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Abstract

In Breckling, Kokic, and Liibke (2000) a non-parametric method for multi-
variate M-quantile estimation was introduced. To make this method applicable
to outlier detection we introduce a semi-parametric approach to multivariate
expectiles that shares a special case with the above method.
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1 Objective

Our objective is to develop a method for multivariate outlier detection. Ideally, it
should be possible to relate each data point to a certain probability and direction
(orientation within the whole data set). Apart from a pure ordering effect of all data
points we would also like to be able — for each single data point — to define a “degree
of outlyingness” by means of an objective interpretation of the probability related
to this data point.

Initially the aim was to use the methods for multivariate M-quantile estimation
as introduced by Breckling, Kokic, and Liibke (2000). However, it turns out that
this method is not suitable for this purpose. The main problem is that the M-
quantile surfaces corresponding to values of p ranging between 0 and 0.5 (the latter
representing the centre of the data) are not suitable for capturing outlier behaviour
of the data set: for large values of the parameter § (§ 2 50) — corresponding to a
step function type of weighting scheme — and p = 0 the M-quantile points are pulled
towards the data points sitting right on the boundary of the convex hull of the data.
Thus all these points are in this sense indistinguishable.

For small values of § and p = 0, on the other hand, the surfaces are still far
within the convex hull of the data. Attempts to extend the range of p below 0 to
circumvent this problem have not proven successful as there exist solutions only for
“slightly negative” values of p, i.e. not “negative enough” to push the surfaces out
far enough.

These M-quantile methods are strictly non-parametric. To solve the above prob-
lem we try to “add more structure” by making distributional assumptions. We then
introduce a parameter that determines to which degree this distributional assump-
tion enters our estimating equations.

2 The non-parametric approach

This method is described in detail in Breckling, Kokic, and Liibke (2000), here we
only state the definition. For a data sample y1,...,y,, v; € R*, and for given
0 <p<05andr e R |r| =1, the multivariate M-quantile 6 is defined as the
solution of the system of equations

1 n
m > (i — 0) [Pl i—0y>01 + (1 — ) Loy g)<op) wi = 0, (2.1)
=1
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where
-1 if ||ly; — 0] < c,
:{ if |y — 0]l < (2

lyi — 017" if |lyi — 0] > ¢,

for some given ¢ > 0. Note that the original definition is more general. In fact, the
definition we give here is only a limiting case of the original one. However, there
are two reasons why we restrict ourselves to this special case. The first is that it
is the only case where the computations that follow are feasible. The second and
more important reason is the following: the solution surfaces that result from r being
moved around the whole (k — 1)-dimensional unit sphere extend all the way to the
edge of the convex hull of the data if and only if the M-quantiles are defined as
above. This is crucial as we want to be able to relate each point of the data set to
(unique) values of p and r, i.e. identify each point as a solution to our estimating
equations.

Since the parametric approach to be described is set in the “mean world” rather
than in the “median world”, to find common grounds for the two approaches it makes
sense to consider the expectile case only. This means to set ¢ to infinity (actually, a
very large value), i.e. let the multivariate expectile be the solution of the system of
equations

1 n
- > (i — 0) [Pl i-y>0p + (1 = P)Lprgi—ey<ep] =0, 0<p< 3. (2.3)
1=1

3 A parametric approach to multivariate expectiles

Now we assume that the data sample is perfectly normally distributed, i.e. the data
points are realisations of a vector valued random variable Y, where Y ~ N(u, X).
The density function of Y is given by

_ 1 expl =1 . I15—1 . k
fus) = = ep (S-S - w) yERS (3)

Under the assumption of normality, the estimating equations (2.3) can be expressed
as

/]Rk (y — 0) [Pl y—a)>0) + (1 — P) i (y—g)<o}) fu(¥) dy = 0, (3.2)

where the integral is to be understood in a componentwise sense. In fact, the left
hand side of (2.3) is an estimate of the left hand side of (3.2). Equation (3.2) can
also be written as

E[QP(Y’ 7 0)] = 07 (33)

where
9p(y,m,0) = (y — 0) [PLip(y—gy>01 + (1 — P) L (y—p)<o]- (3.4)
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Figure 1: The function h(6;) for different values of p.

3.1 The simplified case

First we make two simplifying assumptions. Firstly we assume that y =0and X = 1.
The second simplification is the choice of r = (1,0,...,0) =: b;. Then

{y e R¥|r(y — 0) > o} - {y € Ry, > 91} , (3.5)

so for the first component of the integral we get

/Rk (y1 — 01) [PLy—a)>01 + (1 — P) Lip(y—0)<0}] fo.r(y) dy

= (27")_% Ak (yl - 01)(p]l{y1291} + (1 _p)]l{y1<91}) €xp (_% Zj:l y?) dy
= (2m) 2 /_oo (y1 — 01) (PLyy, 50,3 + (1 — P) Uiy, <0,}) exp(—3y1) dus
= 2m)7 3 [p{ @m)F(01)) — 0:(2m) (1 - 2(01) }

+ (1 -p{-@me(6) - ha(2m>2(0)) }]
= (2p = 1)(0(61) + 6:9(61)) — pb1,

where ¢ and ® denote the density and cumulative distribution functions of a standard
normal distribution, respectively. Since this expression depends only on the first
component of @, the first equation of the system of equations (3.2) can be solved for
01 quite simply by numerical methods: set h(01) := (2p — 1)(¢(61) + 0:D(01)) — pb1,
then 6 is the root of h. Figure 1 shows that h is monotonic and concave, which
makes the Newton-Raphson method the natural choice for finding the unique root
(pick 6; = 0 as an initial guess). Another point worth noticing is that the root of h
approaches —oo as p | 0.
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We return to the evaluation of the integral. For j > 2, the j®® component
computes as

/Rk (5 — 0;) [PLir (y—0)>0) + (1 = P) L y—g)<0} ) fo.1(y) dy

_k k
— (2m) /]Rk 05 = 0) (P a0y + (L= D)V gucoy) exp(—3 ., v7) dy

= (2m) 1 [-0;(2m)3] [p(1 - @(81)) (2m) % + (1 - p)®(61)(2m) 2
= 0;[(2p —1)®(61) — p].

1
Because 0 < p < 5,

negative, so the solution to (3.2) is

the expression in brackets in the last line above is strictly

0,=0, 2<j<Fk. (3.6)

Remark 3.1. Recall that we chose r = by, so 8 turns out to be a multiple of .
This result makes intuitive sense. Note, however, that this does not hold true in the
non-parametric approach.

3.2 The general case

Now we show how to proceed in the general case. Clearly, to assume a mean of
zero is no restriction. Now suppose that Y is N(0,X)-distributed. Because X is
symmetric there is an orthogonal transformation that turns ¥ into a diagonal matrix.
If this transformation is applied to the data set it is only rotated as a whole without
changing the geometric qualities. Thus it is justified to assume that ¥ is diagonal in
the first place.

Let r be an arbitrary vector of length 1. The idea is to transform Y and r in
such a way that the estimating equation (3.3) can be related to the simpler case from
the plrevious1 section. Let 2 denote the matrix for which Yy = ¥, and Y2 the
inverse of 32. Recall the following two simple results.

Lemma 3.2.

1. Y ~ N(0,%) with £ diagonal, then £~ 2Y ~ N(0,I).

2. If T is an orthogonal transformation andY ~ N(0,I), then also TY ~ N(0,1).
Proof.

1. Cov[E™2Y] = E[X 2YY'S 2] = N725%"2 = I, as ¥ is diagonal.

2. Cov[TY] = E[TYY'T') = TIT' = 1I. O
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Now set Y := E_%Y, = EM“/HE?’I‘H Let T denote an orthogonal transformation
(rotation) that maps 7 to b; and define Y := TY, # := T7.! Because of lemma 3.2
we know that ¥ ~ N(0,I). Thus we can use the methods described in the previous
section to find a solution 8 to the equation

Elgy(Y,#,0)] = 0. (3.7)
;From this we can construct a solution for the general case in the following way.

Theorem 3.3. Let 0 be a solution to (3.7). Then the vector 0 := S2T'6 solves the
estimating equation (3.3).

Proof. First note that Y = S27"Y, r = ||2%r||2_%T’f', and
r(Y — 0) = |S2r||(ST2T'7) S2 T (Y — 0) = ||Ser|l#(V — ). (3.8)
Equation (3.8) means that
Py —0)>0 <« &Y —-6)>0. (3.9)
Hence,
Elgy(Y,r,0)] = Elgpy(S2T'Y, |2 7|82 T'7, 52 T"0)]
= E[E%TI(? -0) {pl{f'(f/—é)zo} +(1 _p)ﬂ{r"(?—é)@}}]
= 2 T'Elg, (Y, #,0)]
= 0. ]
An immediate consequence from the above considerations is the following result.

Theorem 3.4. Let Y ~ N(0,%) and r € RF with ||r|| = 1. Let 0 be the correspond-
ing solution of (3.3). Then 6 is a multiple of Tr.

Proof. With the notation from above, let 6 be the solution of (3.3) corresponding
to ¥ and #. Since ¥ ~ N(0,I) and # = by, from remark 3.1 we know that 6 is a
multiple of 7, say 6 = &r. With theorem 3.3 it follows that

0 =x2T'0=X2T'¢h = (£/||S2r|) 82T/ TS 2r = (¢/||S27|) S O

Before we outline how the parametric and the non-parametric approaches can be
mixed we discuss how the solution surfaces in the parametric approach can be inter-
preted in terms of probability.

!This transformation T is not unique. However, all that is important is that it is orthogonal to
ensure that it does not change the geometry of the data set when applied to it. A possibility to find
such a transformation T is described in section A.1.
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4 Probabilistic interpretation of the solution surfaces

So far there is no objective interpretation of the meaning of the parameter p. To
achieve such an interpretation we proceed in two steps. First we introduce a paramet-
ric notion of multivariate quantiles (rather than expectiles) that allows for a direct
probabilistic interpretation.? In a second step we show that this approach is in fact
equivalent (in a certain sense) to the parametric expectile approach introduced in
the previous section.

4.1 A parametric approach to multivariate quantiles

Let Y be a normally distributed random variable that takes values in R*, more
precisely Y ~ N(0,X). The idea is to define the quantile surfaces as the iso-height
surfaces of the density function of Y: for a given value 0 < p < 1, we define the
corresponding quantile surface as the particular iso-weight surface such that the
region enclosed by this surface has probability mass p.

4.1.1 The simplified case

For a start we assume that > = I. Since in this case the iso-weight surfaces are
spherical we only have to find the radius ¢ such that the probability mass within
such a sphere is equal to some given value 0 < p < 1. Let this sphere be denoted by
515—1. To compute g we have to solve the equation

_forly)dy=p, 0<p<1 (4.1)

Because of the above assumption the random variable Y can be interpreted as a set
of k independent, standard normally distributed random variables Y7, ..., Y. Thus
the integral in (4.1) can be written as

for(y)dy = P(Y? + -+ Y < 0°) = F2 (0%, (4.2)

gk-1

where F,: j; denotes the cumulative distribution function of a x2-distribution with &
degrees of freedom. To get in correspondence with the setup for the non-parametric
expectiles as defined in section 2 we have to perform the transformation p — 3(1—p)
such that 0 < p < 0.5, where p = 0.5 corresponds to the mean and p = 0 to infinity.
With this the solution to (4.1) is given by

(4.3)

N[

1 _ _
*=F5 (1-2p), 0<p<

2For convenience, this approach will henceforth be referred to as the (parametric) quantile ap-
proach, whereas the approach from section 3 will be referred to as the (parametric) ezpectile approach.
Note, however, that the two approaches differ by more than just the different notions of quantile
and expectile.
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This yields a sphere with radius g as the (k — 1)-dimensional quantile surface. In
correspondence to the other approaches we want to define a multivariate quantile
with respect to a given directional unit vector 7. A straight forward way of achieving
this is to define the multivariate parametric quantile 0_,3,; as the point

pr = —or. (4.4)

The minus sign is due to the interpretation of p: since p = % is supposed to represent

the centre of the data, values of p less than % should lie in the direction opposite
to that of . This interpretation is analogue to the one in the approaches above.
Note, however, that r and 7 are not entirely equivalent. In (4.4), the quantile lies
by definition on the line given by 7. In the non-parametric approach this is not
necessarily true.

4.1.2 The general case

Suppose that ¥ is diagonal with diagonal entries o7, . . . ,a,%. The first thing to notice
is that the iso-weight surfaces of Y are now (k — 1)-dimensional ellipsoids Eg_zl given
by the equation

k 2
y.
y =7 (4.5)

as can easily be seen by setting fo s equal to a constant. Thus it is our aim to find
some p > 0 such that

[, fostiydy=1-2, 0<p<}, (46)
EFS;
Now consider the transformation 7' : RF — RF, y; %J]— Then det(T") = H?Zl O';l

and T(EI;’;) = S’S‘l, SO

[ foswdn= [, GoroT)w) et dy= [ fast)ds. (@)
EQ,E E So

2P

Thus it is again equation (4.3) that lets us compute o. To get the multivariate
parametric quantile 8, for given p and 7 it is natural to define 6,7 as the intersect
of the line given by 7 and the ellipsoid EZ,EI- For this we have to find A such that

J

k k -2, -1

Arj)? ) 75\ 2

( ;) =0 ie. A= j:g(z U—]2> : (4.8)
= ]

1 “ j=1"1J

We summarise this result in the following definition.
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Definition 4.1. Let Y ~ N(0,%), where ¥ is a diagonal matrix with diagonal
elements o2, ... ,a,%. Further let 7 be a directional unit vector and 0 < p < % We
define the k-dimensional parametric quantile 057 as the point

1,0k =2\ -1
1 r 2
s = AT, Where = _(chgl,k(l — 213)) ? (Z —J2> . (4.9)

j=1"13

4.2 The relationship between the solution surfaces
By construction, the solution surfaces to the estimating equations (4.6) in the para-

metric quantile approach are ellipsoids Eg:zl defined by

= 0% (4.10)

qm | Mam

S

=1

In this section we show that the solution surfaces to the estimating equations (3.3)
in the parametric expectile approach — as r is moved around the unit sphere S*¥~1 —
are ellipsoids of the exact same shape, except that to a given solution surface there
correspond different values of p and p in the two approaches.

4.2.1 The simplified case

We start by considering the case Y ~ N(0,I) again. As shown, the solution surfaces
in the quantile approach are spherical. The same holds true for the solution surfaces
of (3.3) in the expectile approach:

Theorem 4.2. If 3 = I, then the solution surfaces of (3.3) are spherical.

Proof. Let r be an arbitrary unit vector, and let  such that E[g(Y,r,0)] = 0. Let
7 be another arbitrary unit vector and let 7" denote an orthogonal transformation
that rotates r into #. A similar computation as above and applying lemma, 3.2 shows
that for 6 := T we have

E[gp (Ya 72’ é)] = E[gp (TY7 T’I", TH)] = TE[gp (Y’ ) 0)] = Oa (411)
s0 @ is a solution to (3.3). Because T is orthogonal we know that ||| = ||6]|. This
completes the proof. O

4.2.2 The general case

Now define YV := E%Y, s0Y ~ N(0,%). By the same arguments as above we see
that for 7 := ZféT/HZ’%rH and 6 := £26 we have

Elg,(Y,#0)] =0, (4.12)
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so 6 is a solution of the estimating equation. In other words, if © C RF denotes
the solution surface corresponding to Y ~ N(0, ) as r is moved around the (k —1)-

dimensional unit sphere, then © := = 20 1s the solution surface corresponding to
Y ~ N(0,%). Let @ € © and define 0 := 220 € ©. Then, because © is spherical,

k 2 k 2 k
§ J E ] § 2 _ 2
j=1 J j=1 .7 j=1

where p is the radius of ©. Thus © in fact coincides with the ellipsoid ES_EI, which
is a simple expansion or contraction of the solution surface we get in the purely
parametric approach. We summarise this result in the following theorem.

Theorem 4.3. If Y ~ N(0,%), ¥ diagonal, then the solution surface of the esti-
mating equation (3.3) coincides with the ellipsoid Eg_zl, where ¢ is the radius of the
spherical solution surface corresponding to' Y ~ N(0,I).

4.2.3 The precise correspondence of the surfaces

Obviously, for Y ~ N(0,X) and a given value ¢ > 0, the ellipsoid Elgfz1 is the solution
surface for the estimating equation (4.6) in the quantile approach for some value p.
On the other hand, Eg:zl is also the solution surface for the estimating equation
(3.3) in the expectile approach for some value p. What is the precise relationship
between p and p?

According to theorem 4.3, g equals the radius of the spherical solution surface
that results from the estimating equation (3.3) for a standard normally distributed
random variable. As shown in section 3.1, for » = b; the solution # is given by the
system of equations

(2p — 1) ((61) + 61®(61)) — pb1 = 0 (4.14)
0; =0, 2<j5<k. (4.15)
This shows that ¢ has to equal the absolute value of §;. For » = b; we know that 6;

has to be negative, so in fact
0= —91. (416)

According to the quantile approach, on the other hand, the relationship between o
and p is given by equation (4.3), i.e

0= Fngku — 2§). (4.17)

Combining these two identities and plugging that into (4.14) yields the following
result.
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Figure 2: The value of p as a function of p for different values of k.

Theorem 4.4. For given p let © denote the solution surface in the parametric
quantile approach. For given p let © denote the solution surface corresponding to
the estimating equation (3.3) in the parametric expectile approach. Then © = © if

and only if
(0) — 0®(—0) — -
B 2(w((pg)g— Qg(—Q)Q) vo Y7 VEZ 020 (4.18)

This relationship is plotted in figure 2 for different values of k. It allows us to
interpret the solution surfaces in the expectile approach in the same probabilistic
manner as in the quantile approach. Equation (4.18) can also be interpreted as a
function in p (of p) to obtain the inverse relationship. The necessary computations
for the numerical solution can be found in the appendix.

We conclude this section by combining theorems 4.4 and 3.4 to establish a (1:1)-
correspondence between the expectile and the quantile approach.

Theorem 4.5. Let Y ~ N(0,%), r, 7 € R* with ||r|| = ||| = 1, and 0 < p,p < 3.
Let 0y, be the solution to (3.3) and 5,7,7: the solution in the quantile approach, i.e.
let 057 be given by (4.9). Then 0,, = 057 if and only if p is given by (4.18) and
r=S"1F/|57 .

5 The semi-parametric approach

5.1 Definition

Our original aim was to find a mixture of the non-parametric and the parametric ap-
proach to multivariate expectiles. Recall that we are dealing with a set of data points
Y1,---,Yn- Assume that the data set has an estimated mean of 0 and an estimated
covariance matrix ¥, ¥ diagonal.®> Then we propose the following definition.

3We emphasise again that these assumptions are no restrictions as any data set can be trans-
formed — without change of geometric properties — to fulfil these conditions.
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Definition 5.1. Let 0 < p < % and r € R* with ||7]| = 1, and let 0 < n < L.
The semi-parametric expectile @ = 0 ,, is defined as the solution to the system of
equations

1 n
- ;gp(yiar, 6) +(1—n) /Rk 0 (5,7, 0) fon(y) dy = 0, (5.1)

where g, is given by (3.4).

The parameter 7 determines to which degree each of the two approaches enters
the estimating equations. The way the two approaches are mixed may seem a bit
arbitrary at first glance. However, there are arguments to justify this procedure.

Firstly, as mentioned before, the sum in the estimating equations above is an
estimate of the integral, so we are mixing objects of the same kind. Secondly, equa-
tion (5.1) could be viewed as a penalty type of estimating equation: if one assumes
an underlying normal distribution, the sum in (5.1) can be interpreted as a penalty
term compensating for departure from normality.

Note that in definition 5.1 the density of the normal distribution could in principle
be replaced by any other density function. In most cases, however, the resulting
estimating equations will hardly be analytically or numerically feasible. Also, the
theory concerning the probabilistic interpretation we developed in section 4 is valid
only for the normal distribution.

5.2 Reformulation of the estimating equations

To get the estimating equations (5.1) in a numerically tractable form we prove a
simple result for the non-parametric expectile approach that is exactly analogue to
theorem 3.3 in the parametric expectile approach.

Theorem 5.2. Let 0 < p < 1, r € R* with |r|| = 1, and & € R*** a diagonal
matriz. Let §;, 7 and T be defined as in theorem 3.5. Let 9;,,,7: be the solution of (2.3)

with respect to #. Then 0, , := S2T"0 is the solution to (2.3) with respect to r.

Proof. The estimating equation (2.3) can be written as
1 n
;ng(yiara 9) = 0’ (52)
=1

and, as before, '(y; — 6) > 0 if and only if #(§; — ) > 0. Thus g,(y;,7,6) =
E%T’gp(@}i, #,6). This completes the proof. O

With theorems 3.3 and 5.2 we can restrict ourselves to the case where 3 = [ and
r = b1, because (5.1) is a linear combination of the estimating equations of the two
approaches. Note, however, that we have to redo the transformation of r to b; for
each new r, because the transformation of the data points y; depends specifically
on this transformation. This is in contrast to the parametric approach where the
random variable Y ends up being standard normally distributed in any case.
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Nonetheless theorem 5.2 is very helpful because now we can obtain an integral
free formulation of the semi-parametric estimating equations (5.1) by applying the
results from section 3.1: By setting

M, = {ilyi > 61}, M; = {ilyn <01}, (5.3)

the system of equations (5.1) can be written as

77%(102(%1 —0)+(1-p) > (1 — 61)

M, M>
+ (1 =n)((2p = 1) [0(6) +6:2(61)] — pb1) =0, (5.4)
77% (p > (i —05) + (1 —p) > (vij — 9j))
M, M

+ (=00 (@~ 1)3(0) ~p) =0, 2<j<k  (55)

The first of these equations depends only on 81 and can thus be solved quite simply by
numerical methods. In fact it is easy to see that the function of which we are trying
to find a root is continuous, piece-wise affine linear, strictly concave and decreasing,
so the Newton-Raphson method with starting value 8; = 0 is the best choice.* This
computed value can then be plugged into (5.5). What remains is a linear equation
in ¢;. Collecting terms yields

nk (p s s + (1= 2) s, i)
nE (P 1+ (1 =p) oy 1) — (L =) (20— 1)0(01) —p)

. 2<j<Ek

0; =

(5.6)
This means that the system of estimating equations (5.1) can basically be reduced
to a univariate root-finding problem (and the necessary pre-transformations). Algo-
rithms for the estimation of the semi-parametric expectiles, and the inverse problem
of finding p and r for a given point in the data set are presented in the appendix.

6 Application

To illustrate the technique described in section 5 it was applied to data from the
Annual Business Inquiry (ABI), a large scale survey run by the UK Office for National
Statistics (ONS). In particular, our interest focused on the choice of the mixing
parameter 7).

A range of business and balance sheet information is collected in the ABI. It is
a broad business establishment survey covering most industries in UK, except for
agriculture. The data made available for this study by ONS consists of 6 study
variables: turnover, employment costs, purchases of goods and services, taxes paid,

4An immediate consequence of the monotony is the uniqueness of the solution!
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Figure 3: Expectile curves for different values of 1, p = 0.001.
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Figure 4: Expectile curves for different values of p, n = 0.9.

cost of all capital assets required, and proceeds from capital asset disposals. In
addition there are several auxiliary variables included with the data which have
been extracted from the UK business register: employment, turnover, and class of
activity. These variables are often used by ONS as covariates for estimation of means
and totals as their values are know for all establishments in the target population: -
in particular they are used to construct the survey weight, which was also included
in the study data set.

Typically the study variables have a significant proportion of zeros (the remaining
values being positive) and as modelling this kind of population added considerable
complexity to our task, we decided to delete all observations where one or more of the
study variables was zero. After deletion their remained a total of 788 observations;
and subsequently there seemed to be little benefit in incorporating the survey weight
into the analysis, so this was also ignored. As it is easy to illustrate, we decided to
only consider the 2-dimensional case, and confined our attention to the variables
register turnover, employment costs and taxes paid, although the method is clearly
applicable to higher dimensional data.
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Figure 5: ‘Ridge’ plot (left) and corresponding outlier plot (right). In the left plot
only observations with p < 0.05 when n = 1 are shown. In the right plot outliers are
those points with p < 0.01 when 1 = 0.9.

Figure 3 illustrates the logged data and expectile curves for several different
values of n and a small value of p, while figure 4 shows some of the extreme curves
for n close to 1 (close to nonparametric expectiles). Clearly it can be seen that
the extreme expectile curve is quite dependent on 7 and that the departure from
bivariate normality in this case is quite significant. Indeed, in the right-hand plots
one can see some evidence of non-linearity, and in all plots their is strong evidence
of heteroscedasticity. The expectile curves for small values of n capture the general
shape of the data set quite well, although non-linearity is not well described. These
facts are well know from earlier work on nonparametric M-quantiles, see Breckling,
Kokic, and Liibke (2000).

As noted in the introduction, the fundamental problem with purely nonparamet-
ric expectiles is that they will assign the value p = 0 to all points on the convex hull
of the data and, as can be seen in the example presented here, this result is inappro-
priate. One would expect that as n moved away from 1 the p-values for many points
on or near the convex hull of the data would increase rapidly, while those points that
were indeed outlying would continue to have small values of p. On the other hand
for p close to zero some false outliers may be detected because of the invalidity of
the normal assumption. As shown on the left-hand plot in figure 5, this is indeed
the case. One can interpret this plot in a somewhat similar fashion to a ridge plot
used in ridge regression. In this case, however, one should try and choose 1 as close
as possible to 1 in order to minimise the degree of bias associated with departures
from normality of the underlying data, but at the same time choose 7 sufficiently far
from 1 in order to avoid the problem noted above. A suitable compromise in this
case seems to be 7 = 0.9. The right-hand plot shows the outliers identified by this
procedure when using this particular choice of . Here the cutoff value p < 0.01 was
chosen arbitrarily.
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A Description of the algorithms

So far we implicitly restricted ourselves to the problem of finding the expectile 6 for
given values of p and r. For the task of outlier detection it is the reverse problem
that is of interest: For a given element of the data set, find the corresponding values
of p and r.° For both of these cases we shortly summarise the necessary algorithms
which have already been implemented. Initial tests indicate that they both work
fine.

A.1 An application of the () R-decomposition

At certain spots in the algorithms we have to find an orthogonal transformation
T that maps a unit vector r to the vector by = (1,0,...,0)". One possibility to
construct such a transformation is by a so-called @) R-decomposition: the vector r
can be written as

r=QR, (A.1)

where Q € R¥** is an orthogonal matrix and R € R* is an upper triangular “matrix”
— which in this case means that R = (R1,0,...,0)". Multiplying (A.1) by Q' from
left yields Q'r = R. Thus, because ||r|| = 1 and @ is orthogonal, we know that

1= Q|| =Rl = |Rul, (A.2)
so R; € {—1,1}. This means that R € {—by,b1}. Hence, setting T := R Q' yields
Tr = by, (A.3)
where T is orthogonal. We perform the @QR-decomposition of r with the Matlab-
function qr.
A.2 The expectile finding problem
1. Choose parameters:

(a) Choose 0 <n <1.
(b) Choose 0 < p < 3.

(c) Choose directional vector.

2. Perform pre-transformations:

SFor ordering purposes only the value of p is needed.
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(a) If wanted, transform p according to equation (4.18).
(b) Shift data set to get a mean of zero.

(¢) Orthogonally transform it to make the covariance matrix diagonal; call
this new covariance matrix ¥X. Apply the same transformation to the
directional vector and call this r.

(d) Transform the data set by %% and r by 27 to get 7.
(e) Transform the normed version of 7 by some orthogonal 7' to map it to by
(see section A.1). Apply the same transformation to the data set.

3. Solve the estimating equations:

(a) Solve equation (5.4) for #; by Newton-Raphson with starting value 0.
(b) Plug this value into equation (5.6) to get 6;, 2 < j <k.

4. Apply the pre-transformations backwards to get the final value for 6.

A.3 The reverse problem

Here the main idea is to use an iterative procedure applying the estimating equations
from the “forward problem”. This algorithm is more or less independent of the
precise nature of the definition of the expectile. We only assume that the “forward
problem” is already solved.

1. Choose 0 <7 < 1 and data point § € {y1,...,y,}.5
2. Perform pre-transformations:

(a) Shift data set to get a mean of zero. Shift § by the same amount.

(b) Orthogonally transform data to make the covariance matrix diagonal; call
this new covariance matrix .. Apply this transformation also to 6.

(¢c) Transform the data set and 6 by s,

3. Choose starting values g, po:

(a) The natural choice for g is 7o = _ﬁ_

(b) For py one can use 0.25.
4. Tterate in i:

(a) Orthogonally transform r; to by; apply the same transformation to the
data set and to 6.

(b) Applying equations (5.4) and (5.6), compute a value 6; corresponding to
r; and p;.

SIn principle, 6 is not restricted to be one of the data points but may be any point in R*. Of
course, there may be a solution only if 7 is small enough.
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(c) Update p:

i. Define ¢; := log
corresponds to ¢ = O

]-pz l

so that p = 0 corresponds to ¢ = oo and p =

.. 4
ii. Now we can assume that ||||0 |||| , 80 we set gi+1 := Qig 6:1T-

ili. Transform back to get Pi+1 = m.

(d) Update r by adding the vector v; := ﬁ — % to it. More precisely, since
points in the opposite direction of 8, we define r; 1 := —(—r;j4v;) = r;—v;.

(e) Repeat from 4a until convergence (||6; — 8|| < €).
5. Apply the necessary re-transformations (only needed if value for r is wanted).
6. If wanted, transform p according to equation (4.18) (see also the appendix).

There is, in fact, an alternative to this algorithm that is much quicker to im-
plement than the one described: instead of transforming the data and r in each
step, use the complete “forward algorithm” for the untransformed data set (above
we use only the “core” of the forward algorithm, namely equations (5.4) and (5.6)).
However, it turns out that in that case the algorithm is far less efficient than the
one described. The (likely) reason for this is that the updating procedure of r (step
4d above) is a lot more efficient for the standardised data set (as is the case in the
described algorithm) than for the original data set.

B Solving equation (4.18) for p

Equation (4.18) can be written as

©(0) — 0®(—0)
2(¢(0) — 0®(—0)) + o

In this section we present the computations that are necessary to solve (B.1) for
p numerically when p is a given constant. We rely on figure 2 to state that the
function of which we have to find the root is increasing and concave. This makes the
Newton-Raphson method the natural choice for the root-finding algorithm. First we
introduce some convenient notation. Let

o(z) = plz) — 2d(—z), Glz):= %

—p=0, o= /Fo,(1—2p). (B.1)

—p, ele) = \[FoL@), (B2
where z > 0. Note that

(@) = ¢'() = (—zp(—2) + &(=12)) = —39(z) + 290(7) — B(~7) = —T(~2).

We have to solve the equation G(o(1 — 213)) = 0 for p. Hence, to apply Newton-
Raphson we have to compute the term a- G (o1 —2p)). We get

G Gle(1 — 2) = ~2G/(o(1 -~ 29))¢ (1 - 2p)
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where

(2g9(z) + z)? (29(z) + z)?
'(z) = (Fo)' (@) _ 1 - L
2\/]!W 2F 5, (F><_21k(37)) Fx_Ql,k(‘T) 2F>I<2,k (e(2)*) e(=)
Because
1 T k_q _
FXQk(_q;) = 2%F(g) /0 12 1em 2 dt

we conclude that
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