the case for the purchase variables of the ABI dataset. Here, the overall total (purtot) and one of the subtotals (pursale) are imputed by regression because this appears to be a better strategy than imputing all subtotals by ratio hot deck. In this case, with one of the subtotals imputed by regression, the remaining missing subtotals can still be imputed using (3.3) but some adjustments need to be made to ensure that the imputed values are non-negative and add up to the overall total. Let 
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 denote the regression-imputed value for the subtotal j for which regression imputation is used. Then an adjusted imputed value 
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This adjustment ensures that the adjusted imputed value plus the sum of the observed subtotals can never exceed the adjusted value of the overall total. Next, 
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 are treated as “observed” values (note that this also extends the set of observed values Or to include 
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) and (3.3) can be applied to impute the remaining missing subtotals.

A complication still arises for records where the total and one of the subtotals is imputed by regression but all other subtotals are non-missing. In such cases the additivity constraint will not hold. In line with the hierarchical nature of the procedure (first total variables will be imputed and then, given these totals, subtotals will be imputed) it is chosen to adjust the subtotal in such cases. This is also supported empirically, since the quality of imputations is usually better for the total variables than for subtotals.

4 Hot deck combined with regression

Some variables, for which regression imputation does not work well because they contain a lot of zeroes, are not subtotals that add up to a total variable. Such variables can therefore not be handled by ratio hot deck imputation. One approach for such variables is to use the standard nearest neighbour hot deck method outlined in section 3.1. Another approach, that brings regression back in the picture, is to consider such variables as consisting of two variables: one dichotomous indicator variable that indicates whether the original variable is zero or not and another positive continuous variable that contains the value of the original variable when it is non-zero. These two variables can be imputed separately and the results combined to obtain imputations for the original variable. This procedure is illustrated in table 1. Here Y stands for a variable (with values y) to be imputed using the combined method. In data pattern 1, this variable is observed and positive, in data pattern 2 it is observed and zero and in data pattern 3 and 4 it is missing. The column headed YI gives the values of the indicator variable and the column headed YP (y-positive) gives the values of the variable containing the non-zero values of Y. Imputation can now be performed according to the following steps.

Step 1. Impute for the missing values in YI. In the applications a nearest neighbour hot deck method is used for this purpose. Records with Y observed as in data pattern 1 and 2 (and observed values for the auxiliary variables to be used in the distance function) can be used as donor records. The resulting imputed values are denoted by 
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Step 2.. Impute for the missing values in YP. Regression imputation procedures are used for this purpose. For instance by using positive variables like YP (obtained by setting zeroes to missing) along with other variables in the multivariate regression procedure outlined in section 2.2. The resulting imputed value is denoted 
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 in table 1 and the imputed variable by 
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 contains imputed values obtained for records for which it is known that Y=0, these imputed values are predictions for the “hypothetical” positive variable YP. 

Step 3. In the last step the final imputation of Y is performed by setting missing values of Y equal to zero if 
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 = 0 and setting them equal to 
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Table 1. Illustration of the combined hot deck/regression imputation method
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