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Foreword
This report describes the work of the Swiss Federal Statistical Office (SFSO) for EU-
REDIT project workpackages 4.2 and 5.2 under the Information Society Technology Pro-
gram (IST) of Framework Program 5 of the European Union. The participation of SFSO
to EUREDIT is financed by the Swiss Federal Office of Education and Science.

EUREDIT workpackages 4.2 and 5.2 have been unified into workpackage 4/5.2, now
called ”Develop and evaluate new methods for statistical outlier detection and outlier
robust multivariate imputation”. The main effort of SFSO for EUREDIT goes into this
workpackage and SFSO is the leader of it.

This final version of 12 February 2003 describes the outlier detection methods that SFSO
has explored or developed. These methods have been tested with real and artificial data
sets and they have been adapted to cope with sampling weights and missing values. From
the last draft version of 23 September 2002 there have been minor changes in the first
chapters I to VII and the last chapter VII on the evaluation has been added.

We would like to thank Werner Stahel, Ali Hadi and Yves Tillé as well as our partners
in Workpackage 4/5.2 and in EUREDIT overall for fruitful discussions on multivariate
outlier detection and robust imputation. We would like to thank our colleagues from the
Statistical Methods Unit of SFSO for their support and understanding.
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Summary
EUREDIT will develop, evaluate and disseminate new tools aimed at improving the qual-
ity of statistical data through improved data editing and imputation. In EUREDIT the term
editing means error localization, i.e. identifying doubtful or erroneous data values. In this
report we are looking at a particular type of error, namely outliers. Error localization is
usually achieved via the calculation of indices that measure the potential for particular
data values to be in error. In our case such an index is a measure of outlyingness. Pre-
viously, in many cases these indices have been based on strong assumptions about the
nature of the population from which the data values were obtained. For example, with
univariate continuous data one can apply an outlier test based on the median and the me-
dian absolute deviation. Such tests typically assume that the data are generated from a low
dimensional symmetric distribution (e.g. the bivariate normal). This is at odds with the
high dimensional mixed categoric-continuous nature of modern data sets. EUREDIT will
evaluate and compare a range of both currently used as well as new methods for outlier
detection and robust imputation.

The objectives of the EUREDIT project as a whole are described in six different points.

1. To establish a standard collection of datasets.

2. To develop a methodological evaluation framework.

3. To evaluate current ”in-use” methods for data editing and imputation and to de-
velop and evaluate a selected range of new or recent techniques for data editing and
imputation.

4. To compare all methods tested and develop a strategy for users of edit and impu-
tation leading to a ”best practice guide”. This evaluation is made using criteria
developed in 2. applied to the results given by the methods selected in 3. acting on
the data sets chosen in 1.

5. To disseminate selected methods on a project-wide basis by developing prototype
software.

6. To exploit the results of the project by developing planned routes to exploitation.

This report will concentrate on points 3 and 4 and editing is interpreted as outlier detection
while imputation is interpreted as robust imputation. In order to avoid excessive ”tuning”
of methods to a particular situation (one of the major concerns in EUREDIT) SFSO’s
strategy is to clearly separate these two phases. Therefore all methods selected for the
project are developed totally independently of the two datasets on which they will be
evaluated.

After a short introduction recalling the classical knowledge and well known concepts of
outlier detection and introducing the notations used in this report, the second part explains
how the different multivariate outlier detection methods chosen for EUREDIT were se-
lected. Five methods are emphasized, one classical method (minimization of scale), two
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modified existing methods (forward search and projection pursuit) and two new methods
(simple and nonparametric). The third part shows a comparison of these methods applied
to development data sets (none of the evaluation datasets of EUREDIT). The fourth part
describes how these methods have to be modified to account for sampling weights. The
fifth part adds the problem of missing values, but due to lack of resources and time only
three methods are modified to cope with missing value. The sixth part shows the results
of applying the developed methods to real datasets including treatment of missing values
and sampling weights. The seventh part introduces an imputation method that takes into
account outliers, edit failures and missing values. Finally the eighth and last part presents
the results of the EUREDIT evaluation.
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Part I

Introduction
A very important aspect of statistical data editing is outlier detection. Besides graphical
tools, robust mathematical algorithms can be used to detect outliers. Imputation in the
presence of outliers has to control the influence of the outliers on the imputation model
and must prevent from imputing (non-representative) outliers. Dealing with outliers is
considered an essential part of the edit and imputation process. Most outlier-detection
and imputation methods are univariate or bivariate in nature and can handle only contin-
uous data. However, real errors in data are usually multivariate and consist of a mix of
categorical and highly skewed continuous variables. Furthermore real data usually have
missing values. Often the data stem from sample surveys, therefore the sample design
should be taken into account by outlier-detection methods and by imputation methods.
The idea here is to concentrate on the outlier-detection methods and then to develop rela-
tively simple imputation methods based on the outlier-detection methods. The aim of the
combination of outlier-detection and imputation will be to develop procedures that pre-
serve the distributional structure as far as possible while remaining robust to outliers in
the data. Furthermore we concentrate on continuous variables though one of the methods
would, in principle, cope with ordinal and nominal data.

The problem of outliers becomes much more difficult in two or more dimensions than
in only one dimension. While an outlier can only be very small or very large in one
dimension (at least for unimodal distributions) in higher dimensions the ”direction” of
the outlier becomes more and more difficult because there are infinitely many directions.
Outliers may be quite close to the bulk of the data or to a model if the distance is measured
in a Euclidean metric. However, if a metric appropriate to the distribution of the bulk of
the data is used it may immediately show up. Thus in higher dimensions the form of the
point cloud of the bulk of the data must be well represented in the metric used to detect
outliers.

In what concerns sampling the approach of SFSO is mainly design-based. However,
models are inherently necessary for a meaningful discussion of outliers. Even if the model
can be as vague as ”outliers are far from a center of the data” the definition of what ”far”
and ”center” mean needs a model.

An important aspect of the models used for outlier-detection is the sub-population that it
applies to. For larger data sets one usually has to subdivide the data set in order to obtain
a meaningful model for the bulk of the data and then to detect outliers. We call such a
sub-population areference population. In other words usually our model is a mixture of
models for the different reference populations. The definition of the reference populations
is a crucial point in outlier-detection and robust imputation. In this version of the report
we shall only treat the case where the reference population is fixed beforehand.

For finite population sampling in addition to the problem of accounting for the sample
design, and related to the problem of the modelling of the bulk of the data, we face the
question ofrepresentativeandnon-representativeoutliers (Chambers, 1986). Repre-
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sentative outliers are correct extreme observations that are not unique in the population
and therefore must be extrapolated. For the purpose of outlier-detection the distinction be-
tween representative and non-representative outliers is not of prime importance because
even if an outlier is a correct observation belonging to the finite population, we would
like to detect it because we will have to check it, it may be influential and we may want
to treat it specially in the estimation procedure. Anyway, in the face of a detected outlier
one usually is not sure whether it is representative or not. The nice thing would be to
have a measure of the degree of belief we can have that the outlier is a good observa-
tion, some sort of a value of representativity. However, usually we do not have such a
value on a continuous scale and we have to take a dichotomous decision: representative
or not. Thus after checking an outlier to a certain extent one often assumes that an outlier
is representative. Nevertheless, when it comes to imputation and estimation, one treats
these representative outliers specially. For example in imputation one would not impute
representative outliers in the same way as normal observations because they probably are
rare in the population.

For our outlier-detection methods we do not distinguish between representative and non-
representative outliers at all. We will introduce some flexibility to consider the ”represen-
tativity” of an outlier for the imputation phase.

When selecting outlier-detection methods for this study we had four guiding principles in
mind:

Good detection capability: Ideally all outliers are detected but no good observations
declared outliers.

Sufficient speed: The algorithmic complexity should make the methods feasible also for
large data sets. The computing time should be at most moderate.

High versatility: The assumptions on the data (how much missingness, categoric and
continuous variables) should be low, adaption to sampling and missing values
should be feasible.

Simplicity: The methods should be simple to teach and apply. Few tuning should be
necessary, the know-how needed by users should be limited and simple to explain.

For robust imputation methods the first principle is replaced by

High preservation capability: Ideally the imputed data should be as close as possible to
the true data.

1 Definitions and Notations

This section will set up a list of the definitions and notations that will be used throughout
all this report. The reader should be able to refer to it whenever he’ll need it.
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General notations All matrices will be denoted by capital letters, e.g.A, while vectors
will always be column vectors and denoted by small letters, e.g.ai. Ip will denote the
identity matrix in dimensionp and1p the vector of1’s in the same dimension.

Usual distributions The univariate normal distribution with meanµ and varianceσ2

will be denoted byN(µ, σ2). Similarly the multivariate normal distribution will be de-
noted byN(µ, Σ) where this timeµ is the vector mean andΣ the covariance matrix. The
chi square distribution withp degrees of freedom will be denoted byχ2

p and its1 − α
percentile byχ2

p,α.

Data The data will be encoded in an × p matrix X. Then lines ofX denoted byxi

will correspond to then observations of the dataset and thep columns denoted byxk to
thep variables observed. We usually denote observations byi andj, while variables are
notedk andh.

Equivariances Let x1, ..., xn be a set of observations inIRp, let b ∈ IRp be any point in
the Euclidean space and letA be any non singularp×p matrix. Lety1, ...yn be the images
of thexi’s through the affine transformation

IRp −→ IRp

x 7−→ y = Ax + b.

Let M be some estimator of location and letS be some estimator of scatter. ThenM and
S are said to beaffine equivariant if

M(y1, ..., yn) = A ·M(x1, ...xn) + b andS(y1, ..., yn) = A · S(x1, ...xn) · At.

If the property is true when restricted to orthogonal transformation (A orthogonal and
b = 0) the estimators are said to beorthogonal equivariant.

If the property is true when restricted to scale transformation (A = aIp a non zero scalar
times the identity matrix andb = 0) the estimators are said to bescale equivariant.

If the property is true when restricted to shift transformation (A = 0) the estimators are
said to beshift or location equivariant .

2 Robust Editing

Outlier detection requires a ”metric” that somehow measures the ”outlyingness” of a data
point. Typically, the metric arises from some model for the data (for example, a center
or a fitted equation) and some measure of discrepancy for that model. A classical way of
computing a measure of discrepancy and identifying multivariate outliers is to calculate
the Mahalanobis distance. Recall that this distance uses estimatorsM of location andS
of scatter of a set of observations and is defined for an observationx by:

MD2
M,S(x) = (x−M)tS−1(x−M).
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Unfortunately both estimators of location and scatter are very sensitive to outlying ob-
servations. Therefore robust estimators of both location and scatter have to be used to
remedy that problem. Several methods have been reported in the literature for a number
of different approaches always with their advantages and disadvantages. Smooth esti-
mators such as maximum likelihood andM estimators (Huber, 1981), (Maronna, 1976)
have the advantage of being relatively simple to compute with a straightforward itera-
tion from a good starting point (Rocke and Woodruff, 1993). But on the other hand
their breakdown point - i.e. the smallest fraction of the data whose arbitrary modifi-
cation can carry an estimator beyond all bounds - is at most1/(p + 1) wherep is the
dimension of the data (Donoho, 1982), (Maronna, 1976), (Stahel, 1981). This handicap is
almost eliminatory when dealing with official statistics, most of them being high dimen-
sional data.M -estimators were therefore not considered further in this study. Many other
affine equivariant estimators were studied by Donoho (Donoho, 1982) but all have break-
down points at most1/(p + 1). Other approaches ended up with affine equivariant high
breakdown point estimators but had the disadvantage of being computationally expensive.
The first of these approaches was related to the projection pursuit principle: the Stahel-
Donoho (SD) estimator (Stahel, 1981), (Donoho, 1982). Other approaches followed like
the ones based on the minimization of a robust scale like the Minimum Volume Ellipsoid
(MVE), the Minimum Covariance Determinant (MCD) estimators (Rousseeuw, 1985),
(Rousseeuw and Leroy, 1987) andS estimators (Davies, 1987). The affine equivariance
and high-breakdown point properties seem clearly to imply very high or even infinite com-
puter costs, therefore a robust outlier detection must either approximate the solution, like
the ”Fast MCD” (FMCD) (Rousseeuw and van Driessen, 1999) or the Modified Stahel-
Donoho (MSD) (Patak, 1990) (both methods will be part of this study in section 8 and
7) or sacrifice affine equivariance. Different ideas for the second solution can already be
found in (Gnanadesikan and Kettenring, 1972). Two approaches of Gnanadesikan and
Kettenring will be further developed in this study. The first one is based on the fact that
each component of a covariance matrix can be computed as the covariance between two
variables. Gnanadesikan and Kettenring proposed to robustify this component by com-
ponent computation and then use a final transformation of the obtained matrix to ensure
positive definiteness. We used this idea to define new simple robust estimators of location
and covariance in section 5. Note that Maronna and Zamar have also worked in the same
direction re-actualizing the ideas of Gnanadesikan and Kettenring, see (Maronna and Za-
mar, 2001). Another idea found in (Gnanadesikan and Kettenring, 1972) gave birth to the
so-called forward search methods (Hadi, 1992), (Atkinson, 1993). The two most recent
forward search methods (Kosinski, 1999) and (Billor et al., 2000) are studied in section 6,
and a slightly modified version of the BACON (Billor et al., 2000) algorithm is selected
for the rest of the study.

The methods based on the Mahalanobis distance will be adapted to cope with missing
values by an EM-algorithm. For the MCD-method this has been done by Cheng and
Victoria-Feser (Cheng and Victoria-Feser, 2000). The adaption to sampling is relatively
easy for these methods.

Nonparametric or semi-parametric approaches of outlier detection like data depth (Liu
et al., 1999) or multivariate quantiles seem also very attractive and promising, but unfor-
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tunately due to the lack of resources these methods were not included in SFSO’s work for
EUREDIT. Nevertheless an alternative nonparametric method, the Epidemic Algorithm,
that seems to be new is introduced in section 9 (Hulliger and Béguin, 2001). The idea is
to start an epidemic in the population at some well chosen point and let it grow. The last
infected points should be outliers.

Some authors do think that only hybrid methods using elements from the different ap-
proaches quoted above will have a chance to extend the practical boundaries of outlier
detection capabilities. Trying to combine the different methods was not an option chosen
for this study because it runs contrary to the guiding principles above, in particular sim-
plicity. The reader who is willing to measure the effect of a hybrid method is advised to
read (Rocke and Woodruff, 1996). Note that Kosinsky has compared the method proposed
by Rocke and Woodruff with his algorithm (see Section 6).

3 Robust Imputation

The idea is to use the outlier-detection methods for the purpose of ”outlier”-imputation
as well. Since we have a division of the data in outliers and good data we will impute
good data for the outliers. If we think that some of the outliers might be representative
then we might relax the boundary of the good data somewhat compared with the outlier-
detection phase. Missing values will have to be imputed by observations which are not
considered outliers. We will not use any sophisticated method like logistic regression or
neural networks here. Obviously these could be applied once the outliers are imputed.

The methods that end up with a robust estimate of the center and the covariance of the
data lead to two simple ways of imputation for outliers. The first method is to take a limit
of the good data described by an ellipsoid of equal Mahalanobis distance and to project
an outlier to the closest point of the ellipsoid. In other word we censor the outliers or
still in other words we winsorize the outliers metrically. The second imputation method
would be to impute (may be with probability proportional to the distance) an observation
from the good (non-outlying) observations which are close to the outlier. Thus this is a
nearest neighbour imputation with a restriction on the donors. The limiting distance for
winsorizing or the border of good data for nearest neighbour imputation is a parameter
that can be used to adapt for representative outliers.

The missing values of observations which ar not declared outliers can be imputed ran-
domly by a Nearest Neighbour from the good data.

The Epidemic Algorithm can be run backwards starting from a detected outlier until the
epidemic infects one or several good and complete observations. Then among these in-
fected good observations we may select one at random for imputation. The same process
may be used for non-outlying observations with missing values. Thus the epidemic al-
gorithm run backwards is a nearest-neighbour imputation method with a very particular
type of distance.

13
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4 A Modular System for Data Preparation

The treatment of data from raw input to data which is of defined quality is very complex.
Usually several phases interact and there are loops which individual data or the whole of
the data go through several times. Ideally the system would be completely automated but
in practice manual controls and corrections often must occur. The splitting of the data
into a manual editing stream and an automatic editing stream is called selective editing.
Also the integration of true values due to call backs is possible. Every survey has its own
specialities and therefore there cannot be a system which covers all of the tasks in the
sequence needed. The only way to make the building of such a system easier is to have
modules at hand, which do specific subtasks, which are parameterised and which can be
built easily into a system. A simple example of such a modular system is shown here. It
is merely developed for the purposes of the EUREDIT project. But of course the modules
may be used in a more complex system.

4.1 The System

We first describe the system in general terms and then look closer at the modules it con-
tains. Modules we may consider are

E: A control module which flags missing values and applies edit rules that control which
of the values of a record might be in error (Editing in the restricted EUREDIT
sense).

C: A correction module which corrects failing items or missing items which fulfill spe-
cific conditions in a deterministic way. For example we may fill in a missing total
if all subtotals are given by just summing the subtotals. Or we may recalculate the
age from the year of birth if there is a contradiction between the given age and the
year of birth.

L: An error localisation module which narrows down the set of values which might be in
error.

D: An outlier detection module which flags possible outliers or calculates a robustness
weight.

I: An imputation module which imputes for missing values, outliers and failing items.

M: A manual correction module which allows correction and imputations by human in-
tervention.

Often the word ”editing” comprises both modules E and C and often also L.

The data that should be treated may be composed of observations on categorical (ordered
and unordered) and continuous variables.
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Each of these modules should have a defined standard input and output, a defined set of
parameters and a defined set of informations for the user to judge its performance. Of
course there may be several different possible methods and algorithms for a module. For
example imputation may be done with the help of linear models or with a nearest neighbor
method. Outlier detection may use non-parametric or parametric methods. The point is
that the input and output of each module should be defined in such a way that different
methods can be chained as modules to form a system.

A system like NIM from Statistics Canada resolves the tasks of several of the above
modules in a more interconnected way. E.g. NIM does a check on whether a possible
imputation actually resolves all edit failures at the very moment of the imputation. Thus
the E and I module of NIM are intimately connected. The disadvantage is that NIM cannot
be combined easily with other modules like a D module or an M module.

The system we use for EUREDIT consists of the following sequence: DEIE or EDIE.
A system like EDIE checks only after imputation whether the edit failures actually have
been resolved. In other words, after applying the system EDIE we cannot be sure to obtain
failure free records! We then may have to add a manual correction module followed by
the E module again. This would amount to a EDIEME system. Of course we might also
change certain parameters of the E, D, I modules and rerun the EDIE system in the hope
to get a result we can live with.

The main effort for this report is concentrated on a set of D modules. The I module is
needed to have at least a minimum output to be evaluated with the EUREDIT criteria and
it should show that outlier robust imputation is feasible.

4.2 The Modules

4.2.1 Module E

Module E is the module that controls the correctness of data with edit rules.

Input: Then× p matrix of DataX. Then vector of weightsw.

Parameters: A set of rulesCq, q = 1, . . . , Q.

Output: Then×p matrixR of response indicatorsrik. Then×p matrixE of indicators
eik of edit passes.

Each ruleCq is a function which mapsxi to 0 or 1. If an observation fails the rule, its
result is1, if it passes its result is0. Let Jq be the sub-set of variables on which the
functionCq depends. We define ap vectorcqk(xi) as follows:

cqk(xi) =





1 if k ∈ Jq andCq(xi) = 1

0 if k ∈ Jq andCq(xi) = 0,

0 if k /∈ Jq.

(1)
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In other words thecqk(xi) = 1 if the observation fails ruleq and ruleq involves variable
k. Of course a rule cannot be applied to an observation if

∏
Jq

rik = 0, i.e. if it depends on
a missing observation. We then setcqk(xi) = 0 but it may be sensible to setcqk(xi) = 1
too.

The entries of the matrixE are calculated as

eik = 1{
Q∑

q=1

cqk(xi) = 0} =

{
1 if

∑Q
q=1 cqk(xi) = 0,

0 otherwise.
. (2)

Another measure which might be useful as output would be

ẽik =

∑Q
q=1 cqk(xi)∑Q

q=1 1{k ∈ Jq}rik

. (3)

Thus ẽik is the proportion of rules that fail and contain itemxik among the rules that
actually can fail for this item. Thus̃eik might be useful for error localization or later on in
the distances.

4.2.2 Module D

Module D is the module for outlier detection.

Input: The dataX, the weightsw. The matrix of edit passesE.

Parameters: Tuning constants for the severity of outlier detection. Type of weighting
functions. Number of iterations or convergence criterion.

Output: The vector of robustness weightsu.

4.2.3 Module I

Module I is the module for imputation.

Input The dataX, the sampling weightsw, the robustness weightsu, the matrix of edit
passesE, the matrix of response indicatorsR.

Parameters Tuning constants for severity of outlier imputation. Tuning constants for
conditions on donors.

Output The imputed datãX.
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Part II

Selected Methods for Multivariate
Outlier Detection
As described in the introduction the first four sections of this chapters furnish outlier
detection methods based on robust Mahalanobis distances. Recall that for an estimateM
of location and an estimateS of scatter the Mahalanobis distance of an observationx is
computed as

MDM,S(x) = (x−M)tS−1(x−M).

The first section will introduce new simple robust estimators of location and scatter based
on ideas of Gnanadesikan and Kettenring (Gnanadesikan and Kettenring, 1972). The
second one will report the selection made between the two most recent forward search
method, namely Kosinski algorithm (Kosinski, 1999) and BACON algorithm (Billor
et al., 2000). The third one will describe a modified version of the first high breakdown
point affine equivariant method related to the projection pursuit principle (Stahel, 1981),
(Donoho, 1982). The fourth one will recall one of the most popular and well used high
breakdown point affine equivariant method based on the minimization of a robust scale
of Mahalanobis distances (Rousseeuw, 1985), (Rousseeuw and Leroy, 1987). Finally the
last section will introduce a nonparametric method based on an approach that seems to be
new, the epidemic algorithm.

5 A Simple Method

In order to evaluate sophisticated methods used to detect multivariate outliers we try to
find simple estimators of the mean and the covariance matrix. We seek computationally
non-expensive estimators that are suitable for detection in large and high dimensional
datasets. In other sections we shall study and compare sophisticated methods with high
breakdown point but also with heavy computation needs: methods based on the minimiza-
tion of a robust scale (Minimum Covariance Determinant, MCD), based on projections
(Modified Stahel-Donoho, MSD) or based on an epidemic spread through the data (Epi-
demic Algorithm, EA). Only one of the studied methods seems to be computationally
economic: the forward search method (BACON). Here the idea is to define estimators
of mean and scatter that do not need any fancy algorithm to be computed and that retain
some direct statistical meaning.

A first step in this direction was made by Gnanadesikan and Kettenring (Gnanadesikan
and Kettenring, 1972). The authors used the fact that the components of the covariance
matrix can be written as:

cov(x, y) =
1

4

(
σ2(x + y)− σ2(x− y)

)
,
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wherex andy are two univariare random variables. Using a robust estimator of univariate
varianceσ∗ (they used trimmed or Winsorized variance) they replaced the usual variance
σ by σ∗ in the above formula. Doing so they obtained some ”covariance” or ”correlation”
matrix that is not necessarily positive definite. They then used some transformation to
ensure positive definiteness and obtain an estimator of the covariance matrix; such trans-
formations are detailed in (Rousseeuw and Molenberghs, 1993).

We develop here quite similar ideas. We use rank statistics as robust estimate of correla-
tion between variables and we do a different transformation to ensure positive definiteness
using principal components. We also propose a second estimate with one added reweight-
ing M-step to improve performance. These two estimators will therefore be named Trans-
formed Rank Correlation (TRC) and Reweighted Transformed Rank Correlation (RTRC)
estimators.

5.1 Approximation of Correlation Coefficients

Our idea is to use the Spearman rank correlationR to approximate the usual correlation
ρ. We use the following proposition; see (van der Waerden, 1971)§70.

Proposition 1 Let X, Y be two normal variables, letρ be the correlation coefficient
betweenX andY , let x andy be two samples ofX andY , let R(x, y) be the Spearman
Rank correlation of the two samples. The following estimator is consistent forρ:

R̃(x, y) = 2 sin
(π

6
R(x, y)

)

This estimator will be used to construct the correlation matrix coefficient by coefficient.

5.2 Construction of the Estimators (TRC and RTRC)

Our construction of the Transformed Rank Correlation estimators of the mean and the
covariance matrix is as follows:

Let X be then × p matrix of the data, withn observations andp variables.
All vectors will be written in column. Denote byxi, i = 1, .., n, the ith line
(observation) of the matrixX and byxk, k = 1, .., p, thekth column (variable).
Let µ̃ andσ̃2 be robust estimators of the mean and variance for univariate data.

(i) Construct thep× p symmetric matrixS̃1 = Σ̃R̃Σ̃ where
Σ̃ = diag(σ̃(xk)) andR̃kh = R̃(xk, xh).

(ii) Let B be the orthogonal matrix such thatS̃1 = BΛBt, with Λ diagonal.
Definem with mk = µ̃((XB)k) andΞ = diag(σ̃2((XB)k)).

(iii) The simple robust estimators (TRC) for the mean and covariance matrix
arem̃ = Bm andS̃ = BΞBt.
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In other words this algorithm computes in (i) some robust but not necessarily positive
definite estimation of the covariance matrix. The ”principal components” of this matrix
are then used in (ii) to robustly estimate univariate location and scatter in these directions.
The TRC estimators are eventually constructed from the estimates of location and scatter
obtained on these robust estimates of the principal components by a back transformation
into the original basis.

Remarks:

a) If besides outlier detection variance problematic is of interest we could possibly add
one reweighting step to improve efficiency. Denote bydi = (xi−m̃)tS̃(xi−m̃) the
Mahalanobis distances and letu be a weight function, the new estimators (RTRC)
would then just be weighted mean and covariance:

m̃u =

∑n
i=1 u(di)xi∑n
i=1 u(di)

S̃u =

∑n
i=1 u(di)(xi − m̃u)(xi − m̃u)

t

∑n
i=1 u(di)

As a weight function we may use Huber weightsu : IR+ → IR+, d 7→ u(d) ={
d if d ≤ c

c if d > c
, wherec is chosen to give an estimator with reasonable perfor-

mance, or other redescending weights function.

b) In our simulations we usẽµ = median and σ̃ = mad with the mad scaled by
a multiplicative constant to be a consistent estimator of the standard deviation at
the Gaussian model. These particular simple (resp. reweighted) estimators will be
denoted bymTRC (resp. mRTRC) andSTRC (resp. SRTRC) in the next sections.
Other TRC estimators defined for example with trimmed or Winzorised mean and
variance would have to be explored.

5.3 Properties of the Estimators

Lemma 5.1 Suppose that̃µ and σ̃2 are shift and scale equivariant then the TRC estima-
tors are shift and scale equivariant.

Proof 1. Shift equivariance
Denote byyi = xi+b the shifted observations withb = (b1, ..., bp) ∈ IRp, i.eY = X+1nbt

where1n is the n-vector with all components equal to1. By definition we have that
R̃(Y ) = R̃(X). As σ̃2 is shift equivariant we also have thatΣ̃(Y ) = Σ̃(X). Therefore
S̃1(Y ) = S̃1(X) implying B(Y ) = B(X). Finally using the assumptions oñµ andσ̃ we
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have

mk(Y ) = µ̃((Y B(Y ))k) = µ̃(((X + 1nbt)B(X))k)

= µ̃((XB(X) + 1nb
tB(X))k) = µ̃(XB(X))k) + (Bt(X)b)k

= mk(X) + (Bt(X)b)k

=⇒
m(Y ) = m(X) + Bt(X)b

=⇒
m̃(Y ) = B(Y )m(Y ) = B(X)(m(X) + Bt(X)b) = m̃(X) + b

and

Ξ(Y ) = diag(σ̃2((Y B(Y ))k)) = diag(σ̃2(((X + 1nb
t)B(X))k))

= diag(σ̃2((XB(X) + 1nb
tB(X))k)) = diag(σ̃2((XB(X))k)) = Ξ(X)

=⇒
S̃(Y ) = B(Y )Ξ(Y )Bt(Y ) = B(X)Ξ(X)Bt(X) = S̃(X)

2. Scale equivariance
Denote byyi = axi the scaled observations witha ∈ IR\{0}, i.eY = aX. By definition
we have that̃R(Y ) = R̃(X). As σ̃2 is scale equivariant we also have thatΣ̃(Y ) = aΣ̃(X).
ThereforeS̃1(Y ) = a2S̃1(X) implying B(Y ) = B(X). Finally using the assumptions on
µ̃ andσ̃ we have

mk(Y ) = µ̃((Y B(Y ))k) = µ̃((aXB(X))k)

= aµ̃(XB(X))k) = amk(X)

=⇒
m(Y ) = am(X)

=⇒
m̃(Y ) = B(Y )m(Y ) = B(X)(am(X)) = am̃(X)

and
Ξ(Y ) = diag(σ̃2((Y B(Y ))k)) = diag(σ̃2(aXB(X))k))

= diag(a2σ̃2((XB(X))k)) = a2Ξ(X)

=⇒
S̃(Y ) = B(Y )Ξ(Y )Bt(Y ) = B(X)a2Ξ(X)Bt(X) = a2S̃(X)

Remark However as the rank statistics do change when the data are rotated, the TRC
estimators are neither orthogonal nor affine equivariant.

The construction was made to make the estimators consistent at the multivariate normal
model:
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Lemma 5.2 If µ̃ andσ̃ are consistent estimators for resp. the location and the scale at the
univariate normal modelN(µ, σ2) then the TRC estimators are consistent for the location
and the shape at the multivariate normal modelN(µ, Σ2).

Proof By proposition 1 and the fact that̃σ is consistent, we have that̃S1 is a consistent
estimator for the covariance matrix under multivariate normal distribution. By continuity
of the eigenvectors of a matrix, the estimated principal components will be consistent for
true real principal components. ThereforeB will be a consistent estimator of the matrix
that orthogonally diagonalizes the covariance matrix. The assumption thatµ̃ and σ̃ are
consistent concludes the proof.

6 A Forward Search Method

In this section we deal with methods based on the concept of ”growing a good subset
of observations”. By ”good subset” we mean a subset free of outliers. The idea is to
start with a small subset of the data and then add non-outlying observations until no more
non-outliers are available.

The first criterion to check the outlyingness of one single point in multivariate data can be
tracked back to the article of Wilks in 1963 (Wilks, 1963). The author used the so called
one-outlier scatter ratio as a measure of outlyingness. This ratio is defined as a ratio of
determinants of sample covariance matrices in the following way. Letx1, ..., xn be a set
of points inIRp, denote bȳx = 1

n

∑n
i=1 xi andS = 1

n−1

∑n
i=1(xi − x̄)(xi − x̄)t the usual

sample mean and covariance matrix. Let’s addy ∈ IRp to the set of points and denote by
x̄y andSy the new sample mean and covariance matrix. The one-outlier scatter ratio of
Wilks is defined as

Ry =
|Sy|
|S|

where| · | is the determinant function. Wilks studied this criterion and extended it to two
or three added points but did not include any iterating process in his article. The idea of
a forward search algorithm was suggested by Wilks and Gnanadesikan in 1964 (Wilks
and Gnanadesikan, 1964). We report here the description made in (Gnanadesikan and
Kettenring, 1972).

The first step in the procedure is to rank the multiresponse observationsx1, ..., xn in term
of their Euclidean distance‖ xi − x∗ ‖ from some robust estimator of locationx∗. A
subsetG0 of the observations whose ranks are the smallest100(1 − β0)% is then chosen
and used to compute a sum-of-product matrix

AG0 =
∑
i∈G0

(xi − x∗)(xi − x∗)t.

The size ofG0 is chosen big enough in order to ensure thatAG0 is not singular. Then alln
observations are ranked in terms of the values of the quadratic form(xi−x∗)A−1

G0
(xi−x∗)t.

A new subsetG1 of the observations whose ranks are the smallest100(1−β1)% is chosen.
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The steps are then repeated with newβi andGi. The process is iterated until a ”stable”
estimator of the covariance matrix is obtained :

S∗Gi
=

k

n(1− βi)

∑
i∈Gi

(xi − x∗)(xi − x∗)t,

wherek is some constant chosen to make the estimator unbiased.

Probably due to the lack of computer resources these ideas were not developed any further
by Wilks and Gnanadesikan. Let us remark here that to grow the good subset we need
some ranking of all the observations based on the good ones. It would seem possible
here to use either the Wilks one outlier scatter ratio or the Mahalanobis distances type
criterion. These two rankings are actually equivalent. This result is very well known to
all specialists but we felt that it was worthwhile to write it once in details.

Lemma 6.1 Let G = {x1, ..., xn} ⊂ IRp and B = {y1, ..., ym} ⊂ IRp be two sets of

observations, letRyi
=

|SG,yi
|

|SG| , yi ∈ B, be the one outlier scatter ratios of the elements

of B based onG, let d2
i = MD2

x̄G,SG
(yi), yi ∈ B, be the Mahalanobis distances of the

elements ofB based onG, then

Ryi
=

(
n− 1

n

)p (
1 +

n

n2 − 1
d2

i

)

in particular the rankings of the observations inB associated toRyi
anddi are the same.

Proof To simplify the notations, let us denotēx = x̄G = 1
n

∑n
i=1 xi and

S = SG = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)t.

Similarly for y ∈ B denotex̄y = 1
n+1

(
∑n

i=1 xi + y) and

Sy = 1
n

(
∑n

i=1(xi − x̄y)(xi − x̄y)
t + (y − x̄y)(y − x̄y)

t) .

We have the trivial relations̄xy = n
n+1

x̄+ 1
n+1

y = x̄+ 1
n+1

(y−x̄) and withε = 1
n+1

(y−x̄)

nSy =
∑n

i=1(xi − x̄− ε)(xi − x̄− ε)t + (y − x̄− ε)(y − x̄− ε)t

= (n− 1)S − ε
∑n

i=1(xi − x̄)t −∑n
i=1(xi − x̄)εt + nεεt

+(y − x̄)(y − x̄)t − ε(y − x̄)t − (y − x̄)εt + εεt

= (n− 1)S − 0− 0 + nεεt

+(n + 1)2εεt − (n + 1)εεt − (n + 1)εεt + εεt

= (n− 1)S + n(n + 1)εεt

i.e.

Sy = n−1
n

S + 1
n+1

(y − x̄)(y − x̄)t
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A classical result of determinants computation states that for anyn × n square matrixA
and anyn vectorb we have

|A + bbt| = |A|(1 + btA−1b).

Applying this result to the last equality gives

|Sy| =
∣∣n−1

n
S
∣∣ (

1 + 1
n+1

(y − x̄)t n
n−1

S−1(y − x̄)
)

=
(

n−1
n

)p |S| (1 + n
n2−1

(y − x̄)tS−1(y − x̄)
)
.

And finally

Ryi
=

|Syi|
|S| =

(
n−1

n

)p (
1 + n

n2−1
(yi − x̄)tS−1(yi − x̄)

)

=
(

n−1
n

)p (
1 + n

n2−1
d2

i

)
.

After the articles of Wilks and Gnanadesikan almost 30 years will pass before the interest
for a forward search algorithm grew up again. Articles by Hadi (Hadi, 1992) and Atkinson
(Atkinson, 1993) will start to demonstrate the efficiency of such methods. In both articles
the growth of the ”good subset” is one point at a time using Mahalanobis distances to rank
the observations. Several articles will follow developing faster and more sophisticated
methods based on the same idea. The last two and most efficient were developed by
Billor, Hadi and Velleman (Billor et al., 2000) and Kosinski (Kosinski, 1999). Both will
be presented in the next two subsections. The third subsection will present a comparison
that was made to select the most efficient one for our purpose.

6.1 BACON Algorithm

The BACON algorithm is presented in (Billor et al., 2000). Two versions are included:
one for multivariate data in general and one for regression data. Our interest here will
be the first case. The BACON acronym (Blocked Adaptative Computationally-efficient
Outlier Nominators) was chosen after the last name of Sir Francis Bacon who wrote in
1620:

”Whoever knows the ways of Nature will more easily notice her devia-
tions; and, on the other hand, whoever knows her deviations will more
accurately describe her ways.”

The idea of the algorithm is similar to the ones presented above. We shall present the
detailed algorithm and some properties underlined by Billor et al.

The algorithm The first step will be the choice of an initial basic subset of ”good data”.
Two versions are proposed. Let us first describe these two initializations and then state
the steps of the algorithm.

The data are stocked in a matrixX of n rows (observations) andp columns (variables).
The assumption on the data is that they should be unimodal and roughly elliptical sym-
metric.

23



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

Version 1 (V1) (Initial subset selection based on Mahalanobis distances)
For i = 1, ..., n compute the Mahalanobis distances

di(x̄, S) =
√

(xi − x̄)tS−1(xi − x̄), i = 1, ..., n

wherex̄ andS are the mean and covariance matrix of then observations. Identify
them = cp observations with the smallest values ofdi. Nominate these as a po-
tential basic subset.c is an integer chosen by the data analyst and set by default to
3.

Version 2 (V2) (Initial subset selection based on distances from the medians)
For i = 1, ..., n compute‖xi −med‖, wheremed is a vector containing the coor-
dinatewise median,xi is the ith row ofX and‖ · ‖ is the Euclidean norm. Identify
them = cp observations with the smallest values of‖xi −med‖. Nominate these
as a potential basic subset.

In both versions ifSG (the covariance matrix of the selected data) is singular then increase
the basic subset by adding observations with smallest distances untilSG has full rank.

6.1.1 Steps of the Algorithm

Step 1 Select an initial basic subsetG of sizem using either V1 or V2.

Step 2 Compute the discrepancies

di(x̄G, SG) =
√

(xi − x̄G)tS−1
G (xi − x̄G), i = 1, ..., n

wherex̄G andSG are the mean and covariance matrix of the observations inG.

Step 3 Set a new subsetG to all points with discrepancy less thancnprχp,α/n, whereχ2
p,β

is the1 − β percentile of the chi square distribution withp degrees of freedom,
cnpr = cnp + chr is a correction factor with

chr = max{0, (h− r)/(h + r)}, h = d(n + p + 1)/2e, r = |G|

cnp = 1 +
p + 1

n− p
+

1

n− h− p
= 1 +

p + 1

n− p
+

2

n− 1− 3p
.

Step 4 The stopping rule:Iterate Steps 2 and 3 until the size of the basic subset no longer
changes.

Step 5 Nominate the observations excluded by the finalG as outliers.

24



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

6.1.2 Properties of the Algorithm

We report here properties of the methods presented in (Billor et al., 2000).

This outlier detection method is computationally efficient. The version with starting point
V1 is affine equivariant but less robust. Nevertheless simulations show that it has an
empirical breakdown point near20%. It has a lower computational cost than the other
version. The second one with starting point V2 is more robust but only nearly affine
equivariant. In simulation trials it offered a breakdown point in excess of40%.

The small computing effort required by the BACON algorithm, and in particular the fact
that this effort grows slowly with increasing sample size, makes this method particularly
well-suited for large datasets.

6.1.3 Remark and Modification of the Step 3 Selection Criteria

The selection criteria of step 3 is designed for a multivariate normal distribution. In fact
under normality it is well known that the Mahalanobis distances follow asymptotically a
χ2 distribution withp degrees of freedom. Suppose all points are derived from a multivari-
ate normal distribution and that the Mahalanobis distance is computed using the all sample
mean and covariance matrix, therefore testing the number of points withMD(xi) > χ2

p,α

should end up with about100α percents of points detected. The test defined in step 3 is
designed in a different way, testing the number of points withMD(xi) > χ2

p,α/n. Us-
ing Bonferroni inequalities we can show that under normality this test will not detect any
point with probability1 − α (i.e. P (MD(xi) < χ2

p,α/n, ∀i ∈ {1, ..., n}) = 1 − α). Now
if this test defined this way detects very rarely points that are not outliers it also reduces
its sensitivity to close outliers whenn becomes large. As we shall have to deal with very
large datasets and we are worrying about contamination close to the ”good data” we shall
prefer a test usingχ2

p,α instead ofχ2
p,α/n. This solution decreases the number of non de-

tected outliers but accepts that under normality about100α percents of good points are
detected as outliers. As BACON algorithm is computationally cheap the analyst should
always have the possibility to run the method with both tests and compare the results.

6.2 Kosinski Algorithm

In 1999 Kosinski tried to push further the ideas of Hadi and Atkinson to create a method
that could cope with high contamination (Kosinski, 1999). We shall present the algo-
rithm in detail after having given several new notations and definitions required for it’s
understanding. Finally we shall report some conclusion drawn by Kosinski.

Definitions and notations As usualn observationsx1, ..., xn ∈ IRp are considered. For
anyE ⊆ D = {1, ..., n} the number of element inE will be denoted by|E|. A partition-
based Mahalanobis distance of elements ofD is given by a partition(G,B) of D and the
distances

MDi(G,B) = (xi − x̄G)t(c2
|G|pSG)−1(xi − x̄G).
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where the constantc|G|p is defined as in BACON and was originally suggested by Hadi in
(Hadi, 1994). Anα-partition ofD is a partition ofD such that

1. |G| ≥ h = b(n + p + 1)/2c;

2. MDi(G, B) ≥ χ2
p,α for i ∈ B;

3. max
i∈G

MDi(G, B) < min
i∈B

MDi(G,B);

4. if |G| > h thenMDi(G,B) < χ2
p,α for all i ∈ G.

The levelγ of anα-partition is defined asγ = max
i∈B

Pi(G,B) where

Pi(G,B) = Prob{χ2
p ≥ MDi(G,B)}.

Remark here that by property 2 the levelγ of anα-partition has to satisfyγ < α. This
fact will be used in the algorithm. The partG is named for the ”good data points” and the
partB for the ”bad data points”.

The algorithm is rather sophisticated. Before giving all the technical steps that might not
help greatly the understanding of the method we shall try to clarify the progress of the
method.

6.2.1 Progress of the Algorithm

The algorithm will try to find theα-partition with all the good points inG and all the bad
points inB.

1. Start The ideal algorithm would start with all the so called elemental partitions
(|G| = p + 1) and would try to construct the soughtα-partition from each of them. But
this solution would be computationally too expensive, therefore only a random subset
of all these elemental partitions will be used. The number of these starting elemental
partition, denoted byJ(n, p, 0.99, g), will ensure with a0.99 probability that at least one
of the chosen elemental partition has its ”good part”G free of outliers (g denotes the
number of good points in the full dataset).

2. Forward search (outer cycle) The algorithm then applies to each of the selected
elemental partition the classical forward search algorithm (Hadi, 1992) adding observa-
tions one by one until it reaches anα-partition.J(n, p, 0.99, g) α-partitions are obtained.
At that point the algorithm may have obtained the soughtα-partition as well as non-valid
α-partition (obtained if the initial partition already contained outliers). A treatment of the
resulting partitions is therefore needed.
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3. Treatment of theα-partitions Three different cases can occur:

a) All obtainedα-partitions are trivial (B = ∅). In that case the algorithm declares no
outlier at theα level.

b) Only one non-trivial partition(G,B) is obtained. In that case the algorithm declares
the points inB as outliers at theα level.

c) Different distinct non-trivialα-partitions are obtained. Here is the point where the
algorithm differs from other existing ones. Kosinski argues that simply choosing
one of the partition using for example a criteria like minimizing a volume (like
MCD or MVE) may occasionally fail to detect the correct outliers in particular
under high contamination. Therefore he eliminates first the more extreme outliers:
the algorithm computes all the levels of theseα-partitions and select the minimum
valueγ (recall thatγ < α). The algorithms then applies again the classical forward
search methods to the obtainedα-partitions but this time to obtainγ-partitions and
it goes back to the beginning of 3 (inner cycle).

4. Treatment of detected outliers If no inner cycle have been used all the outliers are
detected at theα level and the algorithm proceeds to the final check. If one or more inner
cycles have been used then all the outliers are detected at aγ level with γ < α therefore
the algorithm removes them from the data and starts all over again at point 1 but with a
smaller dataset.

5. Final check If several outer cycle have been used (i.e. theα-partition has been found
on a smaller dataset after removing the more extreme outliers) then the algorithm applies
one more time a forward search to this partition to be sure to obtain anα-partition of the
whole dataset (in simulations this check has never changed anything).

Comments By taking several starting partitions Kosinski tries to solve the main prob-
lem of the classical forward search method, namely the choice of a small subset of good
points. His treatment of the possible distinct found partitions is not based on a criteria like
MVE or MCD but first removes the more outlying points and then reapplies the algorithm.
We shall see later that the simple forward search methods are rather fast algorithms there-
fore clearly the speed of Kosinski’s method will depend on the numberJ(n, p, 0.99, g) of
starting partitions. As an example, using Kosinski’s formula, we computed the number
of starting partitions withn = 10′000 observations,g = 9′000 good points andp = 100
variables. We got :J(10000, 100, 0.99, 9000) = 203′840. This number shows that we
have to be aware that with large dataset we might have to take a probability smaller than
0.99 : for exampleJ(10000, 100, 0.95, 9000) = 132′601.

We are now able to describe the algorithm with all the technical details.
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6.2.2 The Algorithm

Even if the author does not state any assumption required by the algorithm it is clear that
as the classical ideas of a forward search methods are used we should assume that the data
is unimodal and roughly elliptical symmetric.

Consider type I errorα = 0.01 and assume that there are at mostN − h outliers. Start
with outer cycle numberm = 0 andD(0) = {1, 2, ..., N}.

Step 1 Incrementm by one and set the inner cycle number tow = 0. Randomly form
J(|D(m − 1)|, p, 0.99, h) distinct elemental (i.e.|G| = p + 1) partitions of data
D(m−1). To each elemental partition apply the classical forward search algorithm
adding one observation at a time and stop when you get anα-partition ofD(m−1).
Let K(m,w) be the number of resulting distinctα-partitions. IfK(m,w) = 0 then
defineD(m) = D(m− 1) and go to step 5, otherwise move to step 2.

Step 2 If K(m,w) = 1, denote the single available partition ofD(m − 1) by
(G(m), B(m)) and go to step 4, otherwise move to step 3.

Step 3 Denote the levels of theK(m,w) available partitions byγk(m,w) with k =
1, ..., K(m,w). Chose the partition corresponding to the most significant level
γ(m,w) = min

k
γk(m,w). Apply the forward search procedure to all available

partitions with the newα = γ(m,w). Incrementw by one. Denote byK(m,w) the
number of resulting distinctα-partitions ofD(m− 1) and return to step 2.

Step 4 Form the reduced dataD(m) = G(m). If w ≥ 1, i.e. step 3 was used, then return
to step 1 as long as|G| > h, otherwise (w = 0 or |G(m)| = h) move to last step.

Step 5 If D(m) = {1, .., N} declare no outlier. If observations were removed only during
the first outer cycle, declareB(m) as outliers. If observations were removed in
more than one outer cycle, then apply one last time the forward search withα to
the partition(D(m), D −D(m)) of D and declare as outliers the ”bad part” of the
resulting partition.

6.2.3 Properties

Kosinski does not state many properties of its algorithm. It seems to have empirically a
very high breakdown point but may be computationally intensive for large datasets due to
the large number of elemental partitions. Simulations were run to compare the algorithm
to an hybrid method given by Rocke and Woodruff (Rocke and Woodruff, 1996). Kosin-
ski’s methods performed better than the Rocke and Woodruff’s one. These tests are used
in the next section to select which method between Kosinski and BACON will be chosen
for the rest of the study.
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6.3 Comparison between BACON and Kosinski

Kosinski’s method and Bacon have been compared individually to the original forward
search methods (Hadi and Atkinson) and have performed better. As we wished to study
only one forward search method in the following, we ran some tests to select the most
efficient one. We used the tests ran by Kosinski himself in his 1999 article. That saved us
the time to implement the Kosinski algorithm. Let us start by describing these simulations.

6.3.1 Description of the Tests

Recall that these tests are designed and described in (Kosinski, 1999). For each test
T = 100 datasets are generated withg ”good data” points andb outliers, i.eN = g + b
and the contamination fractionf = b/N . The performance is evaluated on three criteria:

p1 =
1

T

T∑
i=1

1l(mi = 0), p2 =
1

T

T∑
i=1

mi

b
, andp3 =

1

T

T∑
i=1

si

g
,

wheremi is the number of undetected outliers,si the number of swamped ”good obser-
vations” and1l(mi = 0) = 1 if and only if mi = 0. In other words,p1 is the proportion
of simulation runs which resulted in identification of all the outliers,p2 is the average
proportion of undetected outliers, andp3 is the average proportion of swamped ”good
observations”. A perfect method would getp1 = 1, p2 = 0 andp3 close to its nominal
significance levelα. Remark here thatp2 ≤ 1−p1 and that the equality occurs only when
in every run where not all the outliers were detected actually none was detected.

Initial tests were run to check if the value ofp3 is close to the nominal significance level
when no outlier is present. Tests were therefore run withg = 100 and b = 0. The
significance level was set toα = 0.01 and tests were run in dimensions fromp = 2 to 10.
Table 1 shows the results.

Two similar series of tests were then run, one in dimensionp = 2 (see Table 2) and
one in dimensionp = 5 (see Table 3). The number of ”good observations” was fixed
at g = 100, the contamination fraction varies fromf = 0.10 to 0.45 by steps of0.05.
The ”good points” were generated from a multivariate normal distributionNp(0, σ

2
1Ip),

and the outliers fromNp(d · 1p, σ
2
2Ip), where1p is the p-vector of1’s andIp the identity

matrix. The tests were run withσ2
1 = 40, σ2

2 = 1 andd = 20, 25 or 30. The significance
level was set toα = 0.01.

6.3.2 Results of the Tests

The following tables display the results obtained by Kosinski for his algorithm (KOS)
and reported in his paper (Kosinski, 1999) and the ones we obtained for BACON with
non-robust start (V1) and robust start (V2).
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Table 1: Values of p3 in initial tests, significance level set to α = 0.01

Method p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
KOS 0.012 0.009 0.010 0.009 0.007 0.009 0.009 0.008 0.007
V1 0.012 0.011 0.011 0.009 0.008 0.007 0.007 0.006 0.006
V2 0.011 0.011 0.010 0.008 0.009 0.008 0.008 0.007 0.006

Table 2: Tests in dimension p = 2, significance level set to α = 0.01

Values of p1 p2 p3

f KOS V 1 V 2 KOS V 1 V 2 KOS V 1 V 2
Distanced = 30

0.45 1.000 0.970 1.000 0.000 0.030 0.000 0.013 0.013 0.011
0.40 1.000 0.990 1.000 0.000 0.010 0.000 0.011 0.011 0.013
0.35 1.000 0.990 1.000 0.000 0.010 0.000 0.011 0.012 0.014
0.30 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.014 0.012
0.25 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.012 0.014
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.015 0.014
0.15 1.000 1.000 1.000 0.000 0.000 0.000 0.010 0.015 0.013
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.013 0.012 0.011

Distanced = 25
0.45 1.000 0.860 1.000 0.000 0.140 0.000 0.012 0.226 0.015
0.40 1.000 0.930 1.000 0.000 0.070 0.000 0.010 0.015 0.015
0.35 1.000 0.890 1.000 0.000 0.110 0.000 0.010 0.023 0.014
0.30 1.000 0.970 1.000 0.000 0.030 0.000 0.011 0.015 0.014
0.25 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.012 0.013
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.013 0.012
0.15 1.000 1.000 1.000 0.000 0.000 0.000 0.011 0.012 0.013
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.012 0.014

Distanced = 20
0.45 0.530 0.700 0.810 0.470 0.300 0.190 0.428 0.054 0.022
0.40 0.970 0.620 0.990 0.030 0.380 0.010 0.036 0.053 0.014
0.35 0.990 0.730 1.000 0.010 0.270 0.000 0.019 0.018 0.013
0.30 1.000 0.890 1.000 0.000 0.110 0.000 0.010 0.013 0.013
0.25 1.000 0.920 1.000 0.000 0.080 0.000 0.013 0.013 0.011
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.014 0.011
0.15 1.000 0.980 1.000 0.000 0.020 0.000 0.010 0.013 0.013
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.013 0.020 0.011

6.3.3 Conclusions of the Tests

The initial tests confirm thatp3 is very close to the nominal significance level for all
methods.
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Table 3: Tests in dimension p = 5, significance level set to α = 0.01

Values of p1 p2 p3

f KOS V 1 V 2 KOS V 1 V 2 KOS V 1 V 2
Distanced = 30

0.45 1.000 0.000 1.000 0.000 0.996 0.000 0.008 1.000 0.010
0.40 1.000 0.000 1.000 0.000 0.998 0.000 0.010 0.806 0.008
0.35 1.000 0.000 1.000 0.000 1.000 0.000 0.008 0.806 0.012
0.30 1.000 0.200 1.000 0.000 0.800 0.000 0.010 0.102 0.012
0.25 1.000 0.990 1.000 0.000 0.010 0.000 0.008 0.013 0.011
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.011 0.010
0.15 1.000 1.000 1.000 0.000 0.000 0.000 0.010 0.009 0.012
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.011 0.011 0.009

Distanced = 25
0.45 1.000 0.000 1.000 0.000 0.996 0.000 0.008 1.000 0.009
0.40 1.000 0.000 1.000 0.000 0.999 0.000 0.009 0.999 0.010
0.35 1.000 0.000 1.000 0.000 1.000 0.000 0.009 0.883 0.010
0.30 1.000 0.110 1.000 0.000 0.890 0.000 0.010 0.110 0.011
0.25 1.000 0.950 1.000 0.000 0.050 0.000 0.008 0.013 0.012
0.20 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.010 0.012
0.15 1.000 1.000 1.000 0.000 0.000 0.000 0.007 0.010 0.012
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.009 0.008 0.010

Distanced = 20
0.45 0.690 0.000 0.980 0.310 0.996 0.020 0.279 1.000 0.012
0.40 1.000 0.000 1.000 0.000 0.999 0.000 0.008 0.999 0.010
0.35 1.000 0.000 1.000 0.000 0.999 0.000 0.008 0.872 0.011
0.30 1.000 0.010 1.000 0.000 0.990 0.000 0.009 0.154 0.010
0.25 1.000 0.880 1.000 0.000 0.120 0.000 0.008 0.014 0.010
0.20 1.000 0.920 1.000 0.000 0.080 0.000 0.010 0.012 0.013
0.15 1.000 0.950 1.000 0.000 0.050 0.000 0.009 0.012 0.010
0.10 1.000 1.000 1.000 0.000 0.000 0.000 0.008 0.012 0.010

The main tests showed clearly that BACON with a non-robust start (V1) is not as efficient
as Kosinski’s method (KOS). Looking for example at the tests run withp = 2 andd = 25
we see that V1 is no longer perfect when the contamination proportion is higher than25%
while KOS remains perfect. With the same distance in dimensionp = 5 V1 breaks down
even with25% of contamination. This breakdown comes from the fact that the overall
mean is attracted more and more by the contamination cloud when the latter grows. It is
even so attracted by it in some cases that V1 will end by considering the outliers as ”good
data” and the remainder as ”outliers”: you can see this particularity for example in the
test withp = 5, d = 30 andf = 0.45 wherep3 = 1, which means that all good points are
always considered as outliers.

On the contrary the main tests showed that BACON with a robust start (V2) is even more
efficient than Kosinski’s algorithm. V2 is almost perfect in all cases. It only omits a few
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outliers whend = 20 and the contamination is very highf = 40 or 45. But in any cases
it is as efficient as KOS. Moreover, even if we did not implement KOS we can see that
V2 has to be quicker: for example Kosinski presented the results on the Bushfire dataset
(Maronna and Yohai, 1995) and showed that it took several outer and inner cycle to find
the outliers; BACON took4 iterations (in 0.12s in S-Plus on a 600MHz PC with 128Mb
RAM) to get the same outliers (see next section).

6.3.4 Summary

Simulations with the same test bed as Kosinski used (but of course with different real-
isations) showed that BACON algorithm with a robust start is superior to the Kosinski
algorithm. For the rest of this study, BACON with a robust start was selected as our for-
ward search method. In all tests ran by Kosinski to show the superiority of his algorithm
over the hybrid method designed by Rocke and Woodruff in (Rocke and Woodruff, 1996)
BACON with a robust start performed always as well and even better when the contam-
ination is high and relatively close to the good data. BACON is a very fast algorithm
and is very efficient when the good data comes from some unimodal multivariate normal
distribution (in that case it’s the best algorithm we have tested). BACON with a robust
start has a very high empirical breakdown point and is computationally very efficient but
is not affine equivariant (see the introduction for some comments on that fact).

6.4 A New Graphical Tool Based on Forward Search to Analyze Out-
liers

The methods exposed above give us tools to detect outliers by splitting the data in two
parts: ”good” and ”bad” points. Robust estimates of the mean and covariance matrix are
obtained by taking the sample mean and covariance matrix of the subset of the ”good
points”. These estimates allow us to calculate the Mahalanobis distances and identify
outliers but do not give any more information on these outliers. We are proposing here
to use a plot of the oldest criterion on outlyingness to get a more precise overall picture
of the outliers situation. Atkinson used also graphical techniques in his article but only
as a detection tool: he kept for all points the history of the Mahalanobis distancedi.
As he used a forward algorithm growing one observation at each step he had to stock
n × (n − k) distances wherek is the number of observations used for the first estimate
of the covariance matrix. What we propose here is to memorize at each step only the
Wilks’s one outlier scatter ratio of the added observation. This will give us an idea on the
growth of the ellipsoid volume when the observation is added. To visualize this ”Volume
History” (VH) we plot the percentage of growth at each step for the second added half of
the data. To illustrate this we used the VH of one example of the above tests: casep = 5,
d = 20, f = 0.25. We plotted first the VH of such a set without outliers and then the one
generated for the test. We clearly see on the outlier-free VH (see Chart 1) that only one
point seems suspicious with a volume growth of about14% which is higher than the other
ones. On the other hand the second VH history (see Chart 2) shows a typical pattern of
concentrated contamination: we see an ”hyperbole-shaped” curve indicating the presence
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Chart 1: Volume history for a multivariate normal distribution with
100 points in dimension 5

Index

V
ol

um
e 

gr
ow

th
 (

%
)

0 10 20 30 40 50

4
6

8
10

12
14

of clear outliers close to each other. The first detected outlier has a volume growth of
more than40%. This pattern is exactly the same with a real point mass contamination.
VH gives us a general picture of proximity of the outliers to each other. Let us look at our

Chart 2: Volume history for a multivariate normal distribution with 75
points in dimension 5 contaminated by 25 points as in Kosinski’s test
with d = 20
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favorite example of the Bushfire data (see the second chapter) to see the utility of VH (see
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Chart 3). The first outlier seems isolated (12) with a big growth rate (87%) followed by

Chart 3: Volume history for the Bushfire data
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observation7 also isolated (126%). Then outlier11 (221%) might be close to outlier10
(70%). Similarly 8 (144%) might mask9 (40%) while outlier31 seems isolated (220%).
Finally observation32 (402%) seems to lead by far a concentrated contamination with
observations33 to 38.

The Bushfire dataset has38 observations in dimension5 and allows a two dimensional
plot (in variable2 and 3) that reveals almost all the outliers (see Chart 4). On this
scatter plot we see that the VH diagnostic is pretty accurate. Observation7 is actually
far from observation10 and11 on other variables than2 and3, 31 is outlying also on
other variables, and32 is not very close to33 − 38 but indicates the direction of the
contamination.

The disadvantage of the Volume History is of course the speed of the algorithm. In fact
using the relation of Lemma 6.1 the computation of the Wilks’s one outlier scatter ratios
correspond to the computation of the smallest Mahalanobis distances, therefore the speed
of such an algorithm is the same as the first versions of Hadi and Atkinson of forward
search methods. But with moderate size the VH could give interesting information on the
outliers.

7 A Projection Pursuit Method

Among the methods for computing a robust estimate of the covariance matrix for a uni-
modal elliptical distribution some of them are using a simple geometrical idea: ”If a point
is a multivariate outlier, then there must be some one-dimensional projection of the data
for which the point is a univariate outlier”. These methods fall under projection pursuit

34



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

Chart 4: Bushfire dataset
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techniques. Two different approaches are here possible. The first approach computes
directly estimates of the eigenvectors and eigenvalues of the covariance matrix using a
robust measure of univariate scatter. This method of robust principal component analysis
has been mentioned by Huber (Huber, 1985), developed by Li and Chen (Li and Chen,
1985) and studied further by Croux and Ruiz-Gazen (Croux and Ruiz-Gazen, 2000). The
other approach use the geometric idea to find the ”interesting directions for outlyingness”,
to identify outliers and then to compute an estimate of the covariance matrix using this
information. This second approach gave birth to the first affine equivariant multivariate
estimators of location and scatter robust enough to tolerate up to50% of outliers in the
sample before they break down. They were discovered independently by Stahel (Stahel,
1981) and Donoho (Donoho, 1982).

In this work only the second approach is followed. It was selected because it has al-
ready been used in official statistics by a national statistical office (Statistics Canada) in
(Franklin et al., 2000). Moreover at the beginning of that study we were not aware of the
existence of the new algorithm given by Croux and Ruiz-Gazen and therefore didn’t com-
pare its performances to the Stahel-Donoho method. We implemented a modified version
of the original Stahel-Donoho estimator, starting from a version given by Patak (Patak,
1990) and reported in (Franklin et al., 2000).

7.1 Modified Stahel-Donoho (MSD) Estimators

We start by recalling the construction of the original Stahel-Donoho (SD) estimators, and
some properties obtained by Maronna and Yohai in (Maronna and Yohai, 1995).
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7.1.1 Original SD Estimators and Some Properties

The SD estimators are defined as weighted mean and covariance matrix, where each has a
weight that is a function of an outlyingness measure, with points having large outlyingness
receiving small weights.

As usual letX be then×p data matrix withn observations (x1, ..., xn) andp variables. Let
µ andσ2 be affine equivariant univariate estimator of location and scatter, the outlyingness
measureri of each observationxi is given by

ri = sup
‖a‖=1

|atxi − µ(atX t)|
σ(atX t)

.

Eachri measures the maximum standardized one-dimensional deviation from the esti-
mated locationµ for all directions inIRp. Then the weights are computed as

ui = u(ri) whereu : IR+ → IR+ is a weight function.

The SD estimators are then defined as

mSD =

∑n
i=1 uixi∑n
i=1 ui

andSSD =

∑n
i=1 ui(xi −mSD)(xi −mSD)t

∑n
i=1 ui

.

By definition and by the assumptions onµ andσ2 the estimators are affine equivariant.
Actually if µ andσ2 are the usual mean and variance and ifu is the identity then the
SD estimators are the usual sample mean and covariance matrix. Stahel (Stahel, 1981)
showed that the SD estimators have an asymptotic breakdown point of1/2 at continuous
multivariate model ifµ andσ have the same property and Donoho (Donoho, 1982) de-
rived the finite-sample breakdown point in the case in whichµ = median andσ = mad.
In (Maronna and Yohai, 1995) Maronna and Yohai studied the finite sample breakdown
point of the latter estimator but with the outlyingness measureri taken only on a ran-
dom subset of sizeN of all a ∈ IRp with ‖ a ‖= 1. They computed the sizeN needed
for the breakdown of this approximate estimator to be as good as the usual one with
a probability of0.999. They showed thatN grows exponentially withp implying un-
avoidable computing difficulties for largep. For example, forp = 4, 6, 8, and10 one
needsN = 210, 1′050, 5′000, and26′260. Their study also determined what was the best
weight function to use according to their quality measures (biases and efficiencies) and
the following ”Huber-like” weight was selected:

u : IR+ → IR+, r 7→ u(r) =

{
1 if r ≤ c(

c
r

)2
if r > c

with c =
√

χ2
p,0.95

7.1.2 Modified SD Estimators

We start by giving the modified Stahel-Donoho estimators proposed by Patak (Patak,
1990) as reported and used in (Franklin et al., 2000). This construction is as follows:
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1. The data are centered using theL1-estimate of the location vector. TheL1-estimate
of the location vector is defined as the solution of the minimization problem:
minT

∑n
i=1 ‖xi − T ‖2. It is often named the spatial median.

2. The initial weights are all set to one:ui = 1, i = 1, ..., n.

3. Fork = 1 to m (m usually set to10) do

a) Randomly generate a unit vectorv1 ∈ IRp using a uniform distribution on the
unit sphere inIRp.

b) Calculatev2, ..., vp in such a way that thevi’s form an orthonormal basis of
IRp

c) Fori = 1, ..., n andj = 1, ..., p compute

rij =
|vt

jxi −med(vt
jX

t)|
mad(vt

jX
t)

and theñrij =





rij if 0 ≤ rij < 2.5

2.5 if 2.5 ≤ rij < 4

0 if 4 ≤ rij

.

Finally compute

uk
i =

p∏
j=1

r̃ij

rij

.

d) If uk
i < ui then setui = uk

i .

4. Compute the weighted estimates of location and scatter using the weightsui.

5. Reset all weights to one:ui = 1, i = 1, ..., n.

6. Redo the loop in 3. but this time by replacing the random orthogonal basis (points
a) and b)) by the computation of the principal components of the current weighted
covariance matrix. Stop when the weights do not change significantly (in practice
one iteration has been found to be sufficient).

Our version of the modified Stahel-Donoho will differ in several points from the Patak’s
algorithm:

(i) As the computation of the weights use some centering on the one-dimension pro-
jections, the weights are location invariant. Therefore the weighted estimates of
location and scatter are location equivariant and the initial centering is useless. We
removed it from our algorithm.

(ii) Following Maronna and Yohai we decided to use ”Huber-like” weight function in-
stead of the non-continuous weight function proposed by Patak (see Chart 5 for the
picture in dimension 1), i.e. we change the computation of ther̃ij into:

r̃ij =

{
rij if 0 ≤ rij < c
c2

rij
if c ≤ rij

with c =
√

χ2
p,0.95.
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Chart 5: Weights used by Patak and ”Huber-like” weights in dimen-
sion 1
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(iii) Following Maronna and Yohaim is set by default tom = bexp(2.1328 + 0.8023 ∗
p)/pc. Of course in high dimension the user might have to choose a much smaller
m.

(iv) We did not reset the weights to one in 5. The reason here is that according to our
experience outliers that are not on the principal components directions might be
masked if we do reset the weights.

8 A Minimization of Scale Method

After Stahel and Donoho, Rousseuw (Rousseuw, 1984), (Rousseeuw, 1985) intro-
duced a second affine equivariant estimator with maximal breakdown point, by putting
”T (X) =center of the minimal volume ellipsoid covering (at least)h points ofX”, where
h can be taken equal tobn/2c + 1. This estimator is called the minimum volume ellip-
soid estimator (MVE). The corresponding covariance estimator is given by the ellipsoid
itself, multiplied by a suitable factor to obtain consistency at multivariate normal data.
Rousseuw noticed however that forp = 1 the MVE reduces to the shortest half, soT (X)
becomes the one-dimensional least median of squares which converges liken1/3, see The-
orem 3 in Section 4 of Chapter 4 in (Rousseeuw and Leroy, 1987). Assuming that MVE
will not have a better rate Rousseuw then proposed to generalize the least trimmed squares
which converges liken1/2, see Theorem 4 in Section 4 of Chapter 4 in (Rousseeuw and
Leroy, 1987), and ended up with the minimum covariance determinant estimator (MCD)
defined this time by minimizing the determinant of the covariance matrix computed from
theh points. This estimator will be included in this study or actually a reweighted form
of it that is standard implemented in S-Plus.
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8.1 Reweighted Minimum Covariance Determinant Estimators
(RMCD)

As usual letX be a sample ofn observations (x1, ..., xn) with p variables. The MCD
estimators are determined by selecting the subset{xi1 , ..., xih} of sizeh which minimizes
the determinant of the covariance matrix computed from that subset. The location and
scatter estimators are then defined as

mMCD =
1

h

h∑
j=1

xij andSMCD = cp
1

h

h∑
j=1

(xij −mMCD)(xij −mMCD)t

with cp the consistency factor at multivariate normal. Nowh can be chosen by the user
determining the breakdown point of the estimator: ifh = n(1 − β) the estimator has a
breakdown point ofβ. Typicallyβ is set to0.5 or 0.25. As it is usually not feasible to find
the exact minimum several algorithms have been proposed to approximate the solution.
The best one was proposed by Rousseuw and van Driessen (Rousseeuw and van Driessen,
1999), it is called the FAST-MCD algorithm. The major drawback of the MCD estimators
remains its low efficiency at the normal distribution (Croux and Haesbroeck, 1999). To
overcome this problem a reweighting step can be added to the MCD estimators. Weights
are computed using a cut-off value on the Mahalanobis distances:

ui =

{
1 if (xi −mMCD)tS−1

MCD(xi −mMCD) ≤ χ2
p,α

0 otherwise

Then the reweighted minimum covariance determinant estimators (RMCD) are defined
by

mRMCD =

∑n
i=1 uixi∑n
i=1 ui

andSRMCD = dp

∑n
i=1 ui(xi −mRMCD)(xi −mRMCD)t

∑n
i=1 ui

with dp the consistency factor at multivariate normal. The RMCD estimators inherit the
breakdown point of the MCD estimators. The RMCD estimators are standard imple-
mented in S-Plus as the ”cov.mcd” function withα = 0.025.

8.2 FAST-MCD Algorithm

We report here the FAST-MCD algorithm as described in (Rousseeuw and van Driessen,
1999). We shall need this description in the next sections when we’ll adapt the algorithm
to sampling weights and missing values. In this algorithm a C-step is like a BACON-step
but with the number of point in the subset fixed: if you have a subset ofk observations,
compute the Mahalanobis distances of all the points in the set using the mean and covari-
ance matrix based only on the subset and select a new subset of sizek corresponding to
thek smallest obtained Mahalanobis distances.

1. By default seth = (n + p + 1)/2 or let the user choose, report the breakdown point
of (n− h + 1)/n.
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2. If h = n return the usual mean and covariance matrix and stop.

3. If p = 1 compute the exact MCD using the algorithm given in (Rousseeuw and
Leroy, 1987), pages 171-172, then stop.

4. If n < 600 then

• repeat500 times:

– construct an initial subset of sizeh starting fromp + 1 randomly cho-
sen points then adding randomly one point at a time until the covariance
matrix of this subset is non-singular and finally selecting theh smallest
Mahalanobis distances based on these randomly chosen points,

– carry out two C-steps,

• among these500 subsets select the10 with lowest determinant of the covari-
ance matrix,

• apply C-steps until convergence to all these subsets,

• among these10 subsets select the one with lowest determinant of the covari-
ance matrix,

• report the meanm and covariance matrixS based on that subset and go to
point 7.

5. If 600 ≤ n < 1500 then

• construct as many disjoint random subsets as possible with all these subsets
being of sizensub ≥ 300 (or nsub+1), denote byk the number of these subsets
(i.e. 2 ≤ k ≤ 4),

• inside each subset repeat500/k times:

– construct an initial subset of sizehsub = nsubh/n as in point 4,

– carry out two C-steps, usingnsub andhsub,

– keep the10 subsets with lowest determinant of covariance matrix,

• from these10k subsets of sizehsub form 10k subsets of sizeh using the small-
est Mahalanobis distances,

• apply two C-steps to all these subsets,

• among these10k subsets select the10 with lowest determinant of the covari-
ance matrix

• apply C-steps until convergence to all these subsets,

• among these10 subsets select the one with lowest determinant of the covari-
ance matrix,

• report the meanm and covariance matrixS based on that subset and go to
point 7.
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6. If n ≥ 1500 select a random subset of sizen1 = 1499, then apply point 5 to that
subset withn1 andh1 = 1499h/n except that when the last10 subsets of sizeh1

are selected (fifth step) their sizes are extended toh using Mahalanobis distances
and the last steps are applied to the all dataset.

7. In order to obtain consistency under multivariate normal distribution set

mMCD = m and SMCD =
medi(MDm,S(xi))

χ2
p,0.5

S

8. To improve efficiency under normal distribution set finally

mRMCD =

∑n
i=1 uixi∑n
i=1 ui

andSRMCD =

∑n
i=1 ui(xi −mRMCD)(xi −mRMCD)t

∑n
i=1 ui

with

ui =

{
1 if MDmMCD,SMCD

(xi) ≤ χ2
p,0.025

0 otherwise

9 A Nonparametric Method

9.1 Introduction and Motivation

As noticed in the introduction our first intention was to include diverse nonparametric or
semi-parametric approaches of outlier detection like data depth (Liu et al., 1999) in this
study but we had to renounce by lack of resources. Nevertheless we are proposing a new
non-parametric method for the detection of multivariate outliers, the Epidemic Algorithm
(Hulliger and B́eguin, 2001).

The idea of the Epidemic Algorithm (EA) is the following: We want to detect outliers in a
population ofn points inp-dimensional space. We start a simulated epidemic from a well
chosen point. The epidemic will spread through the population and eventually all points
will be infected. In this process the outliers should either not be infected or be infected
late due to their isolation. We use the infection time to judge on the outlyingness of a
point. In other words the epidemic defines a random mapping from the population into
the time axes which should give high values for outliers.

9.2 Distances, Center And Infection Probability

The probability of transmission of the epidemic depends on the distance between observa-
tions and decreases with it. The transmissions are independent. The time is discrete. We
develop an epidemic algorithm where an infected point can transmit the disease as long
as the epidemic lasts. However, a curable disease might also have interesting properties.
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Denote the set of observed units (the population) withU . The points are described by the
vector valued variablexi ∈ IRp, (i = 1, ..., n). The distance between pointsi andj is the
Euclidean distance:

dij = d(xi, xj) =‖xi − xj ‖2=

(
p∑

k=1

(xik − xjk)
2

)1/2

= ((xi − xj)
t(xi − xj))

1/2.

The matrix of these distances isD. To avoid unbalanced effects of the different variables,
their variances shall be standardized before calculating the distances, e.g. by

x̃ik =
xik −med(xik)

mad(xik)
.

Alternatively one may weight the contribution of each variable to the distance by the
inverse of a robust measure of scale:

dij = d(xi, xj) =

(
p∑

k=1

qk(xik − xjk)
2

)1/2

,

where e.g.qk = (mad(xik))
−2.

The starting point of the epidemic shall be the ”sample spatial median”c, namely the
sample point that has the characterizing minimal property of the usual spatial median:

c = {xi : wherei is such that
∑
j∈U

dij = min
k∈U

(∑
j∈U

dkj

)
} = arg min

i∈U

∑
j∈U

d(xi, xj).

Note that the sample spatial median is not necessarily close to the real spatial median.
E.g. for a uniform distribution on a circle the spatial median will be near the center and
the sample spatial median will be on the circle. However the sample spatial median will
be in the bulk of the data. Moreover as all the distancesdij will be needed anyway for the
Epidemic Algorithm, the computation ofssm is cheap.

Given a pointi that is infected, the probability that a non-infected pointj is infected byi
at any timet is

P [j|i] = h(dij) = P [i|j],
where the functionh is monotone decreasing for growingd and0 ≤ h(dij) ≤ 1. We write
hij = h(dij) for brevity. There are many possible choices for the transmission functionh.
Some examples are:

a) The step function

h(d) =

{
1 if d ≤ d0

0 if not

corresponding to a total infection in the ball with radiusd0 and no possible infection
outside this ball. This yields a deterministic epidemic or rather a minimum journey
with day-trips between points at maximal distanced0.
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b) A simple linear transmission function

h(d) =

{
(1− d/d0) if d ≤ d0

0 if not

This function becomes exactly0 at dij = d0 and thus no transmission is possi-
ble beyond this distance. The parameterd0 may be chosen in the following way.
Calculate the maximum distance to a nearest neighbord0 = max

i
{ min

j
{dij}}.

To avoid thatd0 is inflated by one or several single outliers we may defined0 as
d0 = max

i
{ min

j
{dij}, 2√p}. Still d0 might be inflated by a few isolated points.

To avoid this we propose to use the(1− p)th quantile of min
j
{dij}.

c) The inverse power function:

h(d) =

{
1/(βd + 1)p if d ≤ d0

0 if not.

We propose to chooseβ such thath(d0) = 1/(βd0 + 1)p = α, in other words

β = (
(

1
α

)1/p − 1)/d0. The motivation for the inverse power function comes from
the form of the gravity function.

d) The logistic function:

hij =
exp(α + βdij)

(1 + exp(α + βdij))

with α > 0 andβ < 0. The transmission probability is close to1 for dij = 0 and
= 0.5 atdij = −α/β. The slope at this latter distance isβ/4. We propose to choose
the parametersα andβ in such a way that the transmission probability is0.5 at the
median of the interpoint distances and1/n at the maximal distanced0.

d) The root function:

h(d) =

{
1− (d/d0)

1/m if d ≤ d0

0 if not.

Herem is an integer, e.g.m = 5.

In the following examples, the transmission function a) is used. The choice of the trans-
mission function and its parameters is crucial for the detection capability of the algorithm
and for its speed.

If a subsetI ⊂ U of points is infected at a certain time then the total infection probability
that an uninfected pointj is infected at the next step is

P [j|I] = 1−
∏
i∈I

(1− P [j|i]) = 1−
∏
i∈I

(1− hij).

Thus we do not have to simulate each infection from point to point but only from the set
of infected points to each non-infected point.
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9.3 The Steps of the Epidemic Algorithm

Denote byIt the subset of all the points infected up to timet: It = {i : 0 < ti ≤ t}.
Denote the index of the sample spatial medianc with i(c).

1. Set the infection time of all points to zero:tj := 0, ∀j ∈ U .

2. Set the time to one :t := 1. Choose the sample spatial medianc as
the starting point, i.e. set its infection time to one:ti(c) := 1 and thus
I1 = {i(c)}.

3. Increase the infection time by one:t := t + 1.

4. Calculate the total infection probabilityP [j|It−1] for all non-infected
pointsj 6∈ It−1 :

P [j|It−1] , ∀j 6∈ It−1.

5. Realise independent Bernoulli trials with success probabilityP [j|It−1] for
the pointsj /∈ It−1. A success means that the point is infected at timet
and its infection timetj is set tot: tj := t.

6. If |It| = n or t − max{ti : i ∈ It} > l then settmax = t and stop.
Otherwise go to step 3.

The algorithm stops if all points are infected or if no infection occurs during a period of
lengthl. The non-infected points will keep infection timetj = 0. The integer numberl is
chosen by the statistician. In the next Section it is set to10. Alternatively the choice ofl
may be guided by an upper bound on the probability of no infection inl trials: (1−h(d0))

l.
A natural choice for the parameter of the root transmission function would bel. In the
case of an epidemic with a cure after a fixed timel we get the same stopping criterion as in
step 6. A curable disease would be simulated by eliminating observations with infection
time tj < t − l from the setIt. In the following we sometimes abbreviate Epidemic
Algorithm to EA.

9.4 Computational Complexity

In the beginning we have to calculate then(n − 1)/2 distances, each involvingp + 1
operations. We cannot speed up this part because we need all distances.

However, we can avoid the recalculation of the products involved in the total infection
probability because the setsIt are nested. For this we have to introduce a vector of prod-
uctsHj,t =

∏
i∈It

(1 − P [i|j]) for each time point and we have to change the Epidemic
Algorithm slightly:

In step 1) setHj,0 = 1 ∀j ∈ U .
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In step 4) do the following for eachj /∈ It−1 : SetHj,t−1 := Hj,t−2

∏
i∈It−1\It−2

(1 − hij)

and calculate the total infection probabilityPr[j|It−1] = 1−Hj,t−1.

The point is of course that for computer implementation one needs to keep in memory
only one vectorH which is updated.

At each staget there arekt = |It−1| infected points and(n− kt) non infected points. For
each non infected point the total infection probability must be calculated. This involves a
product with(kt − kt−1) + 1 factors. Thus for the whole epidemic for each step at most∑tmax

t=1 (n − kt)[kt − kt−1 + 1] 6 tmaxn
2 multiplications are needed. Therefore the order

of complexity of the epidemic isn2. Together with the initial distance calculation the
epidemic is of complexityn2p. In other words the order of complexity of the Epidemic
algorithm is quadratic inn but only linear in the number of dimensionsp. The dimension
of the space only affects the initial calculation of the distances. Nevertheless for large
populations the computation may be slow.

9.5 Behavior of the Epidemic Algorithm with Normally Distributed
Data

To analyze the behavior of the algorithm in the absence of outliers several datasets were
simulated with a multivariate normal distribution inIRp, with mean at the origin and
covariance matrix equal toIp (identity matrix). Table 4 gives the total number of infected
points at each infection time for 10 different datasets withn ranging from 100 to 2000 and
p from2 to100. The transmission function is linear withd0 = max

i
{ min

j
{dij}, 2√p}.

This table shows that under normal distribution the median infection time is always3 and
that after time7 more than95% of the population has been infected in all cases for any
values ofn andp (the worst case occurred whenn = 100 where only97% is detected at
t = 7). We therefore uset = 7 as critical time under normal distribution. The number
of non-infected points does not seem to depend onn or p; in all simulations it has never
exceeded5. In contrast the length of the epidemic does vary very much, even if half of
the population has been infected after time3 in all cases! It seems that for a fixedn the
largest infection timetmax increases withp. The three computing times forn = 2000 are
not too relevant because a large part of them is due to memory swapping.

9.6 Remarks

• The distance matrixD = (dij) contains all the necessary information on the popu-
lation. Thus if two point clouds have the same distance matrix the Epidemic Algo-
rithm should detect the same outliers apart from random variation. This is in order.
However, in a situation where the good observations follow a model like a multiple
regression the Epidemic Algorithm may be worse than an algorithm which builds
on this model (see the Stackloss data example in the next section).

• We may integrate ordinal categorical variables in the distance by introducing some
scale. For nominal categorical variables we may set the distance to 0 if the cat-
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Table 4: Infection times for multivariate normal distribution

Data n 100 100 500 500 1000 1000 1000 2000 2000 2000
sets p 2 10 10 20 10 20 50 20 50 100

1 1 1 1 1 1 1 1 1 1 1
2 13 15 53 81 78 79 75 199 96 136
3 52 61 369 435 715 665 516 1758 1027 1335
4 78 89 477 489 948 943 900 1981 1815 1887
5 89 95 490 495 980 965 950 1990 1909 1963
6 95 97 494 497 989 976 970 1996 1938 1975
7 97 97 494 498 992 987 980 1998 1952 1982
8 99 97 496 499 992 991 985 1962 1984

Infection 9 98 497 994 992 989 1972 1987
time 10 497 994 992 990 1976 1987
(t) 11 498 995 992 991 1977 1989

12 996 992 992 1982 1990
13 996 993 993 1984 1990
14 996 996 992 1985 1990
15 997 993 1988 1990
16 993 1990 1991
17 993 1990 1991
18 996 1990 1992
19 997 1991 1993
20 997 1991 1995

Largest inf. time 8 9 11 8 15 14 25 7 47 34
Non-infected 1 2 2 1 3 4 2 2 3 2
Comp. time 0.7 0.8 3.4 3.4 9.2 10.4 15.0 388.5 776.1 252.3

egories coincide and to 1 if not. Other possibilities exist for example with the
nomenclature of economic activities. There you may count the nodes you have to
pass in the classification tree for moving from one category to the next.

• An observation which is outlying in only one or two dimensions but an inlier in all
other dimensions may have an overall Mahalanobis distance which does not show
it as an outlier. This sort of outliers might be detected better with distances likeL∞
or L1 instead of the Euclidean distance.

• The infection process is a Markov process but it is not time homogeneous because
the infection probability changes over time. In fact for the infection probability of
a point at a certain time the whole history of the epidemic is important. And this
history depends on the spatial configuration of the points as it is reflected by the
distance matrix. The infection probability of a pointj when it is the only remaining
non-infected point, i.e.P [j|U\j] = 1 −∏

i6=j(1 − hij), gives no direct hint to its
infection time because the infection time ofj depends on which of the points in
U\j become infected at what time.
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• Theoretically one could calculate the expected infection timeE[tj] by considering
all possible epidemics which lead to the infection of pointj. However, since the
number of possible epidemics is exponential inn this is not feasible in practice.

The Epidemic algorithm is computationally feasible. It is somewhat slower than the most
efficient algorithms. However its computing time does not grow exponentially with the
number of dimensions. It does not need any assumption on the data except that the good
data is not divided into well separated clusters. No transformation is necessary to apply
EA. However, transformations may be necessary to make the notion of a ”bulk of the
data” meaningful. It is based on the intuitive notion of an outlier as an isolated point or
group of points. The starting point of a sample spatial median seems to be very fruitful.

The EA has similarities to clustering algorithms and to nearest neighbor methods. How-
ever, by exploiting the dynamics of the epidemic, it takes into account local and global
properties at the same time.

The choice of the transmission function is crucial for the efficiency of the algorithm in
terms of detection capability and speed.

Experimenting with different versions we learnt the following:

1. if the reach of the infectiond0 is not limited we may get infections of very removed
observations which is undesirable;

2. in order to give the local density influence the transmission function should decay
in such a way that the total infection probability even of a relatively large number
of observations decays befored0. Thus we may ask that1−(1−h(d))m should still
be decaying linearly. Thenh(d) = 1− (d/d0)

1/m, the root function. The parameter
m may be set according to the size and dimension of the dataset.

If l, the stopping criterion, is set too high then at the end of the epidemic we may observe
for a long time every now and then a new infection and thus we will not stop the infection.
Later we did see that often these infections that occur isolated should be outliers. Thus
we should have setl to a lower value. We use a default value ofl = 5.

Many experimentations will be needed on the choice ofh(d). A theory is difficult to build
since it depends on global and local features. An approach might be to look at functions
that maximizes the coefficient of variance of the infection times under certain standard
configurations of points.

Deterministic versions of the Epidemic Algorithm exist. A simple one uses the step func-
tion. Then the infection time corresponds to the length of a minimal path from the center
through the point cloud to the considered point, where the path consists of interpoint seg-
ments of maximal lengthd0. Another deterministic version uses a thresholdθ on the total
infection probability. If the total infection probability is larger thanθ the point is infected
with certainty. A third version is proposed by Professor Hans Rudolf Knsch. Calculate
the expected number of infections by the sum of the total infection probabilities of the
non-infected points, sayν. Then infect theν non-infected points with largest total infec-
tion probability. The epidemic may also be run several times and then the infection times
may be averaged.
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A plot of the infection times vs. the indices of the observations shows the outlying in-
fection times often quite well. To get a better view, the infection times of the points that
never got infected, i.e. that end up withti = 0, are set toti := 1.2 max{ti}. We of-
ten also use a stem-and-leaf plot, which shows the distribution of the infection times, to
decide on the boarder of outlying infection times. The outlier rule of the stem-and-leaf
plot is useful, too. Outliers are observations further away than 1.5 times the interquartile
range from their closer quartile. Three different rules may finally be used to decide which
observations should be considered as outliers.

• all non-infected points are declared outliers (tj = tmax);

• a stem and leaf plot may set as outliers all observations withtj > q(0.75) +
1.5(q(o.75)− q(0.25));

• finally if clearly the first two criteria do not apply in a satisfactory way then a careful
inspection of distribution of thetj ’s is needed.

The Epidemic Algorithm is a newly developed method. Therefore the EA is still in devel-
opment at the end of the EUREDIT project.
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Part III

Application to Real and Synthetic
Datasets
All the above selected methods were developed and tested on several datasets that are not
the ones chosen in EUREDIT for the evaluation phase. Most of them have been found in
the literature and were known to be somehow challenging for multivariate outlier detec-
tion. Some of them were created to test particular configurations (compact contamination,
non-elliptical data). In most articles where a new method is proposed, the authors usu-
ally present one particular dataset on which their method behaved relatively well. Our
goal here is to gather several of these datasets and compare the results of all the above
methods on all of them. The results are presented below, with cases of real and synthetic
datasets as well as symmetric and non-symmetric datasets. Conclusions are drawn in the
last subsection.

The results obtained by the methods using a robust Mahalanobis distance (TRC, BACON,
MSD and RMCD) will be illustrated by Q-Q plots of transforms of Mahalanobis distances
(MDi) using the following approximation for normal data :

Di = F−1(0.5, p, n− p)
MDi

median(MDi)
≈ fi = F−1(

i

n + 1
, p, n− p)

whereF−1(α, k, l) is theα-quantile of theF distribution withk andl degrees of freedom.
For the epidemic algorithm the infection times are plotted versus the indices of the obser-
vations. Points which are not infected are plotted with an infection time ofti = d1.2·tmaxe
instead ofti = 0 to show their outlyingness.

It is difficult to compare detection capabilities of different methods for real data sets be-
cause no ”gold method” tells us which are the ”true” outliers. What we do is to compare
the sets of points which are declared good and outlying by the different methods and even-
tually we will come up with a consensus measure to quantify the degree of coincidence a
particular method has with all the other competing methods.

All algorithms have been implemented in S-Plus 2000, on a PC with a 600 MHz Intel Pen-
tium Processor and 128 Mb RAM. TheS-language is not efficient for EA and MSD as
any use of loops should be avoided inS. Therefore one should not consider the compari-
son of computing times as totally relevant. Moreover memory problems were sometimes
encountered in particular with EA when dealing with then × n distance matrix: the 128
Mb RAM were not enough as soon asn = 2000 and the processor used virtual memory
on the hard disk making the computing time explode.

Let’s emphasize finally that parameters could vary according to the data in most of the
methods to get better results. As we are trying to develop some automatic editing proce-
dure we decided to fix once for all the parameters of the method throughout the tests. Of
course this decision is open to criticism but its justification is the fact that EUREDIT tries
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to develop methods that users could use without any specific statistical knowledge. Only
in one of the last examples we emphasized how important the parameters’ tuning can be.

Let’s recall the parameters used in the following:

TRC No parameter, version with median and mad as described in the preceding section.

BACON The version with a robust start, a starting subset of size3p and a signification
level of0.01 (see the preceding section).

MSD Huber’s weights are used. The number of projections is just reduced for high
dimension to avoid very long computations.

RMCD Standard implementation in SPlus with a50% breakdown point, reweighting
with a cut-off point withα = 0.025.

EA With a simple linear transmission function withd0 = max
i

{ min
j
{dij}, 2√p} and

l = 10.

10 The Bushfire Data

The first real dataset has38 observations in dimension5. It was used by Campbell in
1989 (Campbell, 1989) to locate bushfire scars. It contains satellite measurements on five
different frequency bands corresponding to each of38 pixels. It has the advantage of
having been well studied (Maronna and Yohai, 1995) and of allowing a two dimensional
plot (in variable2 and 3) that reveals almost all the outliers (see Chart 4). The data
contains an outlying cluster of observations32 to 38 and a few other outlying values32
and7 to 11, eventually also12 and13.

A classical multivariate analysis using the sample mean and covariance estimator would
not detect anything. Chart 6 shows that the results obtained from the three comparative
methods are quite similar. Table 5 gives the observations with the largestMDi in decreas-
ing order for the three methods. All of them detect the above mentioned outliers. MSD

Table 5: Highest Mahalanobis distances for the Bushfire data

TRC 38 37 36 35 34 33 9 8 32 7 10 11
BACON 38 35 37 33 34 36 32 9 8 10 11 7
MSD 9 8 7 32 38 10 37 35 36 34 33 11
MCD 33 35 34 38 37 36 32 9 8 31 10 11 7

does not consider the32 − 38 group as more outlying than the other outliers and MCD
detects also31 as an outlier. The EA applied to the Bushfire data did not infect any points
after timet = 6 (see Chart 7). Only non-infected observations will therefore be declared
as outliers, namely points7 to 11 and32 to 38. Clearly in that case all methods are equiv-
alent. Finally, due to the small size of the dataset all computing times are moderate : TRC
0.11s, BACON 0.08s, MSD 6.7s (500 projections), MCD 0.22s and Epidemic 0.40s.
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Chart 6: Di for TRC, BACON, MSD, RMCD for the Bushfire
dataset
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Chart 7: EA infection time on the Bushfire dataset
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11 The Ionosphere Data

The second real dataset was taken from the UCI Machine Learning Database Repository
(Bay, 1999) and was suggested to us by Ricardo Maronna (Maronna and Zamar, 2001).
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This dataset was part of a study of the Ionosphere carried out by the Space Physics Group
of the Applied Physics Laboratory of the Johns Hopkins University (Sigillito et al., 1989).
Radar data were collected by a system in Goose Bay, Labrador. The targets were free
electrons in the ionosphere. ”Good” radar returns were those showing evidence of some
type of structure in the ionosphere. These good radar measurements form the dataset
which is studied here: there are225 observations in dimension32 (two variables with no
variance were eliminated).

The EA was run first and gave results shown on chart 8. Two observations were not in-

Chart 8: EA infection time on the Ionosphere dataset
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fected (62 and95) and10 others were infected after timet = 10. To compare these results
with the other methods, the Q-Q plots are given in Chart 9. Note here that according to
Maronna and Yohai MSD should have used about1.19∗1012 different directions which is
computationally unfeasible, therefore we restricted ourselves to5000. These plots show
that about60%(= 135 observations) of the data behave like normally distributed. The
picture for TRC differs from the other ones as TRC is the only estimator not based (by
selection or downweighting) on only this supposed normal part. Note that after timet = 3
the EA had infected134 observations! Clearly something is happening for the remaining
data. Choosing a value where to cut for outlyingness would require more knowledge of
the data.

To compare all the results we give two tables with the number of common points in the
”central part” of each method and in the ”extreme part” (see Table 6). The central part
of a method consists of the134 observations which are least outlying (lowestMDi or
infection time≤ 3) while the extreme part consists of the12 most outlying observations
(highestMDi or infection time> 10 or non-infected).

Amazingly TRC is the most consensual estimator for the central part sharing always more
than103 points (77%) with any other estimator. The four other methods seem to pair off:
MSD and RMCD share125 points (93%) of their central parts while BACON and EA
share119 points (89%). But the two pairs of methods seem to diverge somehow: for
example RMCD and EA only share80 points (59%) of their central parts. A possible
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Chart 9: Di for TRC, BACON, MSD and RMCD for Ionosphere

fi

D
i (

T
R

C
)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
2

4
6

8
10

fi

D
i (

 B
A

C
O

N
 )

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
20

0
40

0
60

0
80

0

fi

D
i (

 M
S

D
 )

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
10

20
30

fi

D
i (

 R
M

C
D

 )

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
20

40
60

80

explanation to that phenomena could be the ideas behind the methods: both MSD and
RMCD are based on geometrical ideas while both BACON and EA are based on growing
the good part of the data.

For the extreme part there is no consensus, but if we look closer at the Q-Q plots or the
infection times, TRC has five clear outliers (27, 62, 85, 95 and202), BACON has only
one (27), MSD has four (27, 62, 95 and96), MCD has also four (18, 27, 95 and96) and
EA has eight (27, 41, 56, 62, 95, 96, 182, 202). If all methods detected observation27,
BACON missed everything else. The other four methods detected also95, while two other
observations where only missed by one method:96 missed by TRC (but ranked only one
observation behind) and62 missed by RMCD (but ranked only two observations behind).
Observation202 was detected by both TRC and EA. Finally RMCD added18, TRC added
85 and EA added41, 56 and182. If we except BACON that probably fails because of the
total lack of normality of the data we see that only four observations appear in all twelve
most outlying points for all methods:27, 62, 95 and96 (all detected as more outlying by
MSD).

To give another way to see these results we introduce a new measure called a consensus
measure. For a fixed numberk, denote byX(k) the set ofk first outliers declared by
the methodX, X ∈ {TRC,BACON,MSD,RMCD,EA} and byall(k) the union with
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Table 6: Comparison of central and extreme parts for the Iono-
sphere data

Central part (134 points)
TRC BAC MSD RMCD EA

TRC 134 118 111 103 108
BAC 118 134 98 90 119
MSD 111 98 134 125 87

RMCD 103 90 125 134 80
EA 108 119 87 80 134

Extreme part (12 points)
TRC BAC MSD RMCD EA

TRC 12 2 7 7 7
BAC 2 12 2 2 2
MSD 7 2 12 9 7

RMCD 7 2 9 12 6
EA 7 2 7 6 12

repetition (i.e.{a; b} ∪ {a; c} = {a; a; b; c}) of the X(k)’s. Our consensus measure is
defined as:

cm(X, k) =
1

k

∑

x∈X(k)

#occurrences ofx in all(k)− 1

#methods− 1

In other wordscm(X, k) measure the average frequency that a given outlier inX(k) is
detected by another method. Note that if you have the above table,cm(X, k) is just the
average of the quotients of the non-diagonal elements of the line forX divided byk.
When all methods detects the same firstk outliers thencm(X, k) = 1 for all X and when
for a given methodX none of theX(k) is detected by another method thencm(X, k) =
0. Table 7 gives the values of thecm(X, 12) and confirm that for the Ionosphere data
BACON is very isolated and thatMSD is the most consensual.

Table 7: Consensus measures for the Ionosphere data

X TRC BACON MSD RMCD EA

cm(X,12) 0.48 0.17 0.52 0.5 0.46

The computing times diverge. TRC took 0.6s, BACON 0.41s, MSD 342s, MCD 22s and
EA took 2.1s. Note that even if our implementation of MSD is not optimized we can
see that when the dimension of the data grows, the computing time of MCD and MSD
grows too. This was expected as well as the fact that the computing time of EA is not
much affected by the growth of dimension (remember that the dimension appears in the
algorithm only in the distance computation). TRC and BACON remain by far the fastest
but in such a case with a large part of non-normal data BACON seems to fail to detect the
outliers.
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12 The Low Resolution Spectrometer (LRS) Data

The third real dataset is also taken from the UCI Machine Learning Database Repository.
These data were gathered in the Infra-Red Astronomy Satellite (IRAS) project, that was
the first attempt to map the sky at infra-red wavelengths. It consists of531 high quality
spectra measured on93 different frequencies.

We encountered two problems when running the different algorithms. As the number of
points (531) is not important relatively to the dimension (93) of the data, BACON totally
failed to work out : all the considered subsets did have a singular covariance matrix and
therefore the algorithm was unable to compute Mahalanobis distances. Moreover, the
S-Plus function cov.mcd does not allow more than50 variables but as the LRS dataset
has already been analyzed using RMCD by Maronna and Zamar (Maronna and Zamar,
2001) we are just referring to these results for RMCD. MSD was run with2000 different
directions. We do not show the Q-Q plots of theDi’s or the infection times as they are
similar to the preceding ones except that this time the normally behaving part of the data
seems bigger. For example only8 observations were infected after time7 and only3
not infected with EA. As the other methods also had11 or 12 clear outliers, we give
the comparative table of the extreme part in Table 8. The results are here very similar.

Table 8: Comparison of the extreme parts for the LRS data

Extreme part (11 points)
TRC MSD RMCD EA

TRC 11 10 10 10
MSD 10 11 9 9

RMCD 10 9 11 9
EA 10 9 9 11

TRC is the most consensual method and eight observations are simultaneously detected
by all methods. The differences here are rather the measures of outlyingness given by
the methods. Table 9 lists the11 observations in decreasing order of their measure of
outlyingness.

Table 9: Most outlying observations for the LRS data

TRC 210 90 112 173 307 281 451 193 2 67 382
RMCD 210 173 112 90 307 2 281 193 451 67 370
MSD 307 382 210 281 280 90 173 112 2 67 451
EA 210 307 281 451 398 90 382 67 112 173 193

The consensus measures are here very high (see Table 10).
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Table 10: Consensus measures for the LRS data

X TRC MSD RMCD EA

cm(X,11) 0.91 0.85 0.85 0.85

The computing times diverge. TRC took 2.1s, MSD 398s, MCD 616s and EA took 5.7s.
With that dimension the computing time of MCD and MSD start to get very big while EA
is not much affected by the growth of dimension. TRC keeps performing fast and well.

13 The Restaurants Data

As business surveys are often encountered in official statistics we felt that it was necessary
to include in these preliminary tests a dataset of such a kind. The problematic point of
such data is that they always need some transformation, usually some log transformation,
prior to any analysis and that they often do not have some nice elliptical or symmetric
distribution. The following dataset is a subsample of restaurants of the 1995 Swiss census
of the enterprises. The largest restaurants were removed for confidentiality reasons. As
we wished to present graphically the results only two variables were retained:emp will
denote the number of employees andturn the turnover of the restaurants. As usual a log
transformation is performed first. A scatter plot of the1271 observations is given in Chart
10.

Chart 10: Scatter plot of the restaurants data after a log transforma-
tion
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Such a picture is common in business surveys. No symmetry appears in the dataset and
therefore the methods needing that assumption will clearly have trouble to cope with that
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characteristic. Looking at the plot we could consider as potential outliers the restaurants
with a high number of employees or for the other ones with high or low turnover.

In that case the results obtained by all the methods using a Mahalanobis distance are so
close that there is no point to try to compare them. To illustrate that fact we gave some
consensus measures for these methods in Table 11.

Table 11: Consensus measures (without EA) for the restaurants

X TRC BACON MSD RMCD
cm(X,10) 1 1 1 1
cm(X,50) 0.97 0.97 0.97 0.97
cm(X,100) 0.94 0.96 0.94 0.96
cm(X,150) 0.98 0.98 0.96 0.98

Therefore we restrict our comparison between one of them (BACON) and EA. We gave
first the Q-Q plot of theDi for BACON and the infection history for EA (see Chart 11).

Chart 11: Di for BACON and infection times for the restaurants
dataset
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Looking at these charts we could consider that22 observations seem to be really outlying
for BACON while EA found23 observations with infection time greater than4. We
plotted the data with these outliers for BACON and EA (see Chart 12). As EA infected
only 75 observations after time3, we also plotted the75 most outlying points for both
methods (see Chart 13).

On these pictures we clearly see the difference between EA and the other methods. BA-
CON bases its measure of outlyingness using what should be the symmetric (elliptical)
part of the good data. Therefore here we clearly see that BACON does not detect as well
as EA the observations located in the direction of the main axis of the ellipsoid (high
emp and high turn) because these observations seem to fit the normal model sought by
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Chart 12: Outliers for BACON (22) and EA (23) for the restaurants
dataset
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Chart 13: Outliers (75) for BACON and EA for the restaurants
dataset
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BACON. On the contrary EA doesn’t look for a model and therefore found very well the
observations that we considered as outliers when we first looked at the scatter plot.

The computing times here show clearly that EA is more affected by the number of obser-
vations than other methods. TRC took 0.6s, BACON 0.5s, MSD 2.1s, MCD 0.7s and EA
took 11s.

14 Dataset with High Concentrated Contamination

In (Rocke and Woodruff, 1996) Rocke and Woodruff made two observations: 1) it is
very hard to detect outliers in data with a contamination fraction of35% or higher; 2)
compactly spaced outliers are harder to find. To test the quality of the different methods
we combined here the two difficulties: we generated a dataset with500 observations in
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IR10 with observations1 to 300 that followed a multivariate normal distribution centered
at the origin with a covariance matrix set to10 ∗ I10 and two contaminations formed
by two other clouds centered at two randomly chosen points inIR10, one at distance70
(observations301 to 400) and the other at distance100 (observations401 to 500), both
with multivariate normal distribution with covariance matrix ofI10.

Here, as we know the indices of the outliers, the results of all methods are just plotted
with the Mahalanobis distance or the infection time versus the index (see Chart 14). We
restricted MSD to5000 projections.

Chart 14: MDi or infection time for TRC, BACON, MSD, RMCD, EA
for the dataset with concentrated contamination
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The results are very different:

TRC The more distant outlier cloud and some other good points were detected with high
Mahalanobis distances, but the closest cloud was not.

BACON The detection is perfect even adding the distinction between the two clouds.
This is no surprise since BACON is designed to be perfect in such cases.

MSD Nothing is detected except good points. Of course here by changing the weighting
function the results could be totally different.
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MCD The 200 outliers got the smallest Mahalanobis distances and had no chance of
being detected. The Q-Q plot looks very strange but can only tell that there is a
problem...

EA The 200 outliers have not been infected and they are therefore perfectly detected.
Three other points are infected after time6 and are therefore suspicious. The algo-
rithm did not make any difference between the two clouds.

The computing times were the following: TRC took 0.18s, BACON 0.14s, MSD 140s,
MCD took 5.1s and EA 11s.

15 Other Datasets

We have tried the methods on several other datasets found in the literature and consid-
ered as challenging for multivariate outlier detection. The methods tested here worked
perfectly well in most of the cases. Only with few data relative to the dimension some
methods failed to identify the outliers. We do not report in all details the tests, only the
references for the data, the computing times and the encountered problems are given.

The Hertzsprung-Russell data This dataset is given in (Rousseeuw and Leroy, 1987),
Table 3, Chapter 2. A scatter plot can be found on page 261. The dataset has47 points in
dimension2. All the methods found perfectly the 6 clear outliers with computing times:
TRC in 0.08s, BACON in 0.09s, MSD in 0.63s, RMCD in 0.15s and EA in 0.32s.

The Hawkins-Bradu-Kass data This dataset is given in (Rousseeuw and Leroy, 1987),
Table 9, Chapter 3. The dataset has75 points in dimension3 (we did not use the response
variable). All the methods found perfectly the 14 outliers with computing times: TRC in
0.14s, BACON in 0.17s, MSD in 1.36s, RMCD in 0.23s and EA in 0.45s.
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The Modified Wood Specific Gravity data This dataset is given in (Rousseeuw and
Leroy, 1987), Table 8, Chapter 6. The dataset has20 points in dimension5 (we did not
use the response variable). BACON (with a smaller starting subset, i.e.c = 2), MSD and
RMCD found perfectly the 4 artificial outliers with computing times: BACON in 0.5s,
MSD in 7s and RMCD in 0.18s. EA did not infect the four outliers but also four other
good points. BACON with the default starting subset of size3p and TRC did not detect
anything.

Remarks The last example shows that with very small datasets TRC, BACON and EA
might encounter some problems while the two methods based on geometric ideas are
performing relatively well.

In the cases of regression data robust multiple regression methods should rather be used
and in several cases the multivariate methods we present here will totally fail to detect the
regression outliers. Nevertheless we can always try to find the outliers in the explanatory
variables using the multivariate methods just simply by deleting the response variable as
we did in the two preceding examples. Sometimes the multivariate methods will also end
up with the right outliers in a regression context as in the well known next example.

The Stackloss data This dataset is well-known and can be found in several articles but
also in (Rousseeuw and Leroy, 1987), Table 1, Chapter 3. The dataset has21 points in
dimension4. Most analysts agree that observations1, 3, 4 and21 are outliers and some
of them add observation2. TRC, BACON, MSD and RMCD found the five outliers with
2 as the least outlying. EA was run several times, always found1, 2 and3 as outliers but
sometimes missed4 or 21 and sometimes added17. The computing times were: TRC in
0.09s, BACON in 0.06s, MSD in 2.8s, RMCD in 0.15s and EA in 0.4s.

The Philips data This dataset is an illuminating example to show how important the
parameters’ tuning can be. This dataset has been used by Rousseeuw and van Driessen
(Rousseeuw and van Driessen, 1999) to test their FAST-MCD. The analysis using RMCD
shows78 clear outliers (observations297, 298, 433 and some concentrated contamination
from 491 to 565) and some other suspicious points in 3.1s. TRC detects clearly297 and
298 as well as some other suspicious points (among them433) but totally fails to detect the
concentrated contamination of observations491 to 565. BACON with our default param-
eters detects638 outliers indicating that we have to take a much smaller significative level
than0.01. Actually with this level set to0.0001 BACON detects exactly the same outliers
as MCD in 0.66s (In fact with its original parameters BACON would have obtained these
results). MSD got the same results as TRC, missing the concentrated contamination. By
changing the weighting function we could of course improve the detection of closed con-
tamination of MSD but then of course we would also increase drastically the number of
good observations declared as outliers. EA with the default settings detects only three
points as clear outliers (175, 297 and298). The maximum transmission distance is then
d0 = 3.05. By settingd0 = 2.4 all the concentrated contamination also appears clearly as
outlying, nevertheless EA missed433.
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16 Conclusions

Let’s try to summarize the diverse advantages and disadvantages pointed out up to that
point.

TRC The behavior of TRC has been quite a good surprise. By construction it is very
fast in all cases and seems to get very satisfying results comparing to the other methods. It
has problems to deal with very small datasets and with close concentrated contamination.
No parameters are needed. It does need the assumption of symmetric data.

BACON BACON is very fast in all cases. It is the best method when the good part of
the data is normally distributed. It starts to behave strangely when an important part of
the data is not normal (Ionosphere data). It’s major problem is that it cannot work when
the number of observationsn is not large relatively to the dimensionp. It has problems
to deal with very small datasets. Some knowledge of the algorithm is needed for a good
parameters’ tuning. It does need the assumption of symmetric data.

MSD MSD is a relatively slow algorithm. It’s computing time explodes with the dimen-
sionp and therefore approximation using less projections has to be taken. The choice of
the weighting function decides the sensitivity to close outliers. It does need the assump-
tion of symmetric convex data.

RMCD RMCD is a relatively slow algorithm. It’s computing time explodes with the
dimensionp. It has major problems to deal with concentrated contamination. It does need
the assumption of symmetric data.

EA EA is a relatively slow algorithm. It’s computing time does grow slowly withp
but rapidly withn. It has problem to deal with very small datasets. The choice of the
maximum transmission distance is crucial. It compares very well with the other methods.
It is the only tested methods that work well with non-symmetric data.
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Part IV

Adaptation to Sampling Weights
All the methods developed in EUREDIT will have to be able to analyze data from sample
surveys. In consequence they should all take sampling weights into account. This section
is dedicated to the adaptation of the methods selected above to the sampling weights. We
shall keep the same notations throughout the section. The population will be denoted
by U and will haveN units numbered by1, 2, ..., N . We shall assume that the sample
s is drawn fromU according to a sample designp(s). The size ofs will be n and its
units labeled by1, 2, ..., n. This is a slight abuse of notation as the sample indices should
rather be written asi1, ..., in with ij ∈ {1, ..., N}. The first and second order inclusion
probabilities will be denoted byπi andπij. We shall assume that the weightswi given with
the data are just the sampling weightswi = 1/πi. If a quantity is measured on the sample
with valuesx1, ..., xn the classical Horvitz-Thompson estimator of the totalX =

∑N
i=1 xi

is then given byX̂HT =
∑n

i=1 wixi. If there is a more complex procedure behind the
weights, e.g. calibration, we simply assume that

∑n
i=1 wixi yields a good estimate of the

total
∑N

i=1 xi.

17 TRC

The adaptation of TRC to sampling weights will require some more sophisticated esti-
mation methods. We shall only give a general outline of the construction of the diverse
estimators. For more details on the estimators and the estimation of their variances the
reader should refer to (Deville, 1999).

17.1 Substitution Estimators

We shall work in a measure space onIRp denoted byM containing at least all point
measures denoted byδx with x ∈ IRp (in the following we shall only deal with discrete
measures). A functionalT onM associates to every measureM ∈ M a real number
T (M). We shall work only with homogeneous functionals, i.e. those for which there ex-
ists someα = α(T ) ∈ IR+ such thatT (tM) = tαT (M). A set of real values{x1, ..., xN}
taken on the populationU defines a measureMU =

∑N
i=1 δxi

∈ M. Similarly the val-
ues{x1, ..., xn} taken on the samples with given sampling weightswi defines a measure
Ms =

∑n
i=1 wiδxi

∈M.

Definition With the above notations thesubstitution estimatorof some functional value
T (MU) is T (Ms).

In the case of a total this definition is nothing else than the classical expansion estima-
tor (π-estimator or Horvitz-Thompson estimator): the functional is defined byT (M) =
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∫
xdM(x). The value of the functional on the population distribution is the sought to-

tal T (MU) =
∑N

i=1 xi = X and therefore the substitution estimator isX̂ = T (Ms) =∑n
i=1 wixi. Several estimators cannot be directly defined as a functional value but are

actually solution of an implicite functional equation (maximum likelihood estimators for
example). Generally the estimating equation can be written asT (MU , λ) = 0 where this
time the functional has a real parameterλ. This equation is supposed to have a unique
solution forMU fixed. In that case the substitution estimator ofλ is the solution of the
equationT (Ms, λ̂) = 0.

Even if we shall not estimate the variance of our estimators in this report, let us note here
that a tool developed in the field of robustness becomes a very powerful tool in estimation
theory for variance computation. Actually the influence function of a functional defined
here asIT (M, x) = lim

t→0

1
t
(T (M + tδx)− T (M)) can define a linearized version of the

substitution estimate and therefore can be used to compute the variance of the estimate
using classical formulas. The variance of all the estimators we shall use here can be
computed this way, see (Deville, 1999).

Substitution estimators will be used here to adapt TRC to sampling weights. In fact as
TRC uses the Spearman Rank correlation we do need an estimation of the ranks in the
population to be able to compute the estimator. An easy way to estimate the ranks is to
express them as functionals and use substitution estimators. Similarly the median and
the mad will be expressed as solution of implicit functional equation and the substitution
estimators are nothing else than the classical weighted median and mad.

As usual denote by{x1, ..., xN} and{y1, ..., yN} the values of two quantities measured on
the population and by{x1, ..., xn} and{y1, ..., yn} the values in the sample (xi, yi ∈ IR).
Define the two following functionals

Ri(M) =

∫
1lx≤xi

(x)dM(x)− 1

2

∫
δxi

(x)dM(x) +
1

2

and

Qi(M) =

∫
1ly≤yi

(x)dM(x)− 1

2

∫
δyi

(x)dM(x) +
1

2
.

The two functionals evaluated on the two population measures given by thexi’s and the
yi’s are nothing else than the ranks in the population:

Ri(M
x
U) =

N∑
j=1

1lx≤xi
(xj)− 1

2

N∑
j=1

δxi
(xj) +

1

2
= Ri

and

Qi(M
y
U) =

N∑
j=1

1ly≤yi
(yj)− 1

2

N∑
j=1

δyi
(yj) +

1

2
= Qi

whereRi (resp.Qi) is the rank ofxi (resp.yi) in the whole population values. Note that
in the literature the formula for the ranks is often simply given as

∑N
j=1 1lx≤xi

(xj). The
formula we proposed here is slightly more complicated but has two advantages. Firstly
the formula is exact when some values are tied giving in that case the mean rank of these
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values (when no equality appears it reduces to the usual formula) and secondly when we
shall look at the estimation this formula gives a better estimation in particular with very
large weights. The substitution estimators are

R̂i = Ri(M
x
s ) =

n∑
j=1

1lx≤xi
(xj)wj− 1

2

n∑
j=1

δxi
(xj)wj +

1

2
=

∑
1≤j≤n
xj<xi

wj +
1

2

∑
1≤j≤n
xj=xi

wj +
1

2

and

Q̂i = Qi(M
y
s ) =

n∑
j=1

1ly≤yi
(yj)wj− 1

2

n∑
j=1

δyi
(yj)wj +

1

2
=

∑
1≤j≤n
yj<yi

wj +
1

2

∑
1≤j≤n
yj=yi

wj +
1

2
.

Using these estimated ranks we are now in a position to calculate the Spearman Rank
correlation. Recall that by definition

R(x, y) =

∑N
i=1(Ri −Ri)(Qi −Qi)√∑N

i=1(Ri −Ri)2
∑N

i=1(Qi −Qi)
2

.

Using the relations
∑N

i=1 Ri =
∑N

i=1 i = N(N + 1)/2 and
∑N

i=1 R2
i =

∑N
i=1 i2 =

N(N + 1)(2N + 1)/6 it reduces to

R(x, y) =
12

N(N2 − 1)

N∑
i=1

RiQi − 3
N + 1

N − 1
∼= 12

N3

N∑
i=1

RiQi − 3.

WhenN is large the last approximation is accurate. SettingN(M) =
∫

dM we define
the functional

R(M) =
12

N3(M)

∫
Ri(M)Qi(M)dM − 3

which satisfyR(MU) = R(x, y) and we obtain the estimator

R̂(x, y) = R(Ms) =
12

N3(Ms)

∫
Ri(Ms)Qi(Ms)dMs−3 =

12

(
∑n

i=1 wi)3

n∑
i=1

wiR̂iQ̂i−3.

Note that by using the functional form ofR we actually have double integrals involved in
this formula. But this is straightforward once the functional form is used. Inserting the
above formula for̂Ri andQ̂i we have finally

R̂(x, y) =
12

(
∑n

i=1 wi)3

n∑
i=1

wi




∑
1≤j≤n
xj<xi

wj +
1

2

∑
1≤j≤n
xj=xi

wj +
1

2




·




∑
1≤j≤n
yj<yi

wj +
1

2

∑
1≤j≤n
yj=yi

wj +
1

2


− 3.
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Note that we have used the fact that the mean and variance of the ranks are known on the
population to simplify the correlation formula. We might obtain a more efficient estimator
if we estimate these quantities using the sample values. Finally let us underline the fact
that we have no guarantee that the value of our estimator is between−1 and1 but in such
a case we would clearly set the value to−1 or 1.

To end the adaptation of TRC to sampling weights we still have to estimate the median
and mad for univariate data. In the above context this is done very easily. Define the
functionalT (M,λ) = 1

M(IR)

∫
1lx≤λ(x)dM(x). Then the median of the population data

is the solution of the functional equationT (MU , λ) = 0.5 and therefore its estimator is

the solution ofT (Ms, λ̂) = 0.5, i.e.

(∑
1≤i≤n
xi≤λ

wi

)
= 0.5 ·∑1≤i≤n wi. Now in general

this equation does not have a solution. Different approximations can be used, the one we
choose is defined as follows. Letxj be the smallest value such that




∑
1≤i≤n
xi≤xj

wi


 ≥ 0.5 ·

∑
1≤i≤n

wi,

and letxl be the smallest value such that



∑
1≤i≤n
xi≤xl

wi


 > 0.5 ·

∑
1≤i≤n

wi,

then the weighted median is defined as

m̂ed(x) = weighted.med(x, w) =





xj if xj = xl

wjxj+wlxl

wj+wl
if xj < xl

.

As the mad is defined using medians only, its estimation follows in the same way.

18 BACON

The adaptation of the BACON algorithm is almost straightforward. The initial subset is
selected the same way except that the usual median is replaced by its estimate defined
in the preceding section 17, namely the weighted median. For the main iterations of the
algorithm the mean and covariance matrix of the population are estimated each time by
mG andSG and the observations are ranked using this estimation. We only have to follow
the same scheme except that we shall work in the sample. Suppose that we randomly
choseg element of the samples. We can estimate the mean and the covariance matrix
of the population with the H́ajek estimator using the fact that the probability that the
observationxi appears in this subsetG of the samples is simply given bỹπi = gπi/n =
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g/(win). The estimates are therefore

mG =

∑
i∈G π̃−1

i xi∑
i∈G π̃−1

i

=

∑
i∈G wixi∑
i∈G wi

and

SG =

∑
i∈G π̃−1

i (xi −mG)(xi −mG)t

∑
i∈G π̃−1

i

=

∑
i∈G wi(xi −mG)(xi −mG)t

∑
i∈G wi

.

Finally we have to determine the correction factors used to do the selection of Step 3 of
the algorithm. The first factorchr measures the correction if the sizer of the part on which
we made the estimation is smaller than ”half” of the observationsh = d(N + p + 1)/2e.
As r (resp. h) can be estimated using the Horvitz-Thompson estimatorr̂ =

∑
i∈G wi

(resp.ĥ = (
∑

i∈s wi + p + 1)/2) we may estimate this correction and use

ĉhr = max

{
0,

∑
i∈s wi + p + 1− 2

∑
i∈G wi∑

i∈s wi + p + 1 + 2
∑

i∈G wi

}

instead ofchr. In the same way we use the estimate

ĉNp = 1 +
p + 1∑

i∈s wi − p
+

2∑
i∈s wi − 1− 3p

instead ofcNp to take into consideration the size ofp proportionally to the size of the
population.

19 MSD

In (Franklin et al., 2000) a comparaison of the effects of multivariate outlier detection
using MSD with and without considering sampling weights is made. The approach chosen
by Franklin et al. will not be followed here: to avoid burdensome reprogramming they
decided simply to multiply each observation by its sampling weights and then to apply the
algorithm. It didn’t seem to us that we could find a theoretical justification to that scheme.

We propose to make the following adaptations to the algorithm given in 7.1. The pro-
jections are unchanged but the computation of the weights for a given one-dimensional
projection need the value of the median and the mad for the whole population. We replace
here these two values by their estimate obtained using the estimators defined in the pre-
ceding section, namely the weighted median and the weighted mad. With this correction
Points 1 to 5 of the algorithm remain the same. Finally Point 6 and the final estimation
are obtained using the usual estimates of the mean and covariance matrix of the popula-
tion computed with robustness weights. We shall do the same just by replacing the usual
estimators by the H́ajek estimators, i.e. using the following estimates:

mMSD =

∑n
i=1 uiwixi∑n
i=1 uiwi

andSMSD =

∑n
i=1 uiwi(xi −mMSD)(xi −mMSD)t

∑n
i=1 uiwi
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20 RMCD

The adaptation of the FAST-MCD algorithm described in section 8 is also straightforward.
As in BACON the C-steps use computations of the meanmQ and covariance matrixSQ

of a subsetQ ⊂ U to rank all the observations according to the Mahalanobis distance. In
each step the idea is that the mean and covariance matrix of the population are estimated
by mQ andSQ and the observations are ranked using this estimation. We only have to
follow the same scheme except that we shall use the sample. Suppose that we randomly
choseq element of the samples. We can estimate the mean and the covariance matrix
of the population with the H́ajek estimator using the fact that the probability that the
observationxi appears in this subsetsq of the samples is simply given bỹπi = qπi/n =
q/(win). The estimates are therefore

mq =

∑
i∈sq

π̃−1
i xi∑

i∈sq
π̃−1

i

=

∑
i∈sq

wixi∑
i∈sq

wi

and

Sq =

∑
i∈sq

π̃−1
i (xi −mq)(xi −mq)

t

∑
i∈sq

π̃−1
i

=

∑
i∈sq

wi(xi −mq)(xi −mq)
t

∑
i∈sq

wi

.

In the caseh = n (point 2 of the algorithm) the H́ajek estimatesmh andSh are returned.
In the casep = 1, the same arguments give a clear adaptation of the algorithm given in
(Rousseeuw and Leroy, 1987) replacing then − h + 1 means by their H́ajek estimates
and the sum of squares by the Hájek estimate of the corresponding variances. With these
corrections the structure of Points 1 to 6 of the algorithm remains unchanged. Note here
thath = (n + p + 1)/2 is computed using the sample sizen and therefore the breakdown
point is expressed according to the proportion of outliers in the sample and not in the
population. Once the subsetsh is chosen the H́ajek estimatesmh andSh are used and
points 7 and 8 become:

7. In order to obtain consistency under multivariate normal distribution set

mMCD = mh and SMCD =
weighted.medi(MDmh,Sh

(xi))

χ2
p,0.5

Sh

where theweighted.med denotes the weighted median defined in 17.

8. To improve efficiency under normal distribution set finally

mRMCD =

∑n
i=1 uiwixi∑n
i=1 uiwi

andSRMCD =

∑n
i=1 uiwi(xi −mRMCD)(xi −mRMCD)t

∑n
i=1 uiwi

with

ui =

{
1 if MDmMCD,SMCD

(xi) ≤ χ2
p,0.975

0 otherwise
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21 EA

As usual we assume that a samples of sizen is drawn from the populationU of sizeN
according to the sample designp(s). The first and second order inclusion probabilities
are denotedπi andπij. We assume that the sampling and the epidemic are independent.

The initial standardization of the data, designed to avoid unbalanced effect of the dif-
ferent variables, should be done using the median and mad computed on the population
data. We therefore estimate these quantities using the sample data with the weighted.med
(defined in 17) and the weighted.mad (defined as the mad replacing the median by the
weighted.median), i.e

x̃jk =
xjk − weighted.medi∈s(xik, wi)

weighted.madi∈s(xik, wi)
.

To determine the starting point of the epidemic according to the algorithm we should
use the population spatial medianc = arg min

i

∑
j∈U d(xi, xj). As the sum over the

population is not known we use its Horvitz-Thompson estimate and therefore our starting
point will have index

i(c) = arg min
i

∑
j∈s

wjd(xi, xj).

Denote byIU,t the set of infected points in the populationU at timet. The setIU,t is a
domain. Its intersection with the samples is Is,t = s ∩ IU,t the set of infected points
in the sample. What we actually observe isIs,t. In order to infer on the infection in the
population, we have to estimate the infection probabilitiesP [j|IU,t] = 1 − ∏

i∈IU,t
(1 −

hij) , ∀j ∈ s \ Is,t. Thus we have to estimate the product
∏

i∈IU,t
(1 − hij) from the

sample and from knowingIs,t. Taking the log of this estimand we can see that we have to
estimate the exponential of

∑
IU,t

log(1−hij). This sum can be estimated by the Horvitz-
Thompson estimator ∑

Is,t

1

πij

log(1− hij).

Exponentiation of this unbiased and consistent estimator leads to a consistent estimator
of the product. Thus the estimator of the transmission probability becomes

P̂ [j|IU,t] = 1−
∏

i∈Is,t

(1− hij)
1/πij .

In theory the problem is solved: We use these transmission probabilities for the epidemic
in the sample. Since the transmission probabilities estimate the transmission probabilities
of the population infection, the infection times will estimate the corresponding infection
times in the population.

In practice we seldom have the second order inclusion probabilitiesπij at hand. Often we
just have for each point a sampling weightwi, which is approximately the inverse1/πi

of the inclusion probabilities. We propose to use the approximations1/πij ≈ 1/(πiπj) ≈
wiwj. The first approximation holds exactly for simple random sampling with replace-
ment and for Poisson Sampling. It holds approximately for large samples, where the
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dependence of inclusion between elements usually is small. This leads to the following
estimator of the population infection probability

P̂ [j|IU,t] = 1−
∏

i∈Is,t

(1− hij)
wiwj .

A more heuristic approach assumes that at the same place as the sampled pointi there
arewi points of the population which are infected and transmit the infection at the same
time as the sampled point. In other words we assume an immediate transmission if the
distance is zero. Thus one would havewi points which are already infected and instead
of one candidate atxj to be infected there arewj of them. The transmission probability
becomes1−∏

i∈IS,t
(1− hij)

wiwj , exactly as above.

We may standardize the weights to sum ton to obtain an infection probability which
compares better with an epidemic in the sample alone. This may also help in the choice
of the maximal infection distanced0.

Another heuristic approach compares the density in the population with the density in the
sample. The density is decreased by a factor which corresponds to the sampling fraction
for simple random sampling. In the same way the average distance decreases by the
sampling fraction. Thus an approach for accounting for sampling would be to transform
the interpoint distancedij to d′ij = 2dij/(wi +wj). This would correct the distance by the
average sampling rate at pointsi andj.
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Part V

Adaptation to Missing Values
In this part we approach one of the critical problem encountered with real data: missing
values. In survey data we can distinguish two kinds of non-response that lead to missing
values in a dataset. In fact not all units in the sample respond to all the study variables;
some co-operate with the survey, but fail to supply answers to some question - we talk
aboutitem non-response- and others do not co-operate at all -unit non-response.

Different sampling techniques exist to deal with unit non-response. The methods devel-
oped here will not cope with that kind of non-response, it will always be assumed that
the unit non-response has been taken into account by sampling techniques and that the
sampling weights have been corrected according to unit non-response. All units that have
all items missing will therefore be removed from the dataset.

Most of the edit methods that deal with item non-response do need strong assumptions
on the missingness mechanism. That will also be the case here even if we still have to
study further two methods to see if the hypothesis could be weakened. The first section
will fix the notations and definitions for the missingness mechanism, while the next three
sections will present the proposed solutions for three methods, each of them retaining the
philosophy of the initial method: TRC will be adapted using simple imputations based on
bivariate statistics, BACON will use a method designed to estimate a covariance matrix
for incomplete multivariate normal data (BACON is best designed for this framework)
and EA will simply compute distances using the available coordinates and correcting
them with a proportionality factor to calibrate for the fraction of missing information. We
did renounce to develop further the other two methods studied in the preceding parts. The
projections in MSD couldn’t be applied without some previous imputation of the missing
data and we were not willing to merge together the edit and imputation phases at that
point. Regarding MCD, an algorithm was developed in (Cheng and Victoria-Feser, 2000)
using MCD at each step of the ER algoritm (Little and Smith, 1987) which combines
the EM algorithm and and M-estimator. However this algorithm was not designed for
survey data and we were lacking ressources to make the adaptation to sampling weights.
Finally a very short exploration of that algorithm seems to show that it could have some
difficulties to treat large size datasets.

22 Missingness Mechanisms

The notions and notations for this section are largely taken from (Schafer, 2000). To
make the following text readable we shall use the following abuse of notation:X will
denote simultaneously a p-dimensional random variable (we shall always refer to the
”variable X”) and theN × p matrix containing the realized values of the variableX
of the populationU . The variableX follows a p-dimensional probability model with
parametersθ. If a census was taken of the whole population to measure the variableX
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it would result in some observed and missing valuesX = Xo ∪ Xm. We shall model
this behavior by a zero-one response variableR with the same abuse of notation:R also
denotes theN × p matrix containing the values of the variableR on the populationU ,

i.e. rik =

{
1 if xik is given,

0 if xik is missing.

The parameters of the missingness mechanism will be denoted byξ. We would not in
general expect the distribution of the variableR to be unrelated to the variableX, so
we posit a probability modelP (R|X, ξ). We shall always assume that the parametersθ
of the data model and the parametersξ are distinct. In most methods the assumption is
that the missing data are ”missing at random” (MAR) or ”missing completely at random”
(MCAR). The reader should be aware that the definition of MAR may vary depending on
the context and the author, while the definition of MCAR is standard. We shall use the
definition given in (Rubin, 1976) and used in (Schafer, 2000).

Definition 2 The missing data are MAR if the distribution ofR does not depend onXm,
i.e.

P (R|Xo, Xm, ξ) = P (R|Xo, ξ).

If both MAR and the distinctness of the parametersθ and ξ hold, then the missing-data
mechanism is said to be ignorable.

Definition 3 The missing data are MCAR if the distribution ofR does not depend onX,
i.e.

P (R|X, ξ) = P (R|ξ).
MCAR is a particular case of MAR, occuring for example when the missing data are a
simple random sample of all data.

As the methods will use the survey data and not the population data we shall need an
assumption on the relation between the missingness and the sampling mechanisms. If we
denote byS the sampling variable, we shall always assume thatS andR are independent
variables : in other words we suppose that the missingness patterns do not depend on the
sample: one unitxi of the population would have the same observed and missing items
regardless of the sample. Ifs is the sample obtained as a realization ofS we shall simply
useXs

o (resp.Xs
m) to denote the observed (resp.missing) values of the survey data.

23 Mahalanobis distances with missing values

Two methods developed here (TRC and BACON) do use Mahalanobis distances as a
measure of outlyingness. The different treatments of the missing values when estimating
the mean and covariance matrix are described in the following sections. Once the mean
and covariance matrix are available the computation of the Mahalanobis distance still
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faces the problem of the missing items. We could have used the ad-hoc imputations of
TRC or imputations based on the multivariate normal distribution to complete the data.
However we did not want to use imputations, even ad hoc for the outlier detection phase,
which corresponds to editing. In this situation two different versions of the Mahalanobis
distance are possible.

23.1 Conditional Mahalanobis distance

Supposex(1)
i is the observed part of an observationi andx

(2)
i the missing part. Thus, after

a possible rearrangement of the variables, the difference to the mean vectorm is

(xi −m)t =
(
(x

(1)
i −m(1))t, (x

(2)
i −m(2))t

)
.

The (squared) Mahalanobis distanceMD(xi) = (xi−m)tS−1(xi−m) decomposes into

(
(x

(1)
i −m(1))− S12S

−1
22 (x

(2)
i −m(2))

)t

S−1
11.2

(
(x

(1)
i −m(1))− S12S

−1
22 (x

(2)
i −m(2))

)

+(x
(2)
i −m(2))tS−1

22 (x
(2)
i −m(2)),

whereS−1
11.2 = (S11 − S12S

−1
22 S21)

−1. One version is then to impute(x(2)
i − m(2)) by 0.

Then the full Mahalanobis distance may be replaced by

MDcond(xi) =
p

q
(x

(1)
i −m(1))tS−1

11.2(x
(1)
i −m(1))

whereq =
∑

k rik is the number of non-missing variables andp is the total number of
variables. The factorp/q makes this reduced Mahalanobis distance more comparable
with the full version. This distance is in fact measured in the metric of the residuals of
the observed part of the vector given the unobserved part. Another interpretation is that
S−1

11.2 consists of the partial covariances of the observed part given the unobserved part.
This version is therefore called theconditional Mahalanobis distance. The matrixS−1

11.2

is nothing else than the submatrix ofS−1 where the rows and columns of the missing
variables have been removed.

23.2 Marginal Mahalanobis distance

The second version of the Mahalanobis distance can be derived if we interchange the role
of x

(1)
i andx

(2)
i above. In other words, if we assume thatx

(1)
i is missing we can only

calculate the second summand of the Mahalanobis distance above, i.e. we replace the full
Mahalanobis distance by

MDmarg(xi) =
p

q
(x

(2)
i −m(2))tS−1

22 (x
(2)
i −m(2)).

Again we use the factorp/q to enhance the comparability with the full Mahalanobis dis-
tance. The matrixS−1

22 is obtained by removing the rows and columns of the missing
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variables from the covariance matrixS and invert only afterwards. This version is called
the marginal Mahalananobis distance.

Which version of the Mahalanobis distance is better is not clear. While the first version
may create spurious outliers the second version may mask true outliers (in a situation
where the missing variables are correlated with the non-missing variables). If the missing
and non-missing variables are uncorrelated the two versions yield similar Mahalanobis
distances. One of the method (BACON) will use the conditional Mahalanobis distance
and the other one (TRC) the marginal Mahalanobis distance.

24 TRC

Almost every step of the TRC method is perturbed by missing values. We shall assume
here that the data are MCAR; a more careful study should be carried out to see if this
hypothesis can be weakened. Two different kinds of problems are encountered: the com-
putation of univariate or bivariate statistics (σ̃ andR) and the projection of the observa-
tions onto the new basisB. The first issue is solved just by restriction to the observed
cases. The second issue could be avoided by using another way of transforming the ma-
trix S̃1 into a definite positive matrix. But we prefer our transformation, which has some
statistical interpretation, to a purely algebraic transformation. We propose a solution that
keeps the ”robust bivariate” spirit of TRC. A missing item in an observation is imputed by
a robust regression using another observed variable selected by the robust bivariate rank
correlations. This imputation is then used to obtain the coordinates of the data in the new
basis and the end of the algorithm remains unchanged. The final measure of outlyingness
is the Mahalanobis distances computed on the observations without the imputed values.
All the details are given by going through the algorithm step by step. The notations of
Section 5.2 remain unchanged.

(i) The univariate statistics̃σ of xk is computed on thei’s such thatrik = 1. For
our choice ofσ̃ we therefore have to define how the estimation of the median is
computed.

Let xj1k be the smallest value ofxk such thatrj1k = 1 and

∑
1≤i≤n
rik=1

xik≤xj1k

wi ≥ 0.5 ·
∑

1≤i≤n
rik=1

wi.

and letxj2k be the smallest value ofxk such thatrj2k = 1 and

∑
1≤i≤n
rik=1

xik≤xj2k

wi > 0.5 ·
∑

1≤i≤n
rik=1

wi,
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the estimation of the median is given by

m̂ed(xk, w) =





xj1k if xj1k = xj2k

wj1
xj1k+wj2

xj2k

wj1
+wj2

if xj1k < xj2k

.

As the mad is defined using medians only, its estimation follows in the same way.
For the Spearman Rank correlation we restrict all the computations to the common
observed values of two variables. Using the formula developed in 17.1 we obtain

R̂(xk, xh) =
12

(
∑

1≤i≤n
rikrih=1

wi)3

∑
1≤i≤n

rihrik=1

wi




∑
1≤j≤n

rjk=rjh=1

xjk<xik

wj +
1

2

∑
1≤j≤n

rjk=rjh=1

xjk=xik

wj +
1

2




·




∑
1≤j≤n

rjk=rjh=1

xjh<xih

wj +
1

2

∑
1≤j≤n

rjk=rjh=1

xjh=xih

wk +
1

2



− 3,

if {i : rikrih = 1} 6= ∅. If there is no common observed variable betweenxk and
xh then a warning is sent to the user and the correlation rank is set to zero

R̂(xk, xh) = 0 if {i : rikrih = 1} = ∅.

The sizes of the set on which the correlations are computed are kept in the variable

ckh =
n∑

i=1

rikrih.

(ii) The second step contains the projection problem. The computation of the new basis
B is straightforward but the matrix productXB corresponding to the change of
basis is impossible as soon as one item is missing. We use imputation by fitting
a value using a robust regression. We set the following ”quality” condition for a
variablexk to be a regressor for a variablexh:

chk =
n∑

i=1

rihrik > γn for some parameter0 < γ < 1.

For each variablexh the algorithm will impute a value for a missing valuexih

(rih = 0) with a robust fit using the variable which has the highestR̃(xk, xh) among
the variablesxk satisfying the ”quality” condition andrik = 1. The following
pseudo-code describes this imputation process.

75



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

- for all variables xh having missing values (
∑n

i=1 rih < n) do
- select the m ( 0 ≤ m ≤ p− 1) variables xk such that chk > γn;
- if m = 0 next;
- rank these variables according to R̃(xk, xh):

R̃(xk1 , xh) ≥ R̃(xk2 , xh) ≥ ... ≥ R̃(xkm , xh);
- reg = 1;
- while (

∑n
i=1 rih < n) and reg ≤ m do

- if
∑n

i=1(1− rih)rikreg
> 0 fit a robust regression of xh on

xkreg and impute all xih where (1− rih)rikreg = 1 with the
robust fit plus a randomly chosen residual error;

- reg = reg + 1 ;
- next;

- next;
- if some missing values are left ask the user to relax his quality

condition or to exit.

Once all missing values have been imputed all the computations of the step can be
performed.

(iii) Unchanged.

Remarks:

1) All regressions are fitted with the initial data, no imputed values are included in
these computations.

2) In our implementation we use an M-estimator for regression which bounds the in-
fluence of residuals and of the explanatory variablexk (function rreg of S-Plus).
A simpler alternative would be to usêβ = R̃σy/σx with the standardized Spear-
man rank correlatioñR and a robust scaleσ as the estimator for the slope and
α̂ = med(y)− β̂med(x) as the estimator of the intercept of the simple linear regres-
sion. This would have a computational advantage but the properties of this estimate
are not clear.

The detection is performed using the marginal Mahalanobis distancesMDmarg(xi) (see
section 23.2) on the initial data.

25 BACON

The ”growing a good subset of observations” principle is not disrupted by item non-
response as long as the measure that is used to grow the subset at each step is available. In
BACON this measure is given by Mahalanobis distances based on the Hàjek estimators
of the mean and covariance matrix computed on the subset. The missing values will
interfere with the three computations: the estimation of the mean, the estimation of the
covariance matrix and the computation of the Mahalanobis distances using the other two.
One problem - the Mahalanobis distances - is easily solved while the other two - the
mean and the covariance matrix - are more delicate to deal with. The solution to the first
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problem has been presented in the section 23.1: the conditional Mahalanobis distances
MDcond(xi) are used. For the other two problems we had to select estimators of the mean
and the covariance matrix computable with missing values. We choose a method that is
known to work well for multivariate normal data when applied to the whole population:
the EM algorithm. In the second subsection we shall describe how we adapted the EM-
algorithm to survey data to obtain EM estimators of the variance and covariance matrix.
The reason of the choice of this algorithm was to maintain the efficiency of the BACON
algorithm when applied to multivariate normal data. The last subsection will describe
how the BACON and EM algorithms were merged together to create the ”BACON-EM
for survey data” (BEM) algorithm.

25.1 EM Estimators for Survey Data under Multivariate Normal
Model

In this subsection we shall adapt the EM algorithm to the context of survey data. We shall
begin by stating general points on the algorithm. This summary will present briefly the
theory underlying the algorithm and some results for regular exponential families. All
details can be found in (Schafer, 2000).

25.1.1 Generalities on EM

Model assumptions In order to justify the different steps of the algorithm, some as-
sumptions on an underlying model of the population data are needed. We shall consider
population datasets whose observations can be modeled as independant, identically dis-
tributed (iid) draws from some multivariate probability distributionf(x, θ). The proba-
bility function of the complete data may therefore be written as

P (X|θ) =
N∏

i=1

f(xi, θ),

whereN is the size of the population. This is called the complete-data model. Recall
thatX denotes simultaneously the random variable and the matrix of the values and that
the same holds forR the response variable. In the following we shall assume that the
missingness mechanism is ignorable, i.e. MAR and distincness of the parametersθ of X
andξ of R.
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The EM algorithm The ignorability assumption allows us to factor the distribution of
what we really observeP (R, Xo|θ, ξ) into two pieces:

P (R,Xo|θ, ξ) =

∫
P (R, X|θ, ξ)dXm

=

∫
P (R|X, ξ)P (X|θ)dXm

= P (R|Xo, ξ) ·
∫

P (X|θ)dXm

= P (R|Xo, ξ) · P (Xo|θ).

This factorization shows that likelihood-based inferences aboutθ can be performed with-
out regard to the missing-data mechanism. The factor pertaining toθ will be called the
observed data likelihood: L(θ|Xo) ∝ P (Xo|θ).
The distribution of the complete dataX can always be factored as

P (X|θ) = P (Xo|θ)P (Xm|Xo, θ).

Viewing each term as a function ofθ and taking the log, we obtain

l(θ|X) = l(θ|Xo) + log(P (Xm|Xo, θ)) + c,

where l(θ|X) = log(P (X|θ)) is the complete-data loglikelihood,l(θ|Xo) =
log(L(θ|Xo)) is the observed-data likelihood andc is an arbitrary constant. The term
P (Xm|Xo, θ) is crucial and plays a central role in EM. It captures the interdepen-
dence betweenXm and θ on which EM capitalizes. As this predictive distribution
P (Xm|Xo, θ) cannot be calculated each expectation step (E-step) will take an average
overP (Xm|Xo, θ

(t)), whereθ(t) is a preliminary estimate of the unknown parameter, i.e.
if we set

Q(θ|θ(t)) =

∫
l(θ|X)P (Xm|Xo, θ

(t))dXm

and

H(θ|θ(t)) =

∫
log(P (Xm|Xo, θ))P (Xm|Xo, θ

(t))dXm

we then have
Q(θ|θ(t)) = l(θ|Xo) + H(θ|θ(t)) + c.

The maximization step (M-step) will find the maximumθ(t+1) of Q(θ|θ(t)). A central
result (Dempster et al., 1977) shows thatθ(t+1) is a better estimate thanθ(t) in the sense
thatl(θ(t+1)|Xo) ≥ l(θ(t)|Xo). The EM algorithm is then described as follows.

The EM algorithm Choose a starting valueθ0 of the parameter to be estimated, then
iterate the following steps until convergence up to some desired precision:

E-step Q(θ|θ(t)) is calculated by averaging the complete-data loglikelihoodl(θ|X) over
P (Xm|Xo, θ

(t));
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M-step θ(t+1) is found by maximizingQ(θ|θ(t)).

Conditions under which this sequenceθ(t) converges to a stationary point of the observed-
data likelihood are provided in (Dempster et al., 1977). In well-behaved problems this
stationary point is a global maximum.

EM for regular exponential families EM uses the interdependence between missing
dataXm and the unknown parametersθ. The E-step uses the value ofθ(t) to fill in some-
how the missing data and the M-step uses these values to re-estimate the parameters and
obtainθ(t+1). If in most cases the M-step is straightforward (no computational difference
from finding the MLE in the complete-data case), the E-step can be a real burden. This
is not the case when the complete-data probability model falls in a regular exponential
family. For these families the complete data loglikelihood may be written as

l(θ|X) = η(θ)tT (X) + Ng(θ) + c,

whereη(θ) = (η1(θ), η2(θ), ..., ηk(θ))
t is the canonical form of the parameterθ and

T (X) = (T1(X), T2(X), ..., Tk(X))t is the vector of complete-data sufficient statistics.
Moreover, each of the sufficient statistics has an additive formTj(X) =

∑N
i=1 hj(xi),

for some functionhj. Becausel(θ|X) is a linear function of the sufficient statistics, the
E-step replacesTj(X) by E(Tj(X)|Xo, θ

(t)). In other words the E-step fills in the miss-
ing portions of the complete-data sufficient statistics. In the case of multivariate normal
data, these expectations will be available in closed form and thus the E-step will also be
straightforward.

With these results we are now able to adapt the algorithm to survey data.

25.1.2 EM for Survey Data

Assumptions on the study population In order to adapt the EM algorithm to the con-
text of survey data, we need assumptions on the study populationU . We shall assume
that we have an underlying multivariate normal superpopulation model for the variable of
interest, i.e.

X ∼ N(θ) = N(µ, Σ).

Again X (resp. R) will denote simultaneously the random variable (resp. the response
variable) of the superpopulation and theN×p matrix containing the values of the variable
on the populationU . If we denote byS the sampling variable, we shall assume thatS
andR are independent variables. Ifs is the sample obtained as a realization ofS we shall
simply useXs

o (resp.Xs
m) to denote the observed (resp.missing) values of the survey data.

Our strategy is then termed as afull information maximum likelihood approach (Cham-
bers, 2001)by opposition to amaximum sample likelihoodapproach where the EM al-
gorithm would be run just by using the information contained inXs

o . Our idea is very
simple : every time the EM algorithm run on the whole population would need a quantity
T computed fromXo we shall estimate it bŷT usingXs

o .
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The complete data case To establish the notational conventions of this section we shall
begin by looking at the complete data case for which we won’t need the EM algorithm
to estimateθ. Recall thatX (resp. Xs) denotes the population (resp. sample) data.
An element of the matrixX (resp. Xs) will be denoted byxij with i = 1, . . . , N and
j = 1, ..., p (resp.xs

ij with i = 1, ..., n andj = 1, ..., p). All vectors will be expressed as
column vectors, for example theith row ofX is

xi = (xi1, ..., xip)
t.

We assume thatx1,...,xN are independent realizations of the random variableX, i.e.

x1, ..., xN ∼ iid N(θ) = N(µ, Σ).

Discarding a proportionality constant the likelihood function is

L(θ|X) ∝ |Σ|−N
2 exp

{
−1

2

N∑
i=1

(xi − µ)tΣ−1(xi − µ)

}
.

Expanding the exponent and taking the logarithm we can write the loglikelihood function
as

l(θ|X) = −N

2
log |Σ| − N

2
µtΣ−1µ + µtΣ−1T1 − 1

2
tr(Σ−1T2)

where

T1 = X t1N =
(∑N

i=1xi1, . . . ,
∑N

i=1xip

)t

=
N∑

i=1

(xi1, . . . , xip)

and

T2 = X tX =




∑N
i=1 x2

i1

∑N
i=1 xi1xi2 · · · ∑N

i=1 xi1xip∑N
i=1 xi2xi1

∑N
i=1 x2

i2 · · · ∑N
i=1 xi2xip

...
...

. ..
...∑N

i=1 xipxi1

∑N
i=1 xipxi2 · · · ∑N

i=1 x2
ip




=
N∑

i=1




x2
i1 xi1xi2 · · · xi1xip

xi2xi1 x2
i2 · · · xi2xip

...
...

.. .
...

xipxi1 xipxi2 · · · x2
ip




are the sufficient statistics. As these statistics will be needed to find the MLE forθ, we
have to estimate them from survey dataXs if the population dataX is not available. The
Horvitz-Thompson estimates of both quantities are simply given by (recall thatωi are the
sampling weights)

T̂1 =
n∑

i=1

ωi(x
s
i1, . . . , x

s
ip)
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and

T̂2 =
n∑

i=1

ωi




(xs
i1)

2 xs
i1x

s
i2 · · · xs

i1x
s
ip

xs
i2x

s
i1 (xs

i2)
2 · · · xs

i2x
s
ip

...
...

. ..
...

xs
ipx

s
i1 xs

ipx
s
i2 · · · (xs

ip)
2




In the complete data case we have seen that because the multivariate normal is a regular
exponential family and the loglikelihood function is linear in the elements ofT1 andT2

we can find the MLE by equating the realized values ofT1 andT2 to their expectations
E(T1) = Nµ andE(T2) = N(Σ + µµt). This leads to the well known MLE estimator of
θ = (µ, σ):

MLE(µ) =
1

N
T1

and

MLE(Σ) =
1

N
T2 −MLE(µ)MLE(µ)t

If N is known (i.e.Σn
i=1ωi = N ) we estimate these quantities by the classical Horvitz-

Thompson estimates

M̂LE(µ) =
1

N
T̂1

and
̂MLE(Σ) =

1

N
T̂2 − M̂LE(µ)M̂LE(µ)

t

.

If N is not known the H́ajek estimator is used estimatingN by Σn
i=1ωi.

The incomplete data case - The EM algorithm We shall proceed in the same way to
adapt the EM algorithm to the survey data. We shall analyze the EM algorithm forX and
at each step where it is needed we shall use estimates based onXs. The presentation of
the EM algorithm given in (Schafer, 2000) is used here. We shall first give some matrix
tools that will simplify the description of the algorithm.

The sweep operator If a multivariate normal randomz vector distributed asN(µ, Σ) is
partitioned in two partszt = (zt

1, z
t
2) then thezi’s are distributed asN(µi, Σii) with

µ =

(
µ1

µ2

)
andΣ =

(
Σ11 Σ12

Σ21 Σ22

)
.

It is well knows that the conditional distribution ofz2|z1 is normal with momentsµ2·1 =
α2·1 + B2·1z1 and covariance matrixΣ2·1 where

α2·1 = µ2 − Σ21Σ
−1
11 µ1

B2·1 = Σ21Σ
−1
11

Σ2·1 = Σ22 − Σ21Σ
−1
11 Σ12

(4)
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Now specifying the distribution ofz (parametrized byµ, Σ) is the same as specifying
the distribution ofz1 (parametrized byµ1, Σ1) and the conditional distribution ofz2|z1

(parametrized byµ2·1 = α2·1 +B2·1z1, Σ2·1). The transformation from the first parameters
to the second ones is therefore one-to-one with inverse given by

µ2 = α2·1 + B2·1µ1

Σ12 = Σ11B
t
2·1

Σ22 = Σ2·1 + B2·1Σ11B
t
2·1

(5)

Both transformations will play a crucial role in the realization of the EM algorithm and
the essential tool to implement it in an easy way is the sweep operator. This device was
first introduced by (Beaton, 1964) and is commonly used in linear model computations
and stepwise regression.

Definition 4 Let G be ap × p symmetric matrix with elementsgij, the sweep operator
SWP [k] (for 1 ≤ k ≤ p) replacesG by anotherp× p symmetricH = SWP [k]G matrix
with elements given by

hkk = −1/gkk

hjk = hkj = gjk/gkk for j 6= k

hjl = hlj = gjl − gjkgkl/gkk for j 6= k andl 6= k

After the application of the operatorSWP [k], the matrix is said to have been swept on
positionk.

It is convenient to define a reverse-sweep operator that returns a swept matrix to its origi-
nal form.

Definition 5 LetH be ap× p symmetric matrix with elementshij, the reverse-sweep op-
eratorRSW [k] (for 1 ≤ k ≤ p) replacesH by anotherp× p symmetricG = RSW [k]H
matrix with elements given by

gkk = −1/hkk

gjk = gkj = −hjk/hkk for j 6= k

gjl = glj = hjl − hjkhkl/hkk for j 6= k andl 6= k

By definition we have therefore

RSW [k]SWP [k]G = G = SWP [k]RSW [k]G.

Both operators are commutative, i.e.

SWP [k1]SWP [k2] = SWP [k2]SWP [k1],

RSW [k1]RSW [k2] = RSW [k2]RSW [k1].

Thus we can extend the notations to

SWP [k1]SWP [k2] · · ·SWP [kl] = SWP [k1, k2, . . . , kl],

RSW [k1]RSW [k2] · · ·RSW [kl] = RSW [k1, k2, . . . , kl].
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Among several properties of these operators let us quote the following. IfG is partitioned
as

G =

(
G11 G12

G21 G22

)

with G11 ap1 × p1 matrix then the swept matrix on the firstp1 position is given by

SWP [1, 2, . . . , p1]G =

(
−G−1

11 G−1
11 G12

G21G
−1
11 G22 −G21G

−1
11 G12

)
.

In particular we haveSWP [1, . . . , p]G = −G−1. Moreover the determinant is ob-
tained through the process of sweeping on all positions by|G| =

∏p
k=1 γk with γk =

(SWP [1, . . . , k − 1]G)kk.

Both transformations 4 and 5 can be expressed very easily in a matrix form using the
sweep and reverse sweep operators. With the above notations let us write the parameterθ
as a(p + 1)× (p + 1) matrix

θ =

(
−1 µt

µ Σ

)
=



−1 µt

1 µt
2

µ1 Σ11 Σ12

µ2 Σ21 Σ22


 .

The reason for placing−1 in the upper-left corner is given at the end of the section. To
keep unchanged the indices ofΣ we shall number the lines and column of this matrix
from 0 to p. Using the above properties we sweepθ on positions1, . . . , p1 and we obtain
the following matrix

SWP [1, . . . , p1]θ =



−1− µt

1Σ
−1
11 µ1 µt

1Σ
−1
11 µt

2 − µt
1Σ

−1
11 Σ12

Σ−1
11 µ1 −Σ−1

11 Σ−1
11 Σ12

µ2 − Σ21Σ
−1
11 µ1 Σ21Σ

−1
11 Σ22 − Σ21Σ

−1
11 Σ12




=



−1− µt

1Σ
−1
11 µ1 µt

1Σ
−1
11 αt

2·1
Σ−1

11 µ1 −Σ−1
11 Bt

2·1
α2·1 B2·1 Σ2·1


 .

Now as we also have

RSW [1, . . . , p1]

(
−1− µt

1Σ
−1
11 µ1 µt

1Σ
−1
11

Σ−1
11 µ1 −Σ−1

11

)
=

(
−1 µt

1

µ1 Σ11

)
,

we see that just by sweepingθ on position1, 2, . . . , p1 and then by reverse sweeping the
upper-left(p1 + 1)× (p1 + 1) submatrix on the same position we obtain the matrix

φ =




−1 µt
1 αt

2·1
µ1 Σ11 Bt

2·1
α2·1 B2·1 Σ2·1


 .
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We have then realized the transformation 4 fromθ to φ with the sweep and reverse-sweep
operators.

The reason for placing the−1 results from the following relation

RSW [0]θ = RSW [0]

(
−1 µt

µ Σ

)
=

(
1 µt

µ Σ + µµt

)
.

The last matrix contains the natural representation of the MLE, i.e using the notation
developed in the complete data case we have

(
1 MLE(µt)

MLE(µ) MLE(Σ) + MLE(µ)MLE(µ)t

)
=

1

N

(
N T t

1

T1 T2

)
=

T

N

with T =

(
N T t

1

T1 T2

)
being the matrix form of the sufficient statistics. In the case of

multivariate normal data we have thus showed that the MLE can be computed from the
sufficient statistics using the sweep operator

MLE(θ) = SWP [0]

(
T

N

)
.

The EM-algorithm for survey data Recall thatX is theN×p matrix of the population
data andXs then × p matrix of the survey data. We shall number bya = 1, . . . , A the
missingness patterns appearing among the rows ofX. A pattern for a rowxi of X can
be represented as a p-vector of0’s and1’s with 0 values corresponding to missing items
and 1 values to observed items. For example ifxi = (23, NA, 2, 7, NA, NA, 12, 8)t

its missingness pattern is described asmis(xi) = (1, 0, 1, 1, 0, 0, 1, 1)t. The number of
different possible missingness patternsA is bounded by2p− 1 (the trivial pattern with all
values set to0’s will never be used because the completely missing rows ofX contribute
to nothing to the observed-data likelihood and should be removed from the data). The
A × p matrix M will be the matrix having as rows the missingness patternsma with
a = 1, . . . , A. Let ma be one of these missingness patterns we shall need the following
notations

I(a) = {i : mis(xi) = ma} = {row labels ofX havingma as missingness pattern}
O(a) = {j : maj = 1} = {column labels of patterna with observed items}
M(a) = {j : maj = 0} = {column labels of patterna with missing items}

For the patterna given above as an example we would haveO(a) = {1, 3, 4, 7, 8} and
M(a) = {2, 5, 6}.

The E-step With a model of the regular exponential family we have seen that the E-step
just replaces the sufficient statistics by their expectation overP (Xm|Xo, θ) for an assumed
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value ofθ. As theses statistics are linear combinations ofxij andxijxik the crucial point
is to find their expectations.

As the rowsxi are independent for a givenθ we have

P (Xm|Xo, θ) =
N∏

i=1

P (xi(mis)|xi(obs), θ)

wherexi(obs) (resp.xi(mis) denote the observed (resp. missing) subvector ofxi. Now in the
case whereP (xi|θ) is a multivariate normal distribution we have seen that the moments of
P (xi(mis)|xi(obs), θ) can be obtained using the sweep operator. More precisely for a given
patterns if i ∈ I(s), j, k ∈ M(s) and if we set

C = SWP [O(s)]θ

with θ the parameters matrix seen above we then have

E(xij|Xo, θ) = E(xij|xi(obs), θ) = c0j +
∑

k∈O(s)

ckjxik

and
Cov(xij, xik|Xo, θ) = Cov(xij, xik|xi(obs), θ) = cjk.

If j ∈ O(s), xij is fixed and we have trivially that

E(xij|Xo, θ) = E(xij|xi(obs), θ) = xij

and
Cov(xij, xik|Xo, θ) = Cov(xij, xik|xi(obs), θ) = 0.

UsingE(xy) = E(x)E(y) + Cov(x, y) we obtain the final general expressions fori ∈
I(s)

E(xij|Xo, θ) = E(xij|xi(obs), θ) =

{
xij for j ∈ O(s)

x∗ij for j ∈ M(s)

and

E(xijxik|Xo, θ) = E(xijxik|xi(obs), θ)

=





xijxik for j, k ∈ O(s)

x∗ijxik for j ∈ M(s), k ∈ O(s)

cjk + x∗ijx
∗
ik for j, k ∈ M(s)

where
x∗ij = c0j +

∑

k∈O(s)

ckjxik

Remark:We emphasize here the fact that in both equations the independence of the ob-
servationsxi implies the first equality and in consequence the fact that these moments can
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be calculated from onexi without any knowledge of the other ones. This means that these
relations are the same for thexs

ij ’s:

E(xs
ij|Xo, θ) = E(xs

ij|xs
i(obs), θ) =

{
xs

ij for j ∈ O(s)

xs
ij
∗ for j ∈ M(s)

and

E(xs
ijx

s
ik|Xo, θ) = E(xs

ijx
s
ik|xs

i(obs), θ)

=





xs
ijx

s
ik for j, k ∈ O(s)

xs
ij
∗xs

ik for j ∈ M(s), k ∈ O(s)

cjk + xs
ij
∗xs

ik
∗ for j, k ∈ M(s)

where
xs

ij
∗ = c0j +

∑

k∈O(s)

ckjx
s
ik

We are now in a position to write the E-step in a matrix form (to shorten the expression
we shall writeE(· · · |Xo, θ) = · · · |); for the population data:

E(T |Xo, θ) = E

((
N T t

1

T1 T2

)
|Xo, θ

)

=
N∑

i=1




1 xi1| xi2| · · · x1p|
xi1| x2

i1| xi1xi2| · · · xi1xip|
xi2| xi2xi1| x2

i2| · · · | xi2xip|
...

...
...

. ..
...

xip| xipxi1| xipxi2| · · · x2
ip|




By the remark above we know that all coefficients· · · | can be computed the same way for
the population and the survey data therefore we can use the Horvitz-Thompson estimator
to write the ”estimated E-step” for the survey data:

Ê(T |Xo, θ) =
n∑

i=1

ωi




1 xs
i1| xs

i2| · · · xs
1p|

xs
i1| (xs

i1)
2| xs

i1x
s
i2| · · · xs

i1x
s
ip|

xs
i2| xs

i2x
s
i1| (xs

i2)
2| · · · | xs

i2x
s
ip|

...
...

...
.. .

...

xs
ip| xs

ipx
s
i1| xs

ipx
s
i2| · · · (xs

ip)
2|




The M-step The M-step is relatively trivial in the multivariate normal case. We have
shown that for a given sufficient statistics matrixT the MLE is simply obtained by
MLE(θ) = SWP [0]N−1T . A M-step is therefore nothing else than

θ(k + 1) = SWP [0]N−1E(T |Xo, θ
k) for the population data
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and

θ(k + 1) =

{
SWP [0]N−1Ê(T |Xo, θ

k) if N is known

SWP [0] (
∑n

i=1 ωi)
−1

Ê(T |Xo, θ
k) if N is unknown

for the survey data.

25.2 The BEM Algorithm

Merging both algorithms is relatively straightforward if computation time is not an issue.
Each time estimations of the mean and the covariance matrix are needed, the EM algo-
rithm described above is run up to some pre-fixed convergence criteria. Such an approach
is clearly too naiv when evaluating the computation time. Firstly the ”growing” structure
of the BACON algorithm would not be used to avoid extra-computations of EM at each
step , secondly a restrictive convergence criteria of EM could slow down much the algo-
rithm only to make improvements of the estimation at each step when they are probably
not needed (the crucial point at each step is that the estimations of the mean and the co-
variance matrix allow the algorithm to exclude outlying points from the good subset and
this does not need these estimations to be extremely close to the real values).

The BEM algorithm is desribed at the end of this subsection. Our approach towards the
two issues quoted above is the following. According to our experience of the BACON
algorithm we decided tu re-use as much information as we could from one step to the
next one. In fact estimation of the sufficient statisticsTG computed on some good subset
G (it is actually simply the restriction of theTj =

∑N
i=1 h(xij) to the elements inG, i.e.

TG
j =

∑
i∈G h(xij)) usually has a partTG

o with points having no missing values estimated

by T̂G
o that can be computed straightforward and a problematic partTG

m with points having
missing values estimated bŷTG

m that can not be computed. The expectation computed by
the E-step can therefore be written as

Ê(TG|XG
o , θ) = T̂G

o + Ê(TG
m |XG

o , θ).

As the subsetsG are growing, we do not computêTG
o at each step of the BACON loop,

but we keep a global variable for̂TG
o that is simply updated each timeG changes (adding

points, and sometimes removing a few to the statistic). Concerning the convergence cri-
teria selection, we choose to fix the number of iteration of EM at each step of the Bacon
loop, by default this number is set to5 but the user is allowed to change it. At the end of
the Bacon algorithm EM is run once more but this time with more iterations (by default
10) and this is also the case for the initial subset selection if the user chooses Version 1 of
BACON.

25.2.1 The Algorithm

- Default constants
α = 0.95
c = 3
it.em.1 = 10
it.em.2 = 5
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- Starting point
Version 1

- Compute cM and bS using EM with it.em.1 iterations on X;
- Compute the n (Mahalanobis) distances MDcM,bS(xi) (see 23.1);

Version 2
- Compute the coordinatewise median med ignoring in each variable

the missing values;
- Compute the n distances ||xi −med|| based on the observed components

of xi and corrected by a factor as in 23;
- Select the m = cp smallest distances to form the first good subset G;

- Compute cMG and bSG using EM with it.em.2 iterations on G, and stock bT G
o ;

- If bSG is singular, exit and ask the user to increase c;
- Main loop

- Compute the n (Mahalanobis) distances MDcMG,bSG
(xi) (see 23.1);

- Set a new subset NG to all points with Mahalanobis distances smaller
than (bcnprχp,α)2;

- If NG = G then exit the loop;
- Upgrade bT G

o to bT NG
o ;

- Reset G = NG;
- Compute cMG and bSG using EM (with bT G

o already computed)
with it.em.2 iterations on G;

- If bSG is singular, exit and ask the user to increase α;
- Restart the loop;

- If a better estimation is seeeked it.em.1 more iterations of EM on G are
run with starting parameters cMG and bSG;

- Nominate the observations excluded by the final G as outliers.

26 EA

Once all the distances (i.e. the infection probabilities) are available, the EA algorithm
works regardless of the underlying data values. Therefore only the distances computation
has to be adapted to the absence of some values. We shall assume here that the data
are MCAR; a more careful study should be carried on to see if this hypothesis can be
weakened or not. The adaptation here is done similarly as in 23 simply by computing the
distance between two points on the common observed variables and inflating it by a factor
inversely proportional to the proportion of observed values, if no observed variables are in
common the distance is set to infinity. The standardization of each variable is done using
only the observed values. Recall thatR is the response variable, i.e.rik = 1 if variablek
is observed for observationi andrik = 0 if not, then the distance between observationsxi

andxj is given by

d̃ij =





(
pPp

k=1 rikrjk

∑p
k=1 rikrjk(x̃ik − x̃jk)

2
)1/2

, if
∑p

k=1 rikrjk 6= 0

∞, if not.

Whend̃ij is set to infinity the infection probability is forced to be zero forbidding a pos-
sible infection between both points. This is actually what we want as we don’t have any
information on the distance between the two points. Why should we standardize with∑

k rikrjk? The point is that if an observation is an outlier in some dimensions but has
missing values in many other dimensions, then it could be masked without the standard-
ization. The distance between two pointsd̃ij should be based on a sufficient number of
non-missing values. Thus one could impose

∑p
k=1 rikrjk > q for someq with 1 6 q 6 p.
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Since it is computationally expensive to do this check for all pairsi, j we use the simpler
condition

∑p
k=1 rik > p/2. Under this condition it will happen very rarely that no or only

very few variables coincide.
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Part VI

Evaluation of the Methods on Real Data

27 Introduction

The purpose of this part of the report is to show with two examples that the adaptation of
the methods developed in the last two parts ends up with algorithms that seem to be very
promising in term of outlier detection in real dataset obtained through sample surveys
and perturbed by missing values. A careful evaluation of the methods using all criteria
developed in EUREDIT Workpackage 3 will be handed out at the end of this report.

The first exemple that has been used several times in the preceding sections, the Bushfire
dataset. It is a real dataset but it was not obtained through a survey. The missing values
will be randomly created and no sampling weights will be used. The second dataset is
one of the training datasets of EUREDIT, namely the 1997 UK Annual Business Inquiry
Dataset. We shall use the fact that the true values are available for that dataset to illustrate
the results of the methods.

Following the developments made in the preceding parts, three methods will be studied
here: TRC, BEM and EA.

28 The Bushfire Dataset

The first example was used in Section 6.4, plotted in Chart 4 and presented with all details
in Section 10.

Missing values are created with a simple MCAR mechanism. For all observation items
independent Bernoulli trials are realized with success probabilityp and a success means
that the item is set to missing. Four different datasets are created withp = 0.1, 0.2, 0.3
and0.4.

28.1 Results of the experiments

The results (Mahalanobis distances for TRC and BEM and infection times for EA) are
ploted versus the index of the observation with the missing items written above each
observation.

28.1.1 No Missing Values

We start be giving one more time the results on the original dataset when there is no
missing value.
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Chart 15: TRC, BACON and EA with no Missing Value
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All methods detect the outlying cluster of observations33 to 38 and add the outliers8, 9
and32. EA also considers7, 10 and11 as outlying observations. BACON also detects
these three points but not as clearly as the other outliers while TRC do not consider them
as really outlying.

28.1.2 10% of Missing Values

Note that the Mahalanobis distances obtained by BEM are plotted here on log scale.

With 10% of missing values EA is the only method that gets almost the same results just
adding observation12 to the outliers it had before to obtain13 of them (7 to 12 and32 to
38). TRC still detects observations32 to 38 as clear outliers and an analysis based on the
qq-plot would add five more outliers: observations8 and9 as with no missing values but
also observations7, 12, 15 and31. BEM considers19 observations (half of the data) as
outlying: to the13 outliers detected by EA BEM adds3, 13, 18, 19, 20 and31.
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Chart 16: TRC, BACON and EA with 10% of Missing Values
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28.1.3 20% of Missing Values

Note here that BEM needs a starting subset of size25 to avoid singular covariance matrix.

With 20% of missing values EA adds13 to its set of outliers and now has14 of them (7
to 13 and32 to 38). TRC has the same most outlying points as with no missing values (8,
9 and32 to 38) but a qq-plot analysis would rather end with16 outliers: the same as EA
and15 and16. This time BEM has only4 very outlying points (33, 34, 36, 37). A BEM
qq-plot analysis ends with17 outliers:2, 7 to 11, 16, 18, 19, 20, 22, 33 to 38.
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Chart 17: TRC, BACON and EA with 20% of Missing Values
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28.1.4 30% of Missing Values

Note here that BEM needs a starting subset of size30 and anα parameter set to10−4 to
avoid singular covariance matrix.

With 30% of missing values the problem becomes very challenging for the methods with
observations like29 with only one component left. EA does not have any longer any
observation between7 and13 as uninfected, only observations32 to 38 are left as clear
outliers. With a threshold time of6, EA would still detect8 and9 as outliers. Amazingly
TRC does not hesitate one second and the qq-plot analysis confirms the above plots with
14 detected outliers:8 to 10, 13 and29 to 38. BEM fails totally to reveal the correct
outliers and a qq-plot analysis ends with only a few detected.
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Chart 18: TRC, BACON and EA with 30% of Missing Values
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28.1.5 40% of Missing Values

With 40% of missing values the infection times of EA explode indicating that the dataset
no longer behaves as multivariate normal. Conclusions are quite impossible to be drawn
and only a couple of outliers a correctly detected. The performances of TRC remain very
good with a qq-plot ending up with 14 clear outliers:8, 9, 11 to 13, 28, 30, 32 to 38. A
BEM qq-plot analysis shows13 outliers:2, 4, 8, 12, 13, 24, 30, 32 to 34 and36 to 38.
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Chart 19: TRC, BACON and EA with 40% of Missing Values
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28.2 Analysis of the results

The ”appearance” of missing values in a multivariate dataset modifies singularly the issues
of outlier detection. What was a quality with a full dataset can become a burden when
some information is missing.

The size of the dataset is such an example here: without missing values a small dataset
is usually treated faster and more efficiently than a large one by the methods we present
in this work; with many missing values a small dataset will become a real burden for
the methods (indeed how would you compare two observations that have no common
observed variables?) while a rather large dataset even with many missing values will still
retain enough information for the methods to work. In other words you would prefer to
have40% of MCAR items with5000 observations than with50.

The results of BEM illustrate here perfectly that fact. Recall that the treatment of missing
values in BEM is carried out by the EM algorithm, the absence of simultaneous informa-
tion between good points or a too small numbers of these points can really perturb the
BEM algorithm. This is in fact what we observe here with the30% of missing case:51
items are missing in the whole dataset with48 missing items among observations1 to
32 (30% of missing) and only3 within the outlying cluster of the observations33 to 38
(10% of missing). As BEM has to start with a rather large subset to avoid the singular
matrix problem it cannot avoid the outlying cluster at the beginning and as the outliers
have only10% of missing observations comparing to the30% of the good observation
EM will use the outliers information to perform the multivariate imputation and finally
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impute outliers. In the same case TRC does not fail because its imputation process is not
multivariate but based on univariate robust regressions and therefore a bad multivariate
missingness pattern does not perturb it too much. EA succeeds also in detecting the out-
lying cluster simply because these observations have almost all there components and are
therefore ”far” enough from all the incomplete ones not to be infected in the epidemic
process.

The 30% of missing case should not seem redhibitory for BEM. As we have already
noticed, BEM is really designed to work very well with large dataset and moreover such a
bad multivariate missingness pattern is not very common. Just to illustrate this BEM does
actually work better with40% of missing values detecting almost all the outlying cluster in
its 13 outliers. The reason of that somehow surprising success is that the missing values
are much better spread throughout the whole dataset and the observed phenomenon of
the preceding case does not occur here. In the outlying cluster BEM misses observation
35 just because it has only one non-missing item. With the same missingness pattern
EA fails: as the missing are well spread throughout the dataset including the outliers,
the partial euclidean distances do not separate the outlying cluster from the good set of
points. The most impressive and rather surprising performance is given here by TRC
that perfectly detects the outlying cluster (with35 included), adds32, and even adds5
observations of the suspicious7 to 13 groups missing only7 (which has3 missing items)
and12 (4 missing items). It also detects wrongly28 and30 (both with3 missing items).

The other cases with less missing values do not lead to other conclusions. They just
confirm the facts that the algorithm based on multivariate imputation (BEM) is not well
designed for small dataset with a certain number of missing values, that EA is very effi-
cient with a few number of missing values and that the most robust method regarding to
the missingness pattern seems to be TRC.

29 The 1997 UK Annual Business Inquiry Dataset

The UK Annual Business Inquiry (ABI) dataset is one of the dataset that is used within
EUREDIT to train, evaluate and compare the different methods. The 1997 ABI dataset
is available for training and evaluation and the 1998 one for evaluation only, i.e the true
values of the 1997 dataset are available while the true values of the 1998 dataset are not.
In this section we intend to carry out a small evaluation on the results obtained on the
1997 dataset using the available true values, while in the last section of this report the
evaluation will be based on the evaluation criteria ran by ONS.

The dataset has a total of 6099 records, with 30 variables. The dataset contains responses
to selected questions from the 1997 UK Annual Business Inquiry. Our interest is in the
variables corresponding to totals in this dataset. They are listed in table 12. We also
consider one covariate corresponding to some register size information available on the
ABI dataset: TURNREG is a positive-valued continuous variable corresponding to the
register value of total turnover for a unit. This covariate, being a register variable, has no
missing values and no errors and therefore could be considered as a ”natural” covariate
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Table 12: Selected variables of the 1997 ABI dataset

Variable name Variable description
TURNOVER Total turnover
EMPTOTC Total employment costs
PURTOT Total purchases of goods and services
TAXTOT Total taxes paid
ASSACQ Total cost of all capital assets acquired
ASSDISP Total proceeds from capital asset disposal

for explaining variation in the ABI variables. All variables are analyzed on the log scale.

A first analysis shows immediately the strong linear relations between all the variables
except ASSDISP. This fact is illustrated in Chart 20.

Chart 20: Scatter plot of TURNOVER against EMPTOTC
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As our methods do not build on any regression model we would loose much information
by applying directly the methods to the raw data. To cope with that problem we use the
available covariate that share strong linear relations with all the variables except ASSDISP
(see for example Chart 21).

As the variable ASSDISP has only23.6% of non missing or non zero observations we do
not include ASSDISP in the following analysis, another type of study should be carried
out for that variable. Each other variable is regressed robustly on TURNREG (using the
S-Plusrreg function with default parameters) and replaced by the residuals of this regres-
sion. These residuals will be named using the original variable name but in lower cases
(i.e. turnover for the residuals of TURNOVER). To illustrate the effect of this transfor-
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Chart 21: Scatter plot of TURNOVER against TURNREG
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mation on the dataset Chart 22 replaces the variables of Chart 20 by their residuals: we
obtain a figure that is much closer to the multivariate normal model.

Chart 22: Scatter plot of turnover against emptotc

-6 -1 4 9

emptotc

-10

-5

0

5

10

tu
rn

ov
er

The methods are applied to that transformed dataset. Among the6099 ∗ 5 = 30′495 items
1121 are missing which represent3.68% of the data. Using the available true data we also
know that the dataset has been perturbed with1932 items errors which are distributed in
1012 observations. Recall that only a part of these errors are outliers and that we hope
that the methods will detect these non-representative outliers as well as the representative
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outliers. Here are the results.

29.1 TRC Results

We start by showing the Q-Q plot of the Mahalanobis distances obtained by TRC (see
Chart 23) excluding14 points which are very outlying. There are266 observation which

Chart 23: Q-Q plot of TRC distances
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will clearly be declared as outliers: they correspond to the266 points above the horizontal
line drawn on the Q-Q plot. Other points may be declared as outliers but the choice of the
distance threshold is not obvious. The picture in Chart 23 is very similar to the Q-Q plot
of the distances obtained in the case of high concentrated contamination in which case the
”good part” of the Q-Q plot is often deformed by the ”contaminated part”. In real life in
such a case the analyst should advice the survey manager to check at least the266 clear
outliers and some others depending on the available resources. Using the true data we
control here the quality of the detection for the10% most outlying observations.

Among these610 observations,439 are real errors (72%). How do these439 detected
errors distribute themselves among the1012 errors? As we have noticed before, even if
we do have access to the true data, we do not know which ones among the1012 errors are
outliers. We decided to rank the1012 errors using the following measure: we computed
the Mahalanobis distances of the errors (differences between the true and the false data)
using the origin as center and the covariance of the true data as scatter. To localize the TRC
detected errors among the errors we give the histogram of all errors with the contribution
to the histogram of the439 TRC errors drawn in black: see Chart 24.
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Chart 24: Histogram of TRC detected errors
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The picture shows clearly that the biggest errors are detected by TRC. To give a more
precise idea of the proportions of detected errors among the highest ones, we give
the table of the proportion of detected errors among thex% of largest errors, with
x = 10, 20, 30, 40, 50:

Table 13: Proportion of largest errors detected by TRC

Part of largest errors 10% 20% 30% 40% 50%

Proportion of detected errors100% 82.3% 76.6% 77.0% 80.2%

Among the439 errors detected by TRC406 are among the upper half of the errors. To
end this presentation of the results we show the5 scatter plots of all variables against the
covariate with the detected outliers plotted with a4: see Chart 25.
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Chart 25: Outliers detected by TRC
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29.2 BEM Results

As for TRC we start by showing the Q-Q plot of the Mahalanobis distances obtained by
BEM (see Chart 26) excluding18 points which are very outlying.

Chart 26: Q-Q plot of BEM distances
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There are247 observation which will clearly be declared as outliers: they correspond
to the247 points over the horizontal line drawn on the Q-Q plot. Other points may be
declared as outliers but, as for TRC, the choice of the distance threshold is not obvious.
We therefore proceed in the same way and using the true data we control the quality of
the detection for the10% most outlying observations.

Among these610 observations,470 are real errors (77%). How do these470 detected
errors distribute themselves among the1012 errors? We use the same measure of errors
as for TRC to localize these detected errors and we give the histogram of all errors with
the470 BEM errors contribution to the histogram drawn in black: see Chart 27.

Chart 27: Histogram of BEM detected errors
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The picture shows clearly that the biggest errors are even better detected by BEM. To
give a more precise idea of the proportions of detected errors among the highest ones, we
give the table of the proportion of detected errors among thex% of largest errors, with
x = 10, 20, 30, 40, 50:

Table 14: Proportion of largest errors detected by BEM

Part of largest errors 10% 20% 30% 40% 50%

Proportion of detected errors100% 96.6% 87.5% 85% 86.6%

In other words among the470 errors detected by BEM,438 are among the upper half of
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the errors. To end this presentation of the BEM results we give the5 scatter plots of all
variables against the covariate with the detected outliers plotted with a4: see Chart 28.

Chart 28: Outliers detected by BEM
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29.3 EA Results

For EA we start by giving the scatter plot of the infection times (see Chart 29).

Chart 29: Infection times
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There are265 observation which will clearly be declared as outliers: they correspond to
the265 points with infection time greater or equal to20. Now clearly other points should
be declared as outliers but, as for the Mahalanobis distances methods, the choice of the
threshold is not an obvious one. We decide here to use the criteria based on multivariate
normal data and declare as outliers all points with infection time greater or equal to6. 530
observations are declared as outliers. We then proceed in the same way as for the previous
methods and using the true data we control the quality of the detection for the10% most
outlying observations.

Among these530 observations only315 are real errors (59.4%). We again use the same
measure of errors as for TRC and BEM to localize these detected errors among the1012
real errors and we give the histogram of all errors with the315 EA errors contribution to
the histogram drawn in black: see Chart 30.

Chart 30: Histogram of EA detected errors
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The picture is far from being as good as for TRC and BEM. Due to the closeness of the
outliers from the bulk of the data EA is unable to distinguish them clearly and therefore
identifies a lot of good points as outliers while missing some outliers. Notice here that a
plot with only the clear265 outliers does not change much the picture in Chart 30. This
means that adding the next265 more outlying points does not better.

The5 following scatter plots of all variables against the covariate with the detected outliers
plotted with a4 (see Chart 31) show clearly the missed outliers. They are actually one-
dimensional outliers that are inliers in the other dimensions. EA is therefore only able to
detect observations that are simultaneously outlying in all variables. These outliers appear
on the histogram with a measure around4. The reason why these outliers have smaller
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size than the one-dimensional ones is the fact that the variable of the good data are highly
correlated (for exampleturnover andpurtot have a correlation of0.997).

Chart 31: Outliers detected by EA
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29.4 Analysis of the Results and Conclusions

The partial failure of EA comparing to the Mahalanobis distances methods seems to show
that most outliers are relatively close to the bulk of the data. Moreover the proportion of
outliers is not very high (less than10%). It is therefore natural to raise the question of the
usefulness of fancy robust methods to analyze the ABI dataset.

Recall here that all the above analysis were not carried out on the raw data but after two
transformations: a log transformation and a simple robust regression against the covariate
variableturnreg. We now calculate the classical Mahalanobis distances on the analysis
dataset using the regular mean and covariance matrix and the10% of the most outlying
observations are analyzed as above.

Out of these610 observations471 are real errors (77% as good as the77% of BEM and
better than the72% of TRC) and their distribution among all the1012 errors is given in
Chart 32.
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Chart 32: Histogram of detection with usual Mahalanobis distance
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The comparaison with Charts 24, 27 and 30 almost does not need any comment. A simple
classical analysis compares with the best sophisticated robust method, in that case BEM.
This conclusion is confirmed by the table of the proportion of detected errors among the
x% of largest errors, withx = 10, 20, 30, 40, 50:

Table 15: Proportion of largest errors detected by all methods

Part of largest errors 10% 20% 30% 40% 50%

TRC 100% 82.3% 76.6% 77.0% 80.2%

BEM 100% 96.6% 87.5% 85% 86.6%

EA 40.2% 32.5% 29.9% 41.7% 51.8%

Classical Mahalanobis distance100% 95.57% 83.55% 82.96% 84.39%

The answer to the question then seems obvious: the ABI97 dataset does not need any
sophisticated robust method to be analysed.
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Part VII

Robust Nearest Neighbor Imputation

30 Introduction

In this section we describe an algorithm which can impute values for detected outliers
and for missing values. Furthermore edit rules and sampling weights should be taken into
account. The algorithm should be a module in a system of modules which contains also
an edit stage controlling edit rules, an outlier detection stage, and a preliminary stage of
imputation which imputes deterministically if possible (e.g. in the case of balance edits).
The module should be nearly automatic. Thus we do not want to use any modelling of
missing values. This is a serious drawback in many instances. The only device we want
to use are distances and therefore the imputation is based on nearest neighbor methods.
The Fellegi-Holt principle of minimum change is embedded in the nearest neighbor dis-
tance. We use the Mahalanobis distance and assume therefore that the bulk of the data is
approximately elliptical. The second method we planned to implement was a backward
epidemic algorithm. However, due to lack of ressources, this was not possible.

31 Input

The input to the imputation module is the data, a vector of flags on whether the observation
is an outlier, a matrix of the same dimension as the observation which indicates edit
failures, and a vector of sampling weights. More formally the inputs are:

1. A n × p matrix X of observations. In the first place we assume the variables con-
tinuous but in principle also categorical variables could be treated. Together with
X we get or may calculate an× p matrixR of indicators of response with

rij =

{
1 xij is given,

0 xij is missing.

2. A n× 1 vectorw of sampling weights.

3. A n× 1 vectoru of outlier flags which have been set in a previous outlier detection
phase. Instead of the outlier flagsu may contain a measure of outlyingness like
robustness weights. For the moment we assume that

ui =

{
0 observationi is declared an outlier,

1 otherwise.
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4. A n×p matrixE of flags (see Section 4.2.1). We assume that any error localisation
has been done beforehand. Thus the flags mean

eij =

{
0 xij fails one or more edits and is deemed in error,

1 xij passes all edits.

If a value is missing, i.e. ifrij = 0 theneij = 1. In fact edit rules which involve a
missing value usually cannot be applied to an observation.

In the EUREDIT data setsY2 which contain only missing values but no errors we have
eij = 1 for all i andj but for the data setsY3 we have someeij = 0.

The objectives of the imputation module are:

1. Imputexij if rij = 0, i.e. impute missing values.

2. Imputexi if ui = 0, i.e. impute outlying observations.

3. Imputexij if eij = 0, i.e. impute failing values.

The third option can be seen as an option only. The problem with this option is that if no
efficient error localisation has been done beforehand it may be very inefficient because
too many values are imputed.

32 The Imputation Module POEM

The idea is to use a weighted Mahalanobis distance. The weights should take into account
the information on the outliers, the missing values and the failing values at the same time.
We call the algorithm POEM for weighted imbf Putation forOutliers,Edit failures and
M issing values.

32.1 Center and Standardization

First we calculate the mean of good observations for each variablej:

µj =

∑
i uiwirijα

(1−eij)xij∑
i uiwirijα(1−eij)

. (6)

Hereα is a reduction factor between0 and1. Thus if a value failed edits then its weight
in the mean is reduced by a factorα(1−eij) = α. There is no weight reduction foreij = 1.
Reasonable values forα are 0, i.e. we treat failures as missings, or1, i.e. we ignore
the matrixE. A factor α = 0.5 might represent our relative confidence in the failing
items. Missing values are left out by the sums due torij = 0 and outliers are left out or
downweighted due toui. Thus we get a robust mean which takes into account as much
reliable values as possible.
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We will come across the factorrijα
(1−eij) several times and we call itαij to shorten the

notation. Thus the mean of good observations becomes

µj =

∑
i uiwiαijxij∑

i uiwiαij

. (7)

Instead of taking a different weight for each variable we may join the reduction factors of
an observation to

α̃i =
∏

j

α(1−eij). (8)

Then we get another estimator of the mean of good observations:

µ̃j =

∑
i uiwirijα̃ixij∑

i uiwirijα̃i

. (9)

In what follows we stick to the first definition of a mean (6).

The different dimensions (variables) should have the same order of magnitude in the dis-
tance. This is particularly important because of possible missing values. We calculate the
variance of the good observations for each variable:

σ2
j =

∑
i uiwiαij(xij − µj)

2

∑
i uiwiαij

. (10)

Then we standardize the observations:

x̃ij =
xij − µj

σj

. (11)

From now on we work with the standardized observations only.

32.2 Covariance Matrix

The second step is to estimate a variance-covariance matrix of the good observations. To
avoid computational problems we setx̃ij = 0 if rij = 0, i.e. we replace missing values by
0 (the mean of the standardized observations).

The terms of the variance-covariance matrix of good observations is calculated as

(D)jk =

∑
i uiwirijrikα

(1−eij)α(1−eik)x̃ijx̃ik∑
i uiwirijrikα(1−eij)α(1−eik)

=

∑
i uiwiαijαikx̃ijx̃ik∑

i uiwiαijαik

(12)
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Note that this is a slightly different formula from the one used for outlier detection since
now we take into account missing values much more simply and we add a downweighting
for edit failures.

The covariance matrix for standardized observationsD(X̃) is the correlation matrix of
the unstandardized observations. The standardization in the denominator ofDjk could be
even more sophisticated, taking into account the effective degrees of freedom.

This matrixD may lack positive-definiteness in particular if many values are missing,
outlying or failing (this is the price to pay for the simple missing value treatment). Even
if the matrix remains positive definite we may introduce considerable variability by the
denominator. A possible way out of the problem is to replace the denominator by

∑
i uiwi,

i.e. we leave out the downweighting due to failing and missing items:

(D′)jk =

∑
i uiwiαijαikx̃ijx̃ik∑

i uiwi

(13)

The resulting estimatorD′ can be interpreted as follows: It takes the preliminary impu-
tations of0 for the missing values as if they were correct observations and it imputes
downweighted items (αijx̃ij) for the failing ones, again treating the imputed items as cor-
rect values. This may, of course, depress the true variances and correlations. However,
the resulting covariance estimatorD′ is positive definite.

Still another alternative is to dismiss certain variables with a high number of missingness
from the multivariate imputation.

32.3 Redefinition of Outliers

The observations that have been declared outliers byui may be representative. We would
like to have a way of relaxing the outlier conditions in order to avoid imputation for
representative outliers (or simply for too many outliers). This is necessary for very skew
data where rejecting outliers may lead to a large bias.

We calculate the Mahalanobis distance of each observation. We may use a conditional
or a marginal Mahalanobis distance if there are missing values (See Section 23 on Ma-
halanobis distances with missing values). The conditional Mahalanobis distance with
downweighting of failing items is

d2
i = p2

∑
j,k αijαikx̃ij(D

−1)jkx̃ik∑
j,k αijαik

. (14)

Note that if the covariance matrixD is not positive definite it may happen that the ”Ma-
halanobis distance” above becomes negative. In that case we have to replaceD by D′.

Now we may define a second outlier indicator or robustness weight

ũi =

{
1 di ≤ c,

0 otherwise,
(15)
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wherec is a tuning constant to be chosen. It is clear that we may choose to use a smooth
downweighting of outliers withui = c/di for di > c like for a Huber M-estimator.

The total robustness weight is
∑

i wiũi. The total robustness weight is less than the
population sizeN if the weightswi are calibrated accordingly. Usually we want that∑

i wiũi ≥
∑

i wiui because of the relaxation of outlyingness. Looking at the total ro-
bustness weight may help in choosingc.

32.4 Conditions for Donors

Now let i be an observation which has to get imputed values andh a possible donor. We
impose the following conditions on the donor.

1. The donor should not be an outlier, i.e.uh = 1. Note that we use the originaluh

because we would not want to impute representative outliers.

2. The link betweeni andh must be sufficiently strong, i.e.
∑

j

rijrhjeijehj (16)

should be sufficiently large.

3. Only correct items should be imputed from donors.

If 0 < β ≤ 1 is a parameter determining the severity of the donor condition 2, these
conditions are combined in the following tests:

Case 1:ui = 0 or β = 1
Observationh is a donor if

uh

∑
j

rhjehj = p. (17)

In other words if observationi is an outlier or if the severity condition is1 then the
donor is a complete correct non-outlying observation.

Case 2:ui = 1 andβ < 1
Observationh is a donor if

uh

∑
j

rijrhjeijehj ≥ βp (18)

∑
j

(1− rij)rhjehj =
∑

j

(1− rij) (19)

∑
j

(1− eij)rhjehj =
∑

j

(1− eij) (20)

In other words if observationi is not an outlier and if the severity condition is less
than1 then the donor is a non-outlying observation with ai − h link greater than
βp (17) and with correct items for all missing (18) or erroneous (19) items ofi.
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The set of donorsHi may be empty. Then we have to refrain from imputation or relax the
donor condition.

32.5 Nearest Neighbor

The (squared) distance between an imputand, i.e. the observation to impute, and a donor
is

d(x̃i, x̃h)
2 = p2

∑
j,k αijαhjαikαhk(x̃ij − x̃hj)D

−1
jk (x̃ik − x̃hk)∑

j,k αijαhjαikαhk

. (21)

Note that it was important to standardize the data beforehand because if different variables
are missing for different donors we account for the number of missing variables but not
for the variability of the different variables.

If D is not positive definite it may happen that the ”distance” above is negative and mean-
ingless. If instead ofD we use the necessarily positive definiteD′ then this is not possible
because the numerator is the Mahalanobis distance of the difference between the weighted
observation vectors̃x′i andx̃′h with elements̃x′ij = αijx̃ij andx̃′hj = αhjx̃hj and the de-
nominator is positive.

We calculate the distanced(x̃i, x̃h) for all h in Hi. Then we choose the donor with mini-
mal distance, i.e.

h(i) = arg min
h∈Hi

d(x̃i, x̃h). (22)

Then h(i) is the nearest neighbor ofi. Instead of this deterministic version we may
determine a small number of nearest neighbors and choose randomly, with probability
proportional to the distance, one of them as donor fori.

32.6 Imputation

For outliers (̃ui < 1) we imputexij = xh(i)j for all j. Note that we impute only for the
outliers according to the possibly relaxed definitionũi.

If α < 1, i.e. if we downweight edit failures, then it is reasonable to impute failing items
and thus for all non-outliers (ũi = 1) we imputexij = xh(i)j for all j with rijeij = 0,
i.e. for all missing and/or failing items. Of course we still may decide not to impute for
edit failures, i.e. just impute the missing items (rij = 0) in the non-outlying observations.
If α = 1 we do not downweight failing values and we propose not to impute for failing
values. In other words ifα = 1 (andũi = 1) we propose to impute just ifrij = 0.

If we accept only non-outlying complete observations with no failing items as donors then
we may impute all values of an observations regardless whether they are missing or not.
This results in a loss of information which goes contrary to the Fellegi-Holt principle.
However it is the simplest way to ensure that the data does not fail any edits after impu-
tation. If we impute only missing items then the imputed observation may fail the edit
rules.
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33 Controlling the Imputation

We have seen that for the imputation we have to choose several tuning constants:

1. The tuning constantc for the redefinition of outlyingness.

2. The tuning constantα for the downweighting of failing items in the distance.

3. The tuning constantβ for the condition on the link to a donor.

4. If we choose random nearest neighbor imputation we have to choose the constant
of admissible neighbors.

After imputation we cannot be sure that the imputed data passes the edits. We will have
to run the edits again, which results in new valuese′ij for the failure indicators and check
whether we have been more or less successful. We may also compare the originaleij with
the newe′ij. In principle there might be still some missing values left in the imputed data
X̃ if no donor could be found. We therefore will have to computer′ij with an E module to
check for missingness.

We need information on

1. The number of remaining missing values per variable
∑

i r
′
ij.

2. The amount of good information per variable
∑

i wiαij.

3. Meanµj and varianceσ2
j .

4. The covariance matrixD or D′.

5. The number of outliers
∑

i 1{ui < 1} and
∑

i 1{ũi < 1}.
6. The total robustness weights

∑
i wiui and

∑
i wiũi.

7. The number of empty donor sets
∑

i 1{|Hi| = 0}
8. The maximal number of times a donor is used.

This information is needed to judge the performance of the imputation. To obtain some
of the information we need to run a E module on the output.
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Part VIII

EUREDIT Evaluation

34 Experiments

34.1 Introduction

This section is dedicated to the presentation of the experiments run on the two selected
datasets (EPE and ABI) with the three new methods (EA, BEM and TRC) for the EU-
REDIT evaluation. SFSO intended to carry out60 different experiments with different
sets of variables and different sets of parameters. Among these60 experiments3 were
never made by lack of time and computer resources,21 experiments failed either at the
edit phase or at the imputation phase and the results of36 were handed out to ONS for
the evaluation. The status of all these experiments are fully presented in the table in 34.4.
The names are given according to EUREDIT conventions. These names will be used
throughout this diary to refer to the experiments.

The experiments are not presented in alphanumerical order according to their names but
in the chronological order corresponding to their realizations. This choice is motivated
by the fact that the experimentalist might have been influenced in some analysis by the
preceeding ones carried out on the same dataset. Even if all possible efforts were made to
avoid this ”experimental bias” the experiments were carried out in a very short time and
it seemed more realistic to report them in the exact chronological order.

Note here that all experiments presented here impute simultaneously edit rules failures
and detected outliers. In the final EUREDIT meeting the University of Southampton and
SFSO realized that their experiments could not really be compared because Southamp-
ton never imputed edit rules failures. In order to have comparable experiments SFSO
rerun its three best ABI experiments (one for each outlier detection method). These three
new experiments revealed to be better than any prior one, indicating that the use of edit
rules failures was not to be adviced for the ABI dataset. These three experiments are not
documented here but they are in the robust section of Deliverable D6.1.

34.2 The Environment Protection Expenditures Dataset

34.2.1 Introduction

Recall quickly the two major problems occuring in this dataset.

1. The proportion of zeros is very high:42% of the observations (520 out of 1239)
have all zero components;

2. The sampling weights are of unusual size: the weights are ranging from1 (6 obser-
vations) to353.75 (8 observations).
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Moreover these two problems are combining: the most influential observations in any
estimation procedure are almost all zero observations; in particular this is the case for the
8 observations with maximum sampling weight.

One approach here would have been to remove these zeros and then run the outliers de-
tection methods but as one of the goal of EUREDIT is to find methods as automatic as
possible these520 observations were left in the set to see if the methods were able to cope
with that kind of problem.

Finally recall that all analysis were made on log transformed variables.

34.2.2 BEM on EPE

Each experiment is denoted by its name. If not explicitly specified the set of variables
used in the analysis is12 survey variables: alltotexp.. andtotinv.. variables. Recall that
the tuning parameters can be found in the experiment table given at the end.

34.2.3 Experiment SE30014

Edit With the threshold set toα and notα
n

BEM fails to give any results because of
singular covariance matrices even with a large starting subset and a very smallα. As this
problem is a consequence of the issues quoted in the introduction BEM was also run on
the dataset without using the sampling weights (in that case the detected outliers would
be sample outliers and not population outliers) but with the same result. Another attempt
was done after removing the522 zeros with and without sampling weights, but without
any change. The reason for the last two failures is the fact that even after removing the
zero observations the dataset still has a lot of observations with most of the variables equal
to zero.

34.2.4 Experiment SE30015

Edit With the threshold set toα
n

BEM fails to give any results because of singular co-
variance matrices even with a large starting subset even with very smallα. Again the
sampling weights are removed of the analysis and this time with a starting subset of size
900 (recall that the all dataset has size1239) and a very smallα = 10−7 BEM manages
to make the analysis. On this first run3 missing observations are removed and the Ma-
halanobis distance is constant on532 observations. Clearly these observations should be
considered as point mass of good observations therefore they are removed from the dataset
and BACON is run again on the remaining704 observations. Among these532 observa-
tions,522 are zero observations and the other10 havezero or missing components. This
first analysis takes163s

On the second run BEM worked withα = 0.01 and a starting subset of size200. Sur-
prisingly the qqplot clearly distinguishes two groups of observations one with low Maha-
lanobis distances calledG1 of 497 observations and one with high Mahalanobis distances
calledG2 of 207 observations. The first diagnostic was then to declareG2 as the set of
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outliers but the imputation procedure POEM run onG1 then fails to work because on
that subset three variables (totinvnp, totinvot andtotexpnp) are null. In fact these three
variables are the cause of the splitting of the data:G1 is zero on them whileG2 is not.
Following this discovery we decide to run BEM onG2 only to detect large outliers and
then to run BEM again on the whole subset but without usingtotinvnp, totinvot and
totexpnp. This second run of BEM took161s.

On the third run onG2 with α = 0.01 and a starting subset of size103 (half of the
observations) BEM detects29 outliers in70s.

On the fourth run on the remaining675 observations withα = 0.01 and a starting subset
of size200 BEM detects76 outliers. Note here that the qqplot shows that we are not in
a multivariate normal situation and that the threshold cut point was a choice of the user.
Moreover the shape of the qqplot is very sensitive to the starting subset but fortunately
the highest Mahalanobis distances are not. This fourth run took109s.

In total the editing phase takes503s and detects105 outliers. Some human intervantion
is necessary in this very special dataset.

Imputation POEM works without any problem in14s.

34.2.5 Experiment SE30016

Edit Adding5 iterations of EM at each loop did not change the results of SE30015.

34.2.6 Experiment SE30017

Edit Ditto SE30015.

Imputation POEM works without any problem in15s.

34.2.7 Experiment SE30018

Edit Ditto SE30015.

Imputation POEM works without any problem in10s.

34.2.8 Experiment SE30019

Edit Ditto SE30015.

Imputation POEM fails on observation3 that has only5 correct components and is not
an outlier.
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34.2.9 Experiment SE30020

Edit Ditto SE30015.

Imputation POEM fails on observation3 that has11 missing components and is not an
outlier.

34.2.10 Experiment SE30021

Edit Ditto SE30015.

Imputation POEM fails on observation785 that has no correct component and is not an
outlier. Note here that this observation forces POEM to fail with any value of parameter
β smaller than1.

34.2.11 Experiment SE30022

Edit Ditto SE30015.

Imputation To select the new subset of outliers we use a test similar to the1-dimension
test:xi is an outlier ifMD(xi) > c · σ(N(0, 1)) = c. Therefore in dimensionp, xi will
be an outlier ifMD2(xi) > c2 · χ2

p,γ with γ = P (|X| < 1 with X ∼ N(0, 1). The tail of
the Mahalanobis distances is very long here and the choice of the constantc = 5 is rather
large but still106 observations are declared as outliers. POEM runs in14s.

34.2.12 Experiment SE30013 (all survey variables)

Edit BEM fails to work always ending with singular covariance matrix.

34.2.13 TRC on EPE

Each experiment is denoted by its name and the set of variables used in the analysis is
indicated. Recall that the tuning parameters can be found in the status table.

34.2.14 Experiment SE30024 (12 survey variables: all totexp.. and totinv.. vari-
ables)

Edit Because of the large number of zero observationsquant.prob has to be set to0.99
to let TRC work on the whole dataset. TRC then evaluate the center of the data at the
origin and finds547 observations at that point. This group of observations contains all
the zeros and observations with zero or missing components. These observations are
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therefore considered as good observations, are removed from the data and TRC is rerun
on the remaining subset of692 observations. The first run takes170s.

The second run withquant.prob = 0.9 detects three variables withmad = 0 (totinvnp,
totinvot andtotexpnp). Two solutions are possible here: either to run TRC without these
three variables or to increasequant.prob. As we do not wish to work withquant.prob
greater than0.9 once the zero observations are removed the first solution is retained.
Therefore the second run is made without these variables and the obtained qqplot shows
a non multivariate normal situation. The choice of a threshold level is not obvious and98
outliers are selected. This second run took34s.

In total the editing phase takes204s and detects98 outliers.

Imputation POEM works without any problem in10s.

34.2.15 Experiment SE30025

Edit Ditto SE30024.

Imputation POEM works without any problem in14.5s.

34.2.16 Experiment SE30026

Edit Ditto SE30024.

Imputation POEM works without any problem in10.5s.

34.2.17 Experiment SE30027

Edit Ditto SE30024.

Imputation Ditto SE30019

34.2.18 Experiment SE30028

Edit Ditto SE30024.

Imputation Ditto SE30020

34.2.19 Experiment SE30029

Edit Ditto SE30024.

131



ROBUST MULTIVARIATE OUTLIER DETECTION AND IMPUTATION

Imputation Ditto SE30021

34.2.20 Experiment SE30030

Edit Ditto SE30024.

Imputation The choice ofc = 5 is done as in SE30022 and133 observations are con-
sidered as outliers. POEM runs in15s.

34.2.21 Experiment SE30023 (all survey variables)

Edit Four variables have only zeros or missing values (subwp, subnp, recap andrecnp)
they are removed and TRC is run (3400s) with a probability quantile set to0.9993. On
the qq-plot the distances are constant among the first517 observations, they are removed.
With a probability set to0.9 33 variables have zero quantile and are also removed and TRC
is re-run(300s). The qq-plot clearly shows a non multivariate normal situation. Anyway
89 outliers are choosen according to that qq-plot. In total the editing phase takes3700s.

Imputation The four variables having only zeros and missing values are all set to zero
and POEM then runs in49s.

34.2.22 EA on EPE

Each experiment is denoted by its name and the set of variables used in the analysis is
indicated. Recall that the tuning parameters can be found in the status table.

34.2.23 Experiment SE30002

Edit No standardization is done because of non zero quantile values bigger than0.9.
EA ends with102 non-infected points that are declared as outliers. EA runs in15s.

Imputation POEM works without any problem in14.3s.

34.2.24 Experiment SE30003

Edit Ditto SE30002.

Imputation POEM works without any problem in14.5s.
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34.2.25 Experiment SE30004

Edit Ditto SE30002.

Imputation POEM works without any problem in10s.

34.2.26 Experiment SE30005

Edit Ditto SE30002.

Imputation Ditto SE30019

34.2.27 Experiment SE30006

Edit Ditto SE30002.

Imputation Ditto SE30020

34.2.28 Experiment SE30007

Edit Ditto SE30002.

Imputation Ditto SE30021

34.2.29 Experiment SE30008

Edit Ditto SE30002.

Imputation The choice ofc = 5 is done as in SE30022 and56 observations are consid-
ered as outliers. POEM runs in15s.

34.2.30 Experiment SE30009

Edit No standardization is done because of non zero quantile values bigger than0.9.
EA ends with52 non-infected points. An analysis on the stem and leaf plot let us declare
all 106 observations with infection time bigger than6 to be outliers. EA runs in12s.

Imputation POEM works without any problem in14s.
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34.2.31 Experiment SE30010

Edit No standardization is done because of non zero quantile values bigger than0.9.
EA ends with114 non-infected points that are declared as outliers. EA runs in9s.

Imputation POEM works without any problem in15s.

34.2.32 Experiment SE30011

Edit No standardization is done because of non zero quantile values bigger than0.9.
EA ends with35 non-infected points. An analysis on the stem and leaf plot does not help.
The threshold time is selected at the minimum time when the infection starts to infect at
most one point at a time (t=43).138 observations are declared as outlier. EA runs in16s.

Imputation POEM works without any problem in15s.

34.2.33 Experiment SE30012

Edit No standardization is done because of non zero quantile values bigger than0.9.
EA ends with78 non-infected points. An analysis on the stem and leaf plot does not help.
The threshold time is selected as in SE30011 and106 observations are declared as outlier.
EA runs in13s.

Imputation POEM works without any problem in14s.

34.2.34 Experiment SE30001 (all survey variables)

Edit No standardization is done because of non zero quantile values bigger than0.9.
EA ends with129 non-infected points that are declared as outliers.

Imputation The four variables having only zeros and missing values are all set to zero
and POEM then runs in48s.

34.3 The Annual Business Inquiry (ABI) Dataset

34.3.1 Introduction

Only the variables of most importance are used for this analysis. They are named in the
Euredit Evaluation Handbook in B.2.3.2. These six variables are:
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Nmemonic Variable

TURNOV ER Total turnover

EMPTOTC Total employer costs

PURTOT Total purchases of goods and services

TAXTOT Total taxes paid

ASSACQ Total costs of all capital assets acquired

ASSDISP Total proceeds from capital asset disposal

The dataset is a typical business survey dataset and therefore all the analysis are run on
log scale. Among available information on this dataset a covariate is given: the registered
turnover (TURNREG). As all the studied variables seem to have deep linear relations
with the covariate and as all the methods tested here do not use any information of that
kind a preprocessing is made usingTURNREG. Each variable is robustly regressed
against the covariate (using the SPlus function rreg with default parameters) and is re-
placed by its residuals. All analysis are then taken on these residuals. To avoid confusion
the residuals shall be denoted by the same name as the variable but in small letters (i.e.
turnover, emptotc, purtot, taxtot, assacq andassdisp).

34.3.2 TRC on ABI

Each experiment is denoted by its name and the set of variables used in the analysis is
indicated. Recall that the tuning parameters can be found in the status table.

34.3.3 Experiment SA30024

Edit The variableassdisp has non zero quantiles only with probabilities greater than
0.8. This value is used for a first run of TRC. The algorithm clearly selects as outliers all
observations withassdisp 6= 0. As this is clearly not the seeked result TRC is run again
only on the five other variables. This time a quantile probability of0.502 is big enough
to ensure all non-zero quantiles. The qq-plot shows a rather clear threshold point and295
outliers are selected. The editing phase takes450s.

Imputation POEM works without any problem in650s.

34.3.4 Experiment SA30025

Edit Ditto SA30024

Imputation POEM works without any problem in676s.
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34.3.5 Experiment SA30026

Edit Ditto SA30024

Imputation POEM works without any problem in269s.

34.3.6 Experiment SA30027

Edit Ditto SA30024

Imputation POEM fails because three observations have only one correct component
and are not outliers. Note here that POEM would work with any value of parameterβ
smaller than1

6
.

34.3.7 Experiment SA30028

Edit Ditto SA30024

Imputation Ditto SA30027

34.3.8 Experiment SA30029

Edit Ditto SA30024

Imputation Ditto SA30027

34.3.9 Experiment SA30030

Edit Ditto SA30024

Imputation The choice ofc = 5 is done as in SE30022 and315 observations are con-
sidered as outliers. POEM runs in633s.

34.3.10 BEM on ABI

Each experiment is denoted by its name and the set of variables used in the analysis is
indicated. Recall that the tuning parameters can be found in the status table.
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34.3.11 Experiment SA30014

Edit With the parameterα set to0.01 the algorithm is not stable and fails to end.

34.3.12 Experiment SA30015

Edit With the parameterα set to 0.01
N

and a starting subset of size3000 the algorithm
ends in1250s. The threshold point is clear and284 observations are declared as outliers.

Imputation POEM works without any problem in637s.

34.3.13 Experiment SA30016

Edit With the same parameters as SA30015 except forem.steps.loop set to10 the re-
sults do not change at all.

34.3.14 Experiment SA30017

Edit Ditto SA30015

Imputation POEM works without any problem in645s.

34.3.15 Experiment SA30018

Edit Ditto SA30015

Imputation POEM works without any problem in255s.

34.3.16 Experiment SA30019

Edit Ditto SA30015

Imputation Ditto SA30027

34.3.17 Experiment SA30020

Edit Ditto SA30015

Imputation Ditto SA30027
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34.3.18 Experiment SA30021

Edit Ditto SA30015

Imputation Ditto SA30027

34.3.19 Experiment SA30022

Edit Ditto SA30015

Imputation The choice ofc = 5 is done as in SE30022 and313 observations are con-
sidered as outliers. POEM runs in630s.

34.3.20 EA on ABI

Each experiment is denoted by its name and the set of variables used in the analysis is
indicated. Recall that the tuning parameters can be found in the status table.

The Epidemic Algorithm could not be run on the PC by lack of memory. It was run on
a Unix workstation that had been tested as being rather slower than the PC. The times of
the edit phases below can therefore be considered as a little bit too large.

34.3.21 Experiment SA30002

Edit EA runs in891s but the threshold point is not a clear choice. The outlying time is
set to25 and314 points are declared as outliers.

Imputation POEM works without any problem in630s.

34.3.22 Experiment SA30003

Edit Ditto SA30002

Imputation POEM works without any problem in688s.

34.3.23 Experiment SA30004

Edit Ditto SA30002

Imputation POEM works without any problem in261s.
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34.3.24 Experiment SA30005

Edit Ditto SA30002

Imputation Ditto SA30027

34.3.25 Experiment SA30006

Edit Ditto SA30002

Imputation Ditto SA30027

34.3.26 Experiment SA30007

Edit Ditto SA30002

Imputation Ditto SA30027

34.3.27 Experiment SA30008

Edit Ditto SA30002

Imputation The choice ofc = 4 is done as in SE30022 and294 observations are con-
sidered as outliers. POEM runs in631s.

34.3.28 Experiment SA30009

Edit EA runs in1035s but the threshold point is not a clear choice. The outlying time
is set to35 and297 points are declared as outliers.

Imputation POEM works without any problem in594s.

34.3.29 Experiment SA30010

Edit EA runs in747s and did not infect297 observations that are declared as outliers.
This experiment ended as the only case with EA on ABI for which the choice of outliers
was very clear.

Imputation POEM works without any problem in610s.
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34.3.30 Experiment SA30011

Edit EA runs in1211s but the threshold point is not a clear choice. The outlying time
is set to40 and308 points are declared as outliers.

Imputation POEM works without any problem in614s.

34.3.31 Experiment SA30012

Edit EA runs in1035s but the threshold point is not a clear choice. The outlying time
is set to15 and283 points are declared as outliers.

Imputation POEM works without any problem in606s.

34.4 Table of experiments

The table of all experiments indicating the choice of parameters is given on the next page.
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35 Evaluation criteria results

This section will simply report the evaluation results obtained by the NAG software. All
the experiments given in the above table were supposed to be evaluated by ONS and
the results of the criteria developed in the EUREDIT Evaluation Handbook handed back
to the experimenters. Several problems encountered with the NAG software have been
delaying the computation of these results and only the results. In addition different errors
have been detected in the POEM imputation module since the datasets have been sent to
ONS for evaluation. One of the main consequences is the total inefficiency of the program
with its parameterα set to1. Therefore the results for experimentsSA30004, SA30018
andSA30026 are not included here as these experiments were useless. The second error
is the standardization of the data with the variance instead of the standard deviation. This
second error affects only the imputation criteria but does not perturb the edit criteria. A
second evaluation of six different experiments on ABI and EPE showed actually that only
the imputation criteria results of the three EPE experiments were affected.

35.1 The Annual Business Inquiry (ABI) Dataset

Here are the results of the evaluation criteria for the13 useful experiments on the ABI
dataset.

35.1.1 Experiment SA30002

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.431776 0.315878 0.636659 0.531165 0.293506 0.133803
EHWD� 0.156046 0.314567 0.092856 0.081868 0.281853 0.398899
GHOWD 0.179839 0.314692 0.173738 0.135366 0.282591 0.386546
5$(�� -0.003029 0.004202 2.731503 0.07327 0.001633 0.06842
55$6( 0.000343 0.00092 0.137096 0.006112 0.001569 0.014898
5(5�� 47.796629 132.713235 5403.132997 1263.166667 376.12 4755.666667
WM -1.482514 2.619667 3.194492 7.523764 0.217426 2.493735
$5(P� 0.141226 0.226297 2.84594 0.060328 0.018222 0.609417
$5(P� 0.599693 0.333761 0.953377 0.604155 0.288624 0.819591
6ORSH 0.001082 0.001049 0.000993 0.000938 0.001613 0.000396
W�YDO -162811.907 -273761.563 -97988.0678 -940696.391 -126570.542 -6360833.52
PVH�� 3.35E+11 1768561243 2.71E+11 75588046.16 2037129813 10670878.43
5A��� 0.107469 0.129413 0.092157 0.05545 0.19211 0.005514
G/��� 35308.71193 2000.370091 52571.26696 1081.23193 536.136125 210.752279
G/��� 218225.7259 17188.47583 225977.4294 4305.879717 9041.798163 6358.515902
G/LQI 2078957.084 232743.8263 2118703.175 26657.10629 21778.64452 44421.30039
.�6�� 0.210526 0.466182 0.290776 0.58166 0.071288 0.050535
.�6B� 0.002641 0.001517 0.00529 0.008575 0.000907 0.000789
.�6B� 0.000147 0.000042 0.000563 0.000755 0.000013 0.000004
PB��� 34708.57451 1971.415511 51558.00026 1067.103019 526.562656 209.141961
PB��� 4.44E+10 297785494.1 4.67E+10 17654393.72 88922093.7 40544227.86
06( 58348913.56 757210.8875 67916971.36 27734.32134 35499.4739 12447.85699
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35.1.2 Experiment SA30003

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.431776 0.266892 0.637744 0.53252 0.296104 0.133333
EHWD� 0.156046 0.389276 0.090203 0.080952 0.281678 0.398899
GHOWD 0.179839 0.377566 0.171641 0.134721 0.282591 0.386483
5$(�� -0.003029 0.004807 2.731489 0.073254 0.003701 0.06842
55$6( 0.000343 0.000919 0.137096 0.006112 0.001595 0.014898
5(5�� 47.796629 132.713235 5403.132997 1263.166667 376.12 4755.666667
WM -1.482514 3.033829 3.194502 7.52136 0.475089 2.493735
$5(P� 0.141267 0.512854 2.833468 0.061048 0.021718 0.609417
$5(P� 0.599746 0.17692 0.947004 0.604589 0.288561 0.819591
6ORSH 0.001036 0.000905 0.000945 0.000938 0.001436 0.000396
W�YDO -188204.622 -514837.359 -107212.047 -1008276.82 -144701.182 -6003384.15
PVH�� 3.35E+11 1471450203 2.76E+11 76140889.13 2048147969 10671803.85
5A��� 0.078512 0.098285 0.069988 0.051092 0.15175 0.005336
G/��� 41268.65526 1920.556266 58158.51041 1125.284436 604.345632 199.215053
G/��� 260772.1478 18072.97372 266529.141 4492.284233 10446.47419 6154.259686
G/LQI 3860637.091 274517.1924 3560554.827 32058.90811 21668.53568 44421.30039
.�6�� 0.22659 0.552777 0.300971 0.581986 0.057468 0.040866
.�6B� 0.003026 0.001456 0.005831 0.008897 0.001025 0.000741
.�6B� 0.000171 0.000038 0.000582 0.000779 0.000013 0.000003
PB��� 40699.71155 1897.806438 57154.55052 1109.897965 594.822358 197.569188
PB��� 6.48E+10 328876672.1 6.67E+10 19279577 116422626.5 37979364.3
06( 80492803.66 1096384.855 76723208.58 29612.85537 45239.46074 11486.97542

35.1.3 Experiment SA30008

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.426168 0.319257 0.631236 0.550136 0.326371 0.174377
EHWD� 0.16293 0.315639 0.09134 0.086264 0.28238 0.399243
GHOWD 0.185645 0.315985 0.171641 0.141497 0.28515 0.388871
5$(�� -0.00306 0.005159 1.715756 0.228642 0.038428 0.204265
55$6( 0.000343 0.000924 0.108048 0.010185 0.002887 0.008074
5(5�� 47.796629 132.713235 3216.690236 1263.166667 223.36 246.666667
WM -1.497752 2.897773 2.372515 4.260087 1.897105 4.423613
$5(P� 0.416145 0.158607 1.463703 0.114834 0.377079 0.01308
$5(P� 0.954164 0.924639 0.037076 0.910051 0.976356 0.989194
6ORSH 0.00136 0.001075 0.001156 0.001 0.001855 0.001387
W�YDO -110758.141 -177260.299 -71266.2595 -477587.756 -54726.3163 -80701.2683
PVH�� 4.55E+11 2711861419 3.73E+11 104581774.9 3717099395 305901510.1
5A��� 0.035189 0.029175 0.019581 0.010848 0.04976 0.006938
G/��� 26490.11527 1525.008239 49748.9035 951.499002 331.56359 51.277193
G/��� 137595.4781 10710.03873 161422.2506 3383.670619 4415.894484 1054.754214
G/LQI 839538.6421 87185.29558 998213.8649 27344.22594 6124.572885 1213.743272
.�6�� 0.214317 0.465595 0.317127 0.580505 0.063788 0.044707
.�6B� 0.001888 0.001102 0.004871 0.007414 0.000532 0.000175
.�6B� 0.000132 0.000038 0.000741 0.000692 0.000011 0.000003
PB��� 23313.74478 1346.483948 45283.89088 888.9397 228.74789 37.826531
PB��� 6.87E+08 10408716.57 4.89E+09 7227069.664 15712997.28 888780.7778
06( 26996491.79 351618.1488 42862165.58 19532.62793 6803.511184 332.970929
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35.1.4 Experiment SA30009

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.431776 0.317568 0.645336 0.53523 0.293506 0.137324
EHWD� 0.15481 0.312243 0.09115 0.079304 0.279396 0.397694
GHOWD 0.17871 0.312753 0.173576 0.133591 0.280289 0.385562
5$(�� -0.003029 0.004187 2.771251 0.07666 0.001633 0.073424
55$6( 0.000343 0.00092 0.138313 0.006723 0.001569 0.015448
5(5�� 47.796629 132.713235 5403.132997 1263.166667 376.12 4755.666667
WM -1.482514 2.610342 3.23875 7.406261 0.217426 2.610808
$5(P� 0.121363 0.249547 2.892704 0.024494 0.052582 0.666848
$5(P� 0.589011 0.320382 0.982176 0.49686 0.278838 0.830828
6ORSH 0.001311 0.001205 0.001158 0.000988 0.001762 0.001352
W�YDO -142725.262 -268861.728 -90291.1812 -723656.829 -148279.125 -272208.445
PVH�� 3.33E+11 1756503563 2.74E+11 66721898.09 2085313695 9379222.945
5A��� 0.11583 0.145954 0.098011 0.049561 0.201078 0.027693
G/��� 31778.11551 1774.165099 49360.74724 1005.398566 498.34387 97.419394
G/��� 206593.4839 15909.97987 219111.3191 4149.985281 8795.506458 2579.580045
G/LQI 1217187.05 94098.14547 1308418.504 25138.00637 8208.772406 2304.5819
.�6�� 0.209319 0.466684 0.297945 0.584029 0.070656 0.050567
.�6B� 0.002367 0.001342 0.004967 0.007941 0.000837 0.000342
.�6B� 0.000137 0.000039 0.000549 0.000747 0.000013 0.000003
PB��� 31168.37255 1746.306266 48346.92619 991.723474 490.339892 96.139771
PB��� 3.94E+10 255257700.3 4.35E+10 16380156.52 84595378.78 6747285.238
06( 46997366.04 590010.3373 59993935.13 23554.72741 30527.70021 1947.551785

35.1.5 Experiment SA30010

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.431776 0.314189 0.639913 0.53252 0.293506 0.140845
EHWD� 0.153751 0.311528 0.092666 0.077656 0.27729 0.394596
GHOWD 0.177742 0.311783 0.17406 0.131817 0.278317 0.382773
5$(�� -0.003029 0.004134 2.590836 0.077259 0.001633 0.073428
55$6( 0.000343 0.00092 0.18864 0.006836 0.001569 0.015448
5(5�� 47.796629 132.713235 21984.99663 1263.166667 376.12 4755.666667
WM -1.482514 2.578635 3.29997 7.397514 0.217426 2.610652
$5(P� 0.026263 0.399588 2.797079 0.062318 0.245414 0.778966
$5(P� 0.392229 0.060974 2.60208 0.374644 0.039803 0.846422
6ORSH 0.001357 0.001179 0.001213 0.000946 0.001739 0.001358
W�YDO -152360.727 -277288.101 -107268.872 -1040778.26 -134388.303 -354868.048
PVH�� 2.59E+11 1352485416 2.08E+11 55722904.2 1373658703 7298705.882
5A��� 0.092635 0.09476 0.072775 0.034445 0.121845 0.036654
G/��� 31941.26384 1769.150857 49716.29461 1053.743765 487.978795 91.870395
G/��� 214225.028 15624.86484 244783.9587 4382.951448 8160.500209 2393.743584
G/LQI 1202971.614 93085.17232 1264306.655 25568.30366 7510.418693 2169.608682
.�6�� 0.210738 0.467678 0.288455 0.577953 0.070287 0.050706
.�6B� 0.002374 0.001324 0.003657 0.008317 0.0008 0.000321
.�6B� 0.000141 0.00004 0.000404 0.000741 0.000013 0.000003
PB��� 31478.49518 1743.555903 48979.28885 1044.024953 480.841386 91.006233
PB��� 4.38E+10 238060635.8 5.78E+10 18466130.41 68800726.85 5825948.299
06( 48576578.25 599811.4978 63607915.35 27203.67108 29530.42548 1751.887314
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35.1.6 Experiment SA30011

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.431776 0.315878 0.640998 0.53252 0.293506 0.140845
EHWD� 0.15481 0.313673 0.093235 0.081136 0.280098 0.398382
GHOWD 0.17871 0.313884 0.174706 0.134882 0.280947 0.386382
5$(�� -0.003029 0.004182 2.311173 0.078337 0.001633 0.073428
55$6( 0.000343 0.00092 0.121149 0.006837 0.001569 0.015448
5(5�� 47.796629 132.713235 4305.082492 1254.083333 376.12 4755.666667
WM -1.482514 2.607461 3.084983 7.477384 0.217426 2.610652
$5(P� 0.049325 0.334685 2.447786 0.000686 0.208825 0.763595
$5(P� 0.405593 0.091393 0.775713 0.469783 0.034021 0.845844
6ORSH 0.001368 0.0012 0.001248 0.000974 0.001792 0.001331
W�YDO -149108.142 -258176.595 -103059.462 -672504.739 -143691.335 -244159.1
PVH�� 2.62E+11 1385835338 2.12E+11 63374843.7 1328001281 6902967.347
5A��� 0.097416 0.099176 0.088752 0.045818 0.127459 0.031994
G/��� 31720.66738 1757.192782 49117.9527 1059.207105 471.98718 96.164436
G/��� 210451.9866 15362.2577 223816.7725 4415.110113 7958.290291 2575.357814
G/LQI 1215827.566 94238.28256 1296589.79 26571.47771 7846.526003 2325.582821
.�6�� 0.209117 0.466756 0.291837 0.58076 0.071136 0.050603
.�6B� 0.002358 0.001313 0.00493 0.008369 0.000773 0.000337
.�6B� 0.000141 0.00004 0.000554 0.000751 0.000013 0.000003
PB��� 31225.33054 1725.946163 48380.73581 1048.274188 463.297616 95.196458
PB��� 4.21E+10 229116808.4 4.78E+10 18787673.31 65501334.72 6729508.146
06( 47268733.43 579424.994 57168641.22 26624.02346 27297.93217 1910.921318

35.1.7 Experiment SA30012

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.431776 0.314189 0.637744 0.53252 0.293506 0.140845
EHWD� 0.153222 0.30992 0.09134 0.076923 0.274833 0.393908
GHOWD 0.177258 0.310328 0.172608 0.131171 0.276015 0.382116
5$(�� -0.003029 0.004212 1.968309 0.075697 0.001633 0.073428
55$6( 0.000343 0.00092 0.11969 0.006837 0.001569 0.015448
5(5�� 47.796629 132.713235 5673.823232 1263.166667 376.12 4755.666667
WM -1.482514 2.626313 2.968595 7.452339 0.217426 2.610652
$5(P� 0.136398 0.45411 2.244408 0.180004 0.445988 0.901728
$5(P� 0.263806 0.029957 1.36257 0.148625 0.567095 0.88413
6ORSH 0.001264 0.001133 0.001135 0.000957 0.001646 0.001209
W�YDO -170779.425 -277317.699 -109398.456 -1076453.65 -123935.954 -343712.559
PVH�� 6.58E+09 1212077188 5.86E+09 4495425.119 75237080.6 824530.7929
5A��� 0.079318 0.066566 0.051686 0.049242 0.101549 0.258585
G/��� 32584.52374 1750.265122 51189.26697 1103.266797 423.170965 86.507262
G/��� 220459.8415 14499.46734 240525.8312 5341.912114 5751.041771 2028.66831
G/LQI 1202936.751 92747.47993 1257121.273 25520.90024 7254.588035 2141.049651
.�6�� 0.210197 0.467437 0.290335 0.580381 0.070781 0.051094
.�6B� 0.004028 0.001305 0.00835 0.008652 0.000732 0.0003
.�6B� 0.000236 0.00004 0.000927 0.000737 0.000014 0.000003
PB��� 32432.8717 1724.193971 50854.31056 1102.283352 421.242482 86.15189
PB��� 4.99E+10 195078815.9 5.90E+10 29115413.74 34637030.71 4219048.513
06( 51323922.78 586170.8905 59976037.9 30087.09516 22558.52146 1571.678521
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35.1.8 Experiment SA30015

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.426168 0.304054 0.603037 0.533875 0.293506 0.137324
EHWD� 0.159929 0.323503 0.086413 0.08022 0.277115 0.396145
GHOWD 0.182903 0.321642 0.163252 0.134237 0.278152 0.384085
5$(�� -0.00306 0.005242 -0.003673 0.077908 0.001675 0.072725
55$6( 0.000343 0.000924 0.000358 0.007136 0.001569 0.015447
5(5�� 47.796629 132.713235 43.540404 1263.166667 376.12 4755.666667
WM -1.497752 2.959147 -1.568005 7.451492 0.223058 2.583218
$5(P� 0.141734 0.512149 0.003974 0.189927 0.457429 0.908336
$5(P� 0.273387 0.066667 0.121686 0.153004 0.572026 0.895861
6ORSH 0.000111 0.000175 0.000102 0.000457 0.001395 0.001097
W�YDO -438103.764 -522196.895 -298172.692 -544447.551 -133843.051 -1939397.59
PVH�� 6.43E+09 1166800763 5.84E+09 4398937.783 71939209.73 791502.7302
5A��� 0.01899 0.017483 0.014361 0.024336 0.084118 0.260277
G/��� 65486.3561 3041.621174 94413.25117 1601.671601 453.004784 83.924152
G/��� 455419.5528 28199.24333 491946.2926 7598.308691 5759.587306 2012.180601
G/LQI 11288985.5 978342.5623 10859531.46 94221.77943 7472.941281 2223.860734
.�6�� 0.206403 0.48191 0.322025 0.569208 0.073517 0.052365
.�6B� 0.008079 0.002153 0.014957 0.012342 0.000782 0.000288
.�6B� 0.000335 0.000053 0.001107 0.000927 0.000015 0.000003
PB��� 65342.08934 3017.946725 94226.39985 1600.464949 451.297513 83.497752
PB��� 2.09E+11 780623365.5 2.43E+11 58309596.2 34521184.91 4151534.831
06( 231397609.8 2069573.274 141151054.9 66005.8522 26141.214 1498.159907

35.1.9 Experiment SA30017

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.426168 0.268581 0.604121 0.53252 0.296104 0.137324
EHWD� 0.158341 0.382484 0.08357 0.079304 0.275711 0.395285
GHOWD 0.181452 0.371586 0.160994 0.133269 0.277001 0.383265
5$(�� -0.00306 0.005589 -0.003686 0.077812 0.003743 0.072725
55$6( 0.000343 0.000924 0.000358 0.007136 0.001595 0.015447
5(5�� 47.796629 132.713235 43.540404 1263.166667 376.12 4755.666667
WM -1.497752 3.183606 -1.57366 7.442941 0.480539 2.583218
$5(P� 0.138781 0.790997 0.006874 0.189125 0.457537 0.903371
$5(P� 0.269614 0.264464 0.118316 0.15211 0.568425 0.890929
6ORSH 0.001174 0.000872 0.001146 0.000931 0.001538 0.001095
W�YDO -177918.75 -398631.481 -108675.175 -967762.285 -127574.094 -1941524.17
PVH�� 6.41E+09 1009340146 5.90E+09 4405814.681 73626778.9 804361.103
5A��� 0.083109 0.057451 0.063905 0.052292 0.081658 0.258127
G/��� 36829.75785 1711.438788 50251.20136 1095.833179 449.223045 85.190086
G/��� 228280.9293 14121.21337 239895.4242 5130.974391 5907.606586 2022.218046
G/LQI 1398363.02 185049.7156 1278806.332 39744.06042 7325.648166 2195.422727
.�6�� 0.214493 0.549844 0.327556 0.564945 0.05812 0.040943
.�6B� 0.004564 0.001276 0.008196 0.008527 0.000777 0.000292
.�6B� 0.00028 0.000038 0.000917 0.000733 0.000014 0.000003
PB��� 36709.42441 1690.917402 50020.27334 1093.596833 447.022265 84.662636
PB��� 5.35E+10 187247655.8 5.89E+10 26895644.35 36269630.74 4192266.352
06( 67855153.6 862240.792 36106280.45 30240.14642 25466.18517 1531.052241
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35.1.10 Experiment SA30022

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.426168 0.305743 0.60846 0.54065 0.315104 0.159011
EHWD� 0.16293 0.328508 0.090771 0.084982 0.281853 0.399759
GHOWD 0.185645 0.326329 0.167769 0.139238 0.283953 0.388579
5$(�� -0.00306 0.00534 0.057757 0.340602 0.151981 0.192655
55$6( 0.000343 0.000924 0.003827 0.024046 0.014034 0.00915
5(5�� 47.796629 132.713235 116.89899 1263.166667 728.76 1355.666667
WM -1.497752 3.012977 2.127665 2.088602 1.537167 3.982573
$5(P� 0.036208 0.366363 0.071072 0.352393 0.407743 0.327363
$5(P� 0.278188 0.011326 0.349992 0.050394 0.048441 0.933368
6ORSH 0.000141 0.000184 0.000109 0.000454 0.001626 0.001287
W�YDO -391729.145 -458287.322 -278495.61 -503751.204 -106352.608 -197769.062
PVH�� 2.08E+11 1233364604 1.62E+11 30770106.71 1317612821 290862866.3
5A��� 0.013375 0.018294 0.011457 0.014932 0.131412 0.007391
G/��� 66547.36753 3068.725545 95098.04139 1636.303791 455.615182 74.111337
G/��� 462109.0931 28401.96007 498009.5222 7835.960142 5887.505981 1205.422016
G/LQI 11490156.23 991334.4389 11082434.51 98454.82851 7911.510609 2162.147706
.�6�� 0.20832 0.481708 0.307839 0.575837 0.068905 0.046675
.�6B� 0.004901 0.002171 0.009232 0.0127 0.00075 0.00026
.�6B� 0.000203 0.000053 0.000662 0.000921 0.000013 0.000003
PB��� 65958.51951 3032.853138 94327.7033 1627.138791 442.274032 65.082249
PB��� 2.11E+11 790962682.8 2.45E+11 61590441.71 32882883.51 406609.9561
06( 233687186.5 2083307.257 142630380.8 67931.9209 26544.50559 947.830621

35.1.11 Experiment SA30024

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.426168 0.302365 0.600868 0.531165 0.290909 0.137324
EHWD� 0.159753 0.323682 0.087739 0.080403 0.276939 0.396317
GHOWD 0.182742 0.321642 0.164059 0.134076 0.277823 0.384249
5$(�� -0.00306 0.004438 -0.004678 0.077828 0.001737 0.072725
55$6( 0.000343 0.00092 0.000343 0.007136 0.001569 0.015447
5(5�� 47.796629 132.713235 43.540404 1263.166667 376.12 4755.666667
WM -1.497752 2.779511 -2.202183 7.44489 0.231252 2.583218
$5(P� 0.141828 0.51526 0.001787 0.191315 0.455778 0.908069
$5(P� 0.273412 0.070006 0.125743 0.154694 0.573727 0.895883
6ORSH 0.000111 0.000175 0.000102 0.000429 0.001394 0.001097
W�YDO -437509.359 -522579.433 -301547.804 -541873.099 -134550.895 -1939403.42
PVH�� 6.44E+09 1165816183 5.78E+09 4383984.58 71964681.87 789079.2269
5A��� 0.018989 0.017484 0.01439 0.024313 0.084024 0.26024
G/��� 65481.5877 3033.279903 91996.62268 1598.147065 452.564284 83.919184
G/��� 455425.6468 28146.02461 485702.0104 7572.043417 5756.690795 2012.193809
G/LQI 11279159.13 975564.0902 10696342.31 93830.77988 7458.647738 2230.867536
.�6�� 0.208483 0.482533 0.317577 0.566282 0.073627 0.05183
.�6B� 0.008079 0.002148 0.014574 0.012357 0.000781 0.000288
.�6B� 0.000335 0.000053 0.001049 0.000929 0.000015 0.000003
PB��� 65337.39944 3009.752744 91814.90693 1596.957878 450.797428 83.491853
PB��� 2.09E+11 777677659.5 2.37E+11 57906658.69 34485232.32 4151586.635
06( 231396255.9 2073603.456 141077518.4 66730.59251 26183.26732 1497.983566
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35.1.12 Experiment SA30025

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.426168 0.268581 0.601952 0.53252 0.290909 0.136842
EHWD� 0.158164 0.382663 0.084328 0.078205 0.275886 0.395285
GHOWD 0.18129 0.371747 0.161316 0.132301 0.276837 0.383202
5$(�� -0.00306 0.004773 -0.004691 0.077812 0.001737 0.072725
55$6( 0.000343 0.000919 0.000343 0.007136 0.001569 0.015447
5(5�� 47.796629 132.713235 43.540404 1263.166667 376.12 4755.666667
WM -1.497752 3.011782 -2.20841 7.442941 0.231252 2.583218
$5(P� 0.138862 0.793122 0.005723 0.188426 0.453373 0.902551
$5(P� 0.269639 0.267468 0.121218 0.151343 0.570967 0.890401
6ORSH 0.001159 0.000894 0.001118 0.000929 0.001651 0.001029
W�YDO -180674.303 -402907.765 -115355.125 -991298.379 -136525.224 -503213.082
PVH�� 6.41E+09 1008927234 5.86E+09 4442599.361 72853446.71 833471.5299
5A��� 0.082861 0.055441 0.062424 0.039655 0.100907 0.018594
G/��� 38559.05959 1767.466661 51771.04098 1119.385825 458.651717 76.952567
G/��� 239847.1882 14733.28119 249745.3698 5198.118473 6558.817935 1534.607308
G/LQI 1397136.686 184746.5776 1263809.138 39592.13817 7363.613258 2196.149052
.�6�� 0.213007 0.550099 0.316297 0.565638 0.058663 0.040633
.�6B� 0.004786 0.00132 0.008462 0.008677 0.000795 0.000258
.�6B� 0.000294 0.000039 0.000928 0.000757 0.000014 0.000003
PB��� 38432.27209 1747.508531 51557.64921 1117.234462 456.390942 76.424671
PB��� 5.90E+10 205781726.4 6.38E+10 27497530.41 44874884.43 2371761.348
06( 74375219.72 924276.0095 39827053.57 31320.23336 26653.51341 1248.813656

35.1.13 Experiment SA30030

FULWHULRQ�?�YDULDEOH WXUQRYHU HPSWRWF SXUWRW WD[WRW DVVDFT DVVGLVS
DOSKD 0.426168 0.305743 0.60846 0.54065 0.315104 0.159011
EHWD� 0.16293 0.329044 0.09115 0.085348 0.282204 0.400103
GHOWD 0.185645 0.326814 0.168092 0.139561 0.284281 0.388907
5$(�� -0.00306 0.00534 0.057757 0.340602 0.151981 0.192655
55$6( 0.000343 0.000924 0.003827 0.024046 0.014034 0.00915
5(5�� 47.796629 132.713235 116.89899 1263.166667 728.76 1355.666667
WM -1.497752 3.012977 2.127665 2.088602 1.537167 3.982573
$5(P� 0.037989 0.362347 0.072426 0.349481 0.40366 0.326971
$5(P� 0.278498 0.011444 0.350031 0.050768 0.048295 0.933367
6ORSH 0.00014 0.000184 0.00011 0.000435 0.001616 0.001287
W�YDO -390994.776 -458513.885 -277121.915 -510828.453 -106283.631 -196446.136
PVH�� 2.08E+11 1232232769 1.62E+11 30732796.37 1311382903 289110778.7
5A��� 0.013375 0.018301 0.011455 0.014928 0.131311 0.00739
G/��� 66614.36431 3070.088685 95049.40003 1645.596518 456.084667 74.105797
G/��� 462362.8239 28393.87368 497983.1823 7839.402126 5890.120468 1205.448679
G/LQI 11501715.06 992116.25 11106055.38 98691.4331 7951.224973 2175.144218
.�6�� 0.210635 0.482506 0.309693 0.575846 0.068986 0.046137
.�6B� 0.004906 0.002173 0.009227 0.012775 0.00075 0.00026
.�6B� 0.000203 0.000053 0.000659 0.000937 0.000013 0.000003
PB��� 66024.17586 3034.086415 94276.49774 1636.422307 442.586653 65.076554
PB��� 2.11E+11 790507139.3 2.45E+11 61644833.56 32912684.29 406487.2514
06( 233677939.8 2086956.856 142527687.1 68671.26315 26579.43869 947.723153
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35.2 Analysis of ABI’s Results

This section concentrates mainly on the edit criterion. The POEM module was created
in order to allow the outlier detection methods results to be evaluated. POEM is not a
very sophisticated method and therefore its imputation performances are not expected to
be excellent. This overview of the results is not intended to decide whether or not the
methods are good as an editing procedure. Recall that the edit methods developed by
SFSO address only outlier detection, the results of the edit rules given with the datasets
were simply used to mark errors and impute them using POEM. The idea here is rather to
compare the methods to see the impact of the parameter choices. We shall therefore select
the parameters that seem to perform the best for each method to end up with the versions
that will have to compete with others within EUREDIT.

35.2.1 Error Detection Performance : Criteria α, β and δ

No clear conclusion can be drawn from these three criteria. The methods are quite equiv-
alent on all variables. We shall only plot the results forδ.

Chart 33: Delta Values on ABI for all Variables

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 3 8 9 10 11 12 15 17 22 24 25 30

experiments

v
a
lu
e

turnover

emptotc

purtot

taxtot

assacq

assdisp

Recall that experiments2 to 12 were run using EA and POEM, experiments15 to 22
with BEM and POEM and experiments24 to 30 with TRC and POEM. We clearly see
that on all variables exceptemptotc all methods obtain similar results. The phenomenon
observed in experiments3, 17 and25 is not due to the edit procedures but to the imputa-
tion procedure. In fact these three experiments correspond to the only three cases where
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POEM is run with parameterα set to0 (settingα to 0 means that only non-failing items
are used to compute means and variances and this may affect the distance too much).
Now to understand why the imputation procedure can change an edit criterion, we have
to recall that all the edit criteria are computed on the values that were changed by the
whole processus (edit and imputation) and therefore if an observation was set as an error
by the edit process but the imputation process replaces the same value then overall the
observation is not considered an error anymore. This fact explains the variation for the
values within the three groups corresponding to EA, BEM and TRC. The worst results are
obtained on variableassdisp. This is clearly not a surprise for BEM and TRC because
this variable could not be used in the analysis by both methods because of its extremely
high proportion of zeros (more than80%). Though EA uses the variable it does not do
very well.

35.2.2 Error Reduction : Criteria RAE, RRASE and tj

Both measures of the Relative Average Error (RAE) and the Relative Root Average
Squared Error (RRASE) lead to the same conclusion: EA fails on variablepurtot.

Chart 34: RAE Values on ABI for all Variables
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This plot of the Relative Average Errors illustrates clearly the fact that all versions of EA
fail for some reason on variablepurtot. We have no explaination for this phenomena up
to now. To have a better view of the results of the other variables,purtot is removed in
the next plot.
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Chart 35: RAE Values on ABI for all Variables except purtot
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The other variables for which the results are not quite satisfactory areassdisp andassacq.
The phenomenon of experiments8, 22 and30 is again due to the imputation process.
Indeed for these experiments POEM uses its own distance to change and reweight outliers.
If this reweighting helps EA forpurtot it does harm the methods in all other cases. These
conclusions are confirmed by the plot of the Relative Root Average Squared Error.

The only difference is that POEM’s reweighting of outliers reduces RRASE forassdisp.

The analysis of thetj criterion is not straightforward. Recall thattj is a standardised mea-
sure of how effective the editing process is for one variable. Values oftj greater than two
(in absolute value) are supposed to indicate a significant failure in editing performance.
The values plotted in Table 38 seem to indicate that the methods developed by SFSO
fail to edit the data in a significant way. However SFSO methods concentrate on only
one issue of editing, namely outlier detection. Nevertheless according to that criterion
the methods are effective only for variableturnover (with extremely close values for all
methods) and for variableassacq. Only experiments15 and17 (with BEM) manage to be
effective for a third variable (purtot). POEM reweighting of outliers enhances the editing
of variabletaxtot for BEM and TRC, but once again this is due to the imputation proce-
dure only. The editing process is never effective for variablesassdisp (as noticed above)
andemptotc.

The selection of the best version of the methods will not be made based on thetj criterion.
It seemed wiser to use criteria more appropriate for robustness. The criteria of the next
section are supposed to achieve that goal.
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Chart 36: RRASE Values on ABI for all Variables
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Chart 37: RRASE Values on ABI for all Variables except purtot
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Chart 38: Values tj on ABI for all Variables
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35.2.3 Outlier Detection Performance : Criteria AREm1 and AREm2

The Absolute Relative Error of thek-Mean (AREmk) are the edit criteria of most interest
for the methods developed by SFSO. The casesk = 1 andk = 2 are considered for
evaluation in EUREDIT. These two criteria are the only ones in EUREDIT addressing
the robustness quality. Their study is therefore emphasized here and will be the key in
selecting the best version of the methods.

The first plot of AREm1 confirms conclusion based on the preceding criteria. The meth-
ods do not correct large errors on variableassdisp; POEM reweighting of experiments8,
22 and30 reduces the error slightly. As BEM and TRC do not useassdisp in the detection
process, this variable will obviously not be used to select the best methods. The AREm1
criterion also confirms that the Epidemic Algorithm fails to treat correctly variablepurtot
for some unknown reason. Besides experiments8, 22 and30, the influence of imputation
can again be detected in experiments3, 17 and25 as noticed for thedelta criterion.

The first plot of AREm2 leads to the same observations for variablesassdisp andpurtot.
The influence of imputation is even more drastic, with positive and negative influence
depending of the variable. For example POEM reweighting after EA (experiment 8) im-
proves variablepurtot but at the same time damages all other variables. This is a hint that
the problem withpurtot might be a standardization that fails, reducingpurtot so much
that its outlyingness is no more detected (masking by break down of the scale estimator).

To have a better view of the influence of the editing process only, these two plots are
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Chart 39: AREm1 Values on ABI for all Variables
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Chart 40: AREm2 Values on ABI for all Variables
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Chart 41: AREm1 Values on ABI for five Variables
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Chart 42: AREm2 Values on ABI for five Variables
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given one more time without experiments3, 8, 17, 22, 25 and30. Variablepurtot is also
removed, for which EA is not efficient with the experiment11 being the least bad.

Recall that on these reduced plots only one experiment with BEM (15) and one with
TRC (24) are left. The first five experiments correspond to different versions of EA.
Among the EA experiments,11 was the best on the deleted variable (we do not consider
experiment8 because of the above remarks). A selection on the other variables should
hopefully confirm that fact. On AREm1, experiments11 is clearly better than10 and
12. the comparison with2 and9 is not as obvious with11 better for only two out five
variables. On AREm2, experiment11 has four values smaller than2 or 9 and one almost
equivalent. Note here that10 is slightly better on AREm2 that11 and that12 is hardly
comparable to11. Overall11 was kept as the best EA experiment.

Chart 43: Scatter plot of the AREm values on ABI for experiments
11, 15 and 24
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The comparison with the BEM and the TRC experiments is extremely delicate. On
AREm1, if we except variablepurtot for which EA performs badly and for which BEM
and TRC are almost perfect, experiment11 is better than15 and24 on the five other vari-
ables (recall thatassdisp is not included in the detection by TRC and BEM). On AREm2,
EA performs better than BEM and TRC only forassacq andassdisp and is worse for all
other variables, in particular forpurtot as always. As we should really consider both
criteria at the same time, a scatter plot of AREm1 against AREm2 is given in Chart 43.

The badpurtot values for EA are in the upper right corner. The high AREM2 values
for assdisp for the three methods are also clearly isolated. The BEM and TRC results
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for assacq andassdisp are the only other points with both AREM values over0.5. No
other clear statement can be drawn from the other points except the fact that BEM and
TRC give equivalent results in all variables. These three experiments will be selected to
be compared with other EUREDIT partner’s methods. Recall finally that experiment11
corresponds to the deterministic version of EA.

35.2.4 Imputation Performance : Criteria m1 and m2 and MSE

We end the analysis of ABI results by looking at three criteria aimed at evaluating the
imputation performance. We shall restrict to the three best experiments selected above
using the edition performance criteria, namely experiment11 (EA), 15 (BEM) and24
(TRC). Recall that the detected error in the POEM module (wrong standardization of the
variables) luckily does not affect the results for the ABI dataset.

Chart 44: Scatter plot of the m values on ABI for experiments 11, 15
and 24

0

2

4

6

8

10

12

0 1 2 3 4 5 6

ORJ�P��

ORJ
�P

�� BEM

TRC

EA

As SFSO is mainly interested in the robustness of the methods only three imputation
performance criteria are studied here : the criteriam1 andm2 measuring the preservation
of the first and second moment of the empirical distribution of the true values and the
criteria MSE giving the mean squared error between the empirical distributions of the true
and the imputed values. Note that even m1 and m2 are questionnable for their capability
to indicate good robustness properties. The problem comes through the fact that the mean
and variance of the data might not be the true population mean due to representative
outliers in the true data.
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The preservation moment criteria are combined for a plot of m2 vs m1 in log scale given
in Chart 44. The equivalence of the TRC and BEM results is one more time confirmed.
This was expected as the edit results were similar and as POEM was run with the same
parameters in experiments15 and24. No clear quality distinction can be made between
EA end the other two methods. The worst results are obtained for the same variables
turnover andpurtot (all 6 points in the upper right corner) and the best results are ob-
tained by variableassdisp. This last fact could indicate that the bad results in the edit
phase for variableassdisp are probably due to errors that are not outliers (recall that none
of the outlier detection procedure uses the edit rules results, while POEM does).

A more informative comparaison is given by the MSE criterion. Chart 45 com-
pares the MSE of experiments EA and BEM to the ones of TRC, i.e. the ratio of
MSE(...)/MSE(TRC) is plotted for each variable in the order of the preceding tables.

Chart 45: MSE of experiments 11 and 15 proportionally to 24
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EA followed by POEM often performs better in terms of MSE than TRC or BEM, which
are again equivalent. The gain goes up to80% for turnover, 70% for emptotc and60%
for purtot and taxtot. Only for variablesassacq andassdisp EA looses about5 and
28%.

35.3 The Environment Protection Expenditures (EPE) Dataset

Most of the experiments run by SFSO on the EPE dataset will not be reported here. The
full EPE dataset has1239 observations. Among these observations200 were revealed for
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the partners who were using methods needing training subsets. People at SFSO believed
that the raw data of1239 observations would be used to carry out the experiments while
in fact it was agreed that only the reduced set of1039 units should be used. Therefore
the15 experiments run on the whole dataset could not be compared to other EUREDIT
partners results and were not reported here.

Nevertheless a similar analysis as for the ABI dataset was carried out on these results
and the three following experiments showed up as the best for each of the three methods,
namely experiments2 for EA, 15 for BEM and24 for TRC. These three experiments
were rerun on the reduced dataset and these results are presented here under experiments
SE30200, SE31500 andSE32400. Unfortunately, with only1039 observations and a
very high proportion of zeros, BEM failed to work and therefore experimentSE31500 is
a failure.

Furthermore as noticed in the beginning of the section, the corrected POEM version gives
slightly different results for the imputation quality criteria of these experiments and there-
fore the results with the correct version of POEM of experimentsSE30200 andSE32400
are given in experimentsSE30201 andSE32401.

Finally, as the choice between the conditional and the marginal Mahalanobis distances
used in TRC is still an open question, it seemed interesting to see at least once the dif-
ferences created by the two possible distances. Therefore the results for TRC with the
conditional Mahalanobis distance followed by the correct version of POEM are also given
in experimentsSE32402.

The following table summarizes the technical differences between these5 experiments.

Methods Experiment EUREDIT status POEM Mahalanobis dist.

EA + POEM SE30200 Available incorrect None

EA + POEM SE30201 Not available correct None

TRC + POEM SE32400 Available incorrect Marginal

TRC + POEM SE32401 Not available correct Marginal

TRC + POEM SE32402 Not available correct Conditional

As indicated here, the results of experimentsSE30201, SE32401 andSE32402 were ob-
tained too late to be qualified for the EUREDIT evaluation and therefore are not available
in the EUREDIT official results.

As the edit quality criteria results are the same for experimentsSE30200 (resp.SE32400)
and SE30201 (resp. SE32401), the plots of these criteria will include experiments
SE30200, SE32400 andSE32402 while the plots of the imputation quality criteria will
include experimentsSE30201, SE32401 andSE32402.

Here are the results of the evaluation criteria for these5 experiments on the EPE dataset.
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35.3.1 Experiment SE30200
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5.64E+05 6.42E+06 2.27E+06 4.26E+04 1.27E+06 6.44E+06 8.86E+05 1.64E+05 3.22E+05 1.61E+03 2.17E+05 1.70E+06��$ !

0.046 0.002 0.254 0.156 0.070 0.045 0.140 0.136 0.070 0.048 0.225 0.125� % �
100.609 113.233 185.473 20.969 111.732 150.229 85.473 43.358 59.931 8.542 47.122 114.573� % !
266.990 807.144 532.240 59.077 509.649 761.626 350.661 133.340 211.794 15.558 201.215 438.239� % � � &

2.70E+03 3.61E+03 8.27E+03 2.51E+02 2.10E+03 1.03E+04 2.35E+03 6.25E+02 5.29E+02 8.23E+01 6.09E+02 2.23E+03' " �
0.725 0.803 0.448 0.480 0.775 0.336 0.611 0.533 0.775 0.903 0.903 0.453' " � ( �
0.023 0.003 0.023 0.010 0.014 0.004 0.012 0.013 0.011 0.071 0.010 0.010' " � ( !
0.005 0.001 0.003 0.003 0.001 0.000 0.002 0.002 0.002 0.024 0.002 0.001

	 ( �
86.296 70.663 170.209 12.480 100.821 111.233 72.704 30.386 41.827 8.014 45.973 90.407

	 ( !
7.37E+04 5.71E+05 3.26E+05 3.01E+03 2.71E+05 5.79E+05 1.33E+05 1.81E+04 4.28E+04 2.49E+02 4.23E+04 2.06E+05)*� �

19.461 21.751 104.108 0.495 3.524 397.626 22.570 12.062 5.259 0.017 11.918 168.442

35.3.2 Experiment SE30201

� � � � � � ����� � � � � � ��	
� � � � � � � ��� � � � � � � �� � � � � � � �
� � � � � � � ��� � � � � � ����� � � � � � ��	�� � � � � � � ��� � � � � � � ��� � � � � � � ��� � � � � � � �
� � � � �

0.200 0.500 0.333 0.400 0.500 0.167 0.250 0.250 0.143 0.000 0.667 0.071� � � �
0.057 0.052 0.064 0.032 0.031 0.200 0.071 0.071 0.057 0.014 0.036 0.080� � � � �
0.058 0.056 0.066 0.034 0.032 0.199 0.072 0.073 0.058 0.014 0.038 0.080�����
0.000 0.019 0.046 -0.042 -0.001 0.020 -0.004 0.000 -0.002 0.000 -0.003 0.000������� �
0.000 0.015 0.003 0.020 0.001 0.002 0.001 0.000 0.001 0.000 0.001 0.000��� �
0.000 35.800 7.159 4.800 2.000 0.000

� �
0.846 0.791 -1.497 0.294 -1.722 -1.414 -1.2E+15����� 	��

0.476 0.647 0.519 0.531 0.592 0.490 0.565 0.333 0.633 0.599 0.245 0.462����� 	� 
0.643 0.925 0.764 0.717 0.884 0.860 0.915 0.633 0.881 0.623 0.407 0.795� � � � �
0.825 0.072 2.412 0.238 0.771 0.538 0.569 0.844 0.216 1.055 2.340 0.984

� ! � � �
-3.039 -115.514 20.166 -23.620 -5.730 -61.200 -12.517 -5.510 -36.573 0.432 6.353 -0.763

	�" �
5.64E+05 6.42E+06 2.74E+06 4.26E+04 1.31E+06 6.48E+06 8.85E+05 1.64E+05 3.22E+05 1.61E+03 2.17E+05 1.70E+06��#  

0.044 0.002 0.140 0.156 0.045 0.043 0.141 0.135 0.070 0.048 0.225 0.125� $ �
100.554 113.177 192.449 21.013 116.313 151.496 85.550 43.409 59.843 8.542 47.122 114.452� $  
267.236 807.136 538.675 59.054 513.697 762.347 350.610 133.321 211.788 15.558 201.215 438.162� $ � � %

2.70E+03 3.61E+03 8.27E+03 2.51E+02 2.10E+03 1.03E+04 2.35E+03 6.25E+02 5.29E+02 8.23E+01 6.09E+02 2.23E+03& ! �
0.740 0.801 0.451 0.459 0.776 0.335 0.610 0.527 0.766 0.903 0.903 0.449& ! � ' �
0.023 0.003 0.021 0.010 0.013 0.004 0.012 0.013 0.010 0.071 0.010 0.009& ! � '  
0.005 0.001 0.003 0.003 0.001 0.000 0.002 0.002 0.001 0.024 0.002 0.001	 ' �

86.506 70.607 160.597 12.271 96.234 107.423 72.352 29.930 41.565 8.014 45.973 89.782
	 '  

7.37E+04 5.71E+05 3.16E+05 3.01E+03 2.66E+05 5.75E+05 1.33E+05 1.80E+04 4.28E+04 2.49E+02 4.23E+04 2.06E+05()� �
19.548 21.719 92.739 0.484 3.247 371.524 22.364 11.791 5.199 0.017 11.918 166.528
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35.3.3 Experiment SE32400

� � � � � � ����� � � � � � �
	�� � � � � � � �� � � � � � � ��� � � � � � � ��� � � � � � � ��� � � � � � ���� � � � � � �
	�� � � � � � � ��� � � � � � � ��� � � � � � � ��� � � � � � � �
� � � � �

0.600 0.625 0.500 0.600 0.500 0.167 0.500 0.625 0.429 1.000 0.667 0.214� � � �
0.055 0.053 0.068 0.020 0.023 0.209 0.077 0.085 0.050 0.007 0.025 0.095� � � � �
0.058 0.058 0.071 0.023 0.024 0.209 0.081 0.090 0.053 0.008 0.027 0.097�����
0.004 0.026 0.058 0.241 -0.001 0.025 0.002 0.027 -0.007 0.062 -0.003 0.012������� �
0.003 0.016 0.007 0.123 0.001 0.003 0.007 0.019 0.003 0.042 0.001 0.009��� �

439.000 229.800 15.048 96.200 129.400 63.745
� �

0.871 1.157 0.230 1.129 0.170 0.126 0.854 -1.801 -1.2E+15 0.674����� 	��
0.359 0.250 0.361 0.155 0.573 0.278 0.291 0.228 0.405 0.435 0.172 0.320����� 	! 
0.340 0.069 0.353 3.055 0.883 0.039 0.065 0.010 0.398 0.280 0.329 0.437� � � � �
0.492 0.019 1.589 1.374 1.018 1.050 0.488 0.513 0.133 0.792 1.159 0.889� " � � �

-29.089 -264.437 21.811 4.597 0.485 5.703 -29.142 -29.565 -87.202 -2.197 2.059 -5.878
	!# �

3.34E+05 1.01E+05 1.31E+06 1.69E+04 1.48E+06 1.56E+06 1.34E+05 9.31E+04 1.70E+05 1.77E+03 2.16E+05 1.10E+06�
$  
0.051 0.010 0.207 0.081 0.060 0.119 0.153 0.171 0.031 0.038 0.105 0.146� % �

77.337 47.311 99.595 15.928 113.565 93.841 36.003 27.080 42.570 7.565 33.564 73.656� %  
198.884 186.910 320.476 34.990 511.338 356.968 116.503 87.780 154.570 14.947 181.716 324.180� % � � &

2.41E+03 1.02E+03 6.13E+03 2.05E+02 1.84E+03 9.22E+03 5.27E+02 4.99E+02 4.56E+02 6.95E+01 5.27E+02 1.91E+03' " �
0.513 0.614 0.196 0.516 0.785 0.370 0.405 0.397 0.749 0.942 0.867 0.394' " � ( �
0.026 0.009 0.014 0.036 0.012 0.008 0.012 0.006 0.004 0.054 0.006 0.005' " � (  
0.006 0.002 0.001 0.010 0.001 0.000 0.002 0.001 0.001 0.017 0.001 0.001

	 ( �
63.260 22.795 83.546 13.667 91.184 67.743 23.003 12.587 16.967 7.179 32.091 49.145

	 (  
3.63E+04 2.05E+04 1.17E+05 1.25E+03 2.69E+05 1.25E+05 1.22E+04 7.54E+03 1.50E+04 2.19E+02 3.45E+04 1.10E+05)*� �

12.026 9.203 52.762 0.342 2.905 205.729 6.662 5.061 1.608 0.010 11.161 87.144

35.3.4 Experiment SE32401

� � � � � � ����� � � � � � �
	�� � � � � � � �� � � � � � � ��� � � � � � � ��� � � � � � � ��� � � � � � ���� � � � � � �
	�� � � � � � � ��� � � � � � � ��� � � � � � � ��� � � � � � � �
� � � � �

0.600 0.625 0.500 0.600 0.500 0.167 0.500 0.625 0.429 1.000 0.667 0.214� � � �
0.055 0.053 0.068 0.020 0.023 0.209 0.077 0.085 0.050 0.007 0.025 0.095� � � � �
0.058 0.058 0.071 0.023 0.024 0.209 0.081 0.090 0.053 0.008 0.027 0.097���
�
0.004 0.026 0.058 0.241 -0.001 0.025 0.002 0.027 -0.007 0.062 -0.003 0.012�����
� �
0.003 0.016 0.007 0.123 0.001 0.003 0.007 0.019 0.003 0.042 0.001 0.009�
� �

439.000 229.800 15.048 96.200 129.400 63.745
�  

0.871 1.157 0.230 1.129 0.170 0.126 0.854 -1.801 -1.2E+15 0.674���
� 	"!
0.359 0.250 0.361 0.155 0.573 0.278 0.291 0.228 0.405 0.435 0.172 0.320���
� 	�#
0.340 0.069 0.353 3.055 0.883 0.039 0.065 0.010 0.398 0.280 0.329 0.437� � � � �
0.509 0.246 1.902 1.374 1.863 1.044 0.375 0.365 0.133 0.792 1.130 0.671

� $ � � �
-28.578 -62.118 25.309 4.597 40.954 4.954 -46.285 -47.477 -87.202 -2.197 1.697 -21.403

	&% �
3.33E+05 1.11E+05 1.29E+06 1.69E+04 1.43E+06 1.58E+06 1.37E+05 9.71E+04 1.70E+05 1.77E+03 2.16E+05 1.13E+06��' #

0.054 0.013 0.213 0.081 0.088 0.110 0.144 0.129 0.031 0.038 0.103 0.138� ( !
73.984 45.824 98.971 15.928 107.217 93.761 37.569 28.249 42.570 7.565 33.742 74.832� ( #

198.486 185.568 320.238 34.990 508.523 358.906 117.606 91.623 154.570 14.947 181.721 325.153� ( � � )
2.41E+03 1.02E+03 6.13E+03 2.05E+02 1.84E+03 9.22E+03 5.27E+02 4.99E+02 4.56E+02 6.95E+01 5.27E+02 1.91E+03* $ �

0.451 0.584 0.202 0.516 0.804 0.398 0.387 0.376 0.749 0.942 0.837 0.382* $ � + !
0.024 0.009 0.014 0.036 0.014 0.008 0.011 0.005 0.004 0.054 0.006 0.005* $ � + #
0.005 0.002 0.001 0.010 0.001 0.000 0.001 0.001 0.001 0.017 0.001 0.000	 + !

60.025 22.097 84.675 13.667 99.796 67.958 19.924 10.537 16.967 7.179 31.795 45.653
	 + #

3.61E+04 2.04E+04 1.17E+05 1.25E+03 2.72E+05 1.26E+05 1.17E+04 6.63E+03 1.50E+04 2.19E+02 3.45E+04 1.09E+05,-� �
11.023 9.076 54.186 0.342 3.405 206.813 5.667 4.484 1.608 0.010 11.147 79.308
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35.3.5 Experiment SE32402

� � � � � � ����� � � � � � ��	
� � � � � � � ��� � � � � � � �� � � � � � � ��� � � � � � � ��� � � � � � ����� � � � � � ��	�� � � � � � � ��� � � � � � � ��� � � � � � � ��� � � � � � � �
� � � � �

0.600 0.625 0.333 0.600 0.500 0.250 0.500 0.625 0.429 0.000 0.667 0.214� � � �
0.037 0.050 0.052 0.036 0.023 0.176 0.055 0.065 0.050 0.030 0.038 0.056� � � � �
0.039 0.055 0.054 0.039 0.024 0.177 0.059 0.069 0.053 0.030 0.040 0.059�����
0.003 0.026 0.226 0.062 -0.001 0.112 -0.001 0.003 0.047 0.000 -0.003 0.011������� �
0.002 0.016 0.121 0.073 0.001 0.062 0.005 0.003 0.037 0.000 0.001 0.008��� �

289.000 6373.400 548.667 76.200 25.000 56.309
� �

0.791 1.158 0.022 0.430 0.051 -0.079 0.544 0.660 -1.2E+15 0.657����� 	��
0.366 0.289 0.228 0.568 0.640 0.230 0.421 0.297 0.347 0.996 0.113 0.312����� 	� 
0.277 0.063 4.756 0.641 0.914 1.358 0.674 0.437 0.051 1.000 0.026 0.341� � � � �
0.531 0.362 2.169 0.515 1.784 1.165 0.206 0.245 0.102 8.385 0.200 0.339� ! � � �

-14.988 -162.589 35.298 -12.518 27.229 16.184 -43.167 -64.921 -76.711 13.373 -34.469 -49.678
	�" �

3.37E+05 1.85E+05 1.24E+06 2.36E+04 1.53E+06 1.78E+06 7.93E+05 1.41E+05 1.08E+05 1.60E+03 3.26E+04 1.09E+06�$#  
0.045 0.046 0.282 0.067 0.061 0.183 0.023 0.086 0.079 0.129 0.002 0.129� % �

82.757 74.854 142.672 21.560 119.336 107.928 71.791 44.640 42.055 8.775 25.440 97.510� %  
188.297 218.202 327.379 45.514 512.803 377.832 304.937 122.659 124.948 15.857 70.541 325.763� % � � &

2.19E+03 1.70E+03 5.71E+03 3.21E+02 1.78E+03 5.36E+03 2.07E+03 1.34E+03 4.84E+02 9.35E+01 5.10E+02 1.96E+03' ! �
0.725 0.638 0.272 0.500 0.867 0.367 0.399 0.363 0.680 0.735 0.426 0.360' ! � ( �
0.030 0.012 0.022 0.036 0.016 0.007 0.006 0.005 0.014 0.081 0.013 0.007' ! � (  
0.008 0.002 0.002 0.011 0.002 0.000 0.000 0.000 0.003 0.026 0.001 0.001

	 ( �
71.174 16.608 96.405 14.681 109.190 57.060 40.900 9.810 23.825 8.764 10.612 45.613

	 (  
3.16E+04 3.16E+04 1.28E+05 1.19E+03 2.72E+05 1.32E+05 9.23E+04 9.85E+03 8.31E+03 2.60E+02 3.90E+03 1.05E+05)*� �

13.535 14.989 33.025 0.527 4.259 107.855 9.292 4.627 1.782 0.045 10.735 63.459

35.4 Analysis of EPE’s Results

The approach of the analysis is quite different from the one for ABI. As the selection of
the best parameters is already done, the main objective of the following plots is to show
the difference between EA and TRC. A curve will no longer correspond to one variable
but to one experiment with the value of the criterion plotted for each of the12 variables.
The order of the variables is the one given in the above tables.

One important fact has to be emphasized : the number of errors in the EPE dataset is
very small and therefore missing one single error for one variable can change drastically
the value of the criterion. The most extreme case is variabletotexpnp that contains only
one single error. For example criterionalpha can therefore take only the values0 or 1
depending on whether the methods do or do not find the error.

35.4.1 Error Detection Performance : Criteria α, β and δ

Keeping in mind the remark made in the introduction, the alpha criterion results are rather
intriguing.

Chart 46 shows clearly that EA do perform better in term of error detection than TRC. The
use of the conditional Mahalanobis distance in TRC improves the results for two variables
but makes worse those of variable6 which is on of the two main variables (totinvto).

The advantage of EA over TRC does not appear in the beta criteria or in the delta criteria
that is given in Chart 47. Forδ the ”conditional Mahalanobis” version of TRC improves
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Chart 46: Alpha Values on EPE
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the results of7 variables and among themtotinvto andtotexpto (6 and12).

Chart 47: Delta Values on EPE
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35.4.2 Error Reduction : Criteria RAE, RRASE and tj

The criteria RAE and RRASE are plotted in Charts 48 and 49.

Chart 48: RAE Values on EPE
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Chart 49: RRASE Values on EPE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5 6 7 8 9 10 11 12 13

9DULDEOHV

55
$6

( SE30200

SE32400

SE32402

As for theα criterion, EA performs much better than TRC in terms of relative average
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errors (squared or not).

For the choice between marginal or conditional Mahalanobis distances, these two criteria
do not help much to select the best one. Looking at the two sum variables (6 and12), if
both versions seem rather equivalent fortotexpto, there is a clear edge for the marginal
distances version over the conditional one fortotinvto.

Thetj criterion is not studied here. With the small number of errors the accuracy of that
criterion is probably poor. For variables with less than three errors it does not even exist,
the variance of the errors being not computable.

35.4.3 Outlier Detection Performance : Criteria AREm1 and AREm2

If EA seems to perform better according to the preceding criteria, the robustness criteria
AREm1 and AREm2 do lead to the opposite conclusion. Charts 50 and 51 illustrate that
fact.

Chart 50: AREm1 Values on EPE
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The marginal distances version of TRC does obtain better results than EA for all variables
for the AREm1 criterion and for all variables excepttotinvnp for the AREm2 criterion.
Recall that the noise protection variables (totinvnp andtotexpnp) should not be the base
of any conclusions because of their extremely high proportion of zeros and their extremely
low number on errors.

The differences of the results of the marginal and conditional distances version of TRC
do not lead to clear conclusion. The counting of the different advantages for all variables
almost ends up with a tie.
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Chart 51: AREm2 Values on EPE
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35.4.4 Imputation Performance : Criteria m1 and m2 and MSE

The imputation quality criteria do lead to more precise conclusions. The moments preser-
vation criteria given in Charts 52 and 53 show that TRC+POEM seems to work better
than EA+POEM.

Chart 52: m1 Values on EPE
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Chart 53: m2 Values on EPE
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This time both version of TRC end up with quite equivalent results. Moreover both ver-
sions do preserve the first and second empirical distribution moments better than EA for
almost all variables.

Chart 54: MSE Values on EPE
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The MSE criterion plotted in Chart 54 confirm this conclusion with EA ending up with
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larger mean squared errors than the marginal distances version of TRC for all variables.

The differences between the marginal and the conditional distances version of TRC give
an edge to the second version for the large mean squared errors (sum variablestotinvto
andtotexpto). For the small values variables Chart 54 gives no clear indication. Therefore
using the true values of EPE the root mean squared errors were divided by the weighted
means to give relative root mean squared errors (RRMSE) that are plotted in Chart 55.

Chart 55: RRMSE Values on EPE
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This last plot confirms that the choice between marginal or conditional Mahalanobis dis-
tances remains difficult. The conditional distances version performs better for the two
main variables, but over all variables the advantage is not obvious.

36 General Discussion

SFSO has developed three new methods to detect multivariate outliers in incomplete sur-
vey data. The Epidemic Algorithm (EA) simulates the propagation of a disease through
the population and uses extreme infection times to find outlying observations. The
BACON-EM (BEM) and the Transformed Rank Correlations (TRC) algorithms give ro-
bust estimates of the center and the scatter of the data. The estimates are used to define a
Mahalanobis distance that reveals the outliers.

The Mahalanobis distances based methods seem to obtain very similar results with a slight
edge for TRC over BEM: it keeps working in very unfavourable conditions, as for the EPE
dataset with a lot of zeros.

In terms of tuning TRC is the simplest method: there is no crucial choice of parameters.
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However the analysis of the QQ-plot (same problem for BEM) is sometimes more difficult
than the inspection using the infection times.

Using BEM the analyst has to set the values of two crucial parameters. First of all, he has
to choose if theχ2-test has to be done with a1 − α or 1 − α/n threshold. This choice
is more important than the value ofα itself. If the ressources are available, comparing
the results of both versions is the best solution. Secondly the analyst has to find the good
starting subset size: not too big to avoid outliers and not too small to avoid singular covari-
ance estimates. The choice of the starting version (robust or not) is often not crucial (only
a very high proportion of outliers does require the robust start). Most of the EUREDIT
experiments were carried out with the robust start.

For EA the choice of the transmission function is crucial. Even if EA is a very young
method and probably still needs further developments, lessons can be drawn from the
above experiences. The step function gives not enough differentiation of the infection
times. Usually all infectable points are infected in a few steps. The root function together
with a reach set to the maximum of the distances to the nearest neighbor worked well
in the situations we looked at while the cutting of the inverse power function introduces
another parameter which is not simple to handle with the random versions. The deter-
ministic version with K̈unsch’s proposal eliminates spurious results: often observations
with quite reasonable infection probabilities need a long time to be infected (thus result-
ing in wrongly declared outliers) and sometimes points with very small total infection
probability are infected. The best choice seems to be the root function together with the
deterministic version and the maximal reach.

The experiment with the Bushfire data set (see section 27) where the number of missing
values increases showed that while the three algorithms detect outliers well with a moder-
ate number of missing values TRC supports more missing values than EA or BEM. But if
this conclusion is true for small dataset it would be interesting to carry out this experience
with a large dataset.

The ABI experiments revealed a potential problem of the EA algorithm. The initial stan-
dardization might break down in some dimensions (variables) and the outliers in this
dimension will therefore be masked. This is probably what happened with thepurtot
variable. This dimension problem does not occur with TRC or BEM. On the other hand
TRC and BEM were not able to deal with one variable having a very high proportion of
zeros (assdisp) while EA could work without any problem or any pre-treatment of the
dataset (like removing one variable).

The experiment with the EPE data showed that a data set which is too far away from el-
liptical may make BEM and TRC unusable. However, after a mild human intervention by
taking out the points with Mahalanobis distance 0, the outlier detection by TRC becomes
very usable again. EA shows a remarkable performance on this very difficult data set.

The results of the MSE criterion for ABI and EPE shows that no definitive general con-
clusion can be drawn. If EA does obtain smaller mean squared errors than the other two
methods with the ABI dataset, the opposite occurs with the EPE dataset.

Finally the analysis carried out with the EPE dataset show that no clear choice can yet be
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made between the marginal and the conditional distance version of TRC.

The three methods are actually able to do the difficult task of multivariate outliers detec-
tion in the presence of missing values and when sampling weights are to be taken into
account. They are the first to achieve this task and therefore cannot be compared to other
existing methods. The choices of the datasets on which these methods could be tested
were limited in EUREDIT and probably not ideal to compare robust methods. It will
be interesting in the future to see these methods work on other real datasets. Also more
refinement on the EUREDIT criteria might be necessary to judge robust procedures.
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Appendix: SPLUSβ-versions

A TRC

TRC <- function(data,sampling.weights,minimum.set.size.for.cor.comput=3,
minimum.cor.value.to.regress=0,robust.regression="irls",
gamma=0.5,prob.quantile=0.75,alpha=0.95,md.type="c",output=F)

{
# Multivariate Outlier Detection in Survey Data
# TRC algorithm as described in:
# Beguin, C. and Hulliger B., (2002),
# EUREDIT Workpackage x.2
# Develop and evaluate new methods for statistical outlier
# detection and outlier robust multivariate imputation,
# Technical report, EUREDIT 2002.
# Version with marginal Mahalanobis distance
# Program by Cedric Beguin and Beat Hulliger
# Last modified : 13 March 2003
# Copyright : Swiss Federal Statistical Office, 2002
# gamma: minimal overlap of variables for regression
# robust.regression: type of regression "irls" or based on rank correlation
# alpha: Quantile for F-distribution for cut-off
# md.type=="c" conditional, md.type=="m" marginal Mahalanobis-distance
############ Upload of Matrix Package ############
#

library(Matrix)
#
############ Auxiliary functions ############
#

sum.weights.of.observations.smaller.than.value <-
function(weights,observations,value)

{
return(sum(weights*(observations<value),na.rm=T))

}
sum.weights.of.observations.equal.value <- function(weights,observations,value)
{

return(sum(weights*(observations==value),na.rm=T))
}
f.wquant <- function(x, w, prob = 0.5)
{

if(missing(w))
return(quantile(x, prob, na.rm = T))

else w <- w[!is.na(x)]
x <- x[!is.na(x)]
ord <- order(x)
w <- w[ord]
x <- x[ord]
w.ord <- cumsum(w)/sum(w)
index <- 1:length(x)
upper.k.quant <- min(index[w.ord > prob])
lower.k.quant <- max(index[w.ord <= prob])
if(is.na(lower.k.quant)) {

cat("\n Dominance of one observation!")
lower.k.quant <- 1

}
if(w.ord[lower.k.quant] < prob)

return(x[upper.k.quant])
else return((w[lower.k.quant]*x[lower.k.quant]+w[upper.k.quant]*

x[upper.k.quant])/(w[lower.k.quant] + w[upper.k.quant]))
}

#
############ Computation time start ############
#

calc.time <- proc.time()
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#
############ Preprocessing ############
#

if(!is.matrix(data)) stop("\n Please put data in matrix format")
n <- nrow(data)
p <- ncol(data)
if (missing(sampling.weights)) (sampling.weights <- rep(1,n))
if (length(sampling.weights)!=n) stop("\n Sampling weights of wrong length")
new.indices <- which(apply(is.na(data),1,prod)==0)
if (length(new.indices)<n)
{

cat("Warning: missing observations",which(apply(is.na(data),1,prod)==1),
"removed from the data\n")

data <- data[new.indices,]
sampling.weights <- sampling.weights[new.indices]
n <- nrow(data)

}
missing.matrix <- 1-is.na(data)
if (output) cat("End of preprocessing in",proc.time()-calc.time,"seconds \n")

#
############ Estimation of location and scatter ############
#

if (output) spearman.time <- proc.time()
medians <- apply(data, 2, f.wquant, w = sampling.weights)
correction.constant <- 1/qnorm(0.75)
mads <- correction.constant*

apply(abs(sweep(data, 2, medians, "-")),2,f.wquant,w=sampling.weights)
if(sum(mads == 0) > 0)
{

cat("Some mads are 0. Using", prob.quantile,
"quantile absolute deviations!\n")

correction.constant <- 1/qnorm(0.5*(1+prob.quantile))
mads <- correction.constant*

apply(abs(sweep(data, 2, medians, "-")), 2, f.wquant,
w = sampling.weights, prob = prob.quantile)

if(sum(mads == 0) > 0)
{

cat("The following variable(s) have", prob.quantile,
"quantile absolute deviations equal to 0 :",which(mads == 0),"\n")

stop("Remove these variables or increase the quantile probablity\n")
}

}
if (prod(missing.matrix)==1)
{

weighted.ranks <- matrix(0,n,p)
for (i in 1:p)
{

weighted.ranks[,i] <-
(apply(data[,i,drop=F],1,sum.weights.of.observations.smaller.than.value,

weights=sampling.weights,observations=data[,i])
+0.5*apply(data[,i,drop=F],1,sum.weights.of.observations.equal.value,

weights=sampling.weights,observations=data[,i])
+0.5)

}
scatter <- (12*(t(weighted.ranks)%*%(sampling.weights*weighted.ranks)) /

(t(missing.matrix)%*%(sampling.weights*missing.matrix))ˆ3-3)
scatter[scatter>1] <- 1
scatter[scatter<(-1)] <- -1
if (output)
{

cat("No imputation\n")
}

}
else
{

scatter <- matrix(0,p,p)
size.of.cor.sets <- t(missing.matrix)%*%missing.matrix
if (sum(size.of.cor.sets<minimum.set.size.for.cor.comput)>0)
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{
cat("Warning: ",sum(size.of.cor.sets<minimum.set.size.for.cor.comput)/2,
" couples of variables have less than ",minimum.set.size.for.cor.comput,
" observations in common, therefore their rank correlations will be set
to 0.\n")

}
if (output) cat("Computing Spearman Rank Correlations :\n")
for (i in 1:(p-1))
{

if (output) cat("i=",i,"\n")
for (j in (i+1):p)
{

if (output) cat(" j=",j,"\n")
if (size.of.cor.sets[i,j]>=minimum.set.size.for.cor.comput)
{

common.observations <- missing.matrix[,i]&missing.matrix[,j]
weighted.ranks.i <-
(apply(data[common.observations,i,drop=F],1,

sum.weights.of.observations.smaller.than.value,
weights=sampling.weights[common.observations],
observations=data[common.observations,i])

+0.5*apply(data[common.observations,i,drop=F],1,
sum.weights.of.observations.equal.value,
weights=sampling.weights[common.observations],
observations=data[common.observations,i])

+0.5)
weighted.ranks.j <-
(apply(data[common.observations,j,drop=F],1,

sum.weights.of.observations.smaller.than.value,
weights=sampling.weights[common.observations],
observations=data[common.observations,j])

+0.5*apply(data[common.observations,j,drop=F],1,
sum.weights.of.observations.equal.value,
weights=sampling.weights[common.observations],
observations=data[common.observations,j])

+0.5)
scatter[i,j] <-
12*sum(sampling.weights[common.observations]*

weighted.ranks.i*weighted.ranks.j)/
sum(sampling.weights[common.observations])ˆ3-3

}

}
}
scatter <- scatter+t(scatter)+diag(p)
scatter[scatter>1] <- 1
scatter[scatter<(-1)] <- -1
scatter <- 2*sin(pi*scatter/6)
# Standardization put before imputation 13.03.03 Beat Hulliger
if (output)
{

cat("Spearman Rank Correlations (truncated and standardized):\n")
print(scatter)
cat("End of Spearman rank correlations estimations in",
proc.time()-spearman.time,"seconds\n")

}
#
######## Imputation of missing values ##############
#

imputation.time <- proc.time()
variables.to.be.imputed <- which(apply(missing.matrix,2,prod)==0)
regressors.cor <-
(scatter-diag(p))[variables.to.be.imputed,]*

(size.of.cor.sets[variables.to.be.imputed,]>=(gamma*n))
regressors.list.ordered <- apply(-abs(regressors.cor),1,order)
for (v in 1:length(variables.to.be.imputed))
{

observations.to.be.imputed <-
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(!missing.matrix[,variables.to.be.imputed[v]])
if (output) cat("Variable",variables.to.be.imputed[v],":\n")
r <- 0
repeat
{

r <- r+1
if (abs(regressors.cor[v,regressors.list.ordered[r,v]])<

minimum.cor.value.to.regress)
{

cat("No eligible regressor found for variable",v,"observation(s)",
which(observations.to.be.imputed),".\nTry to relax the regressor
eligibility conditions.\n")
stop()

}
if (sum(observations.to.be.imputed &

missing.matrix[,regressors.list.ordered[r,v]])==0) next
observations.imputed.by.r.on.v <-
which(observations.to.be.imputed &

missing.matrix[,regressors.list.ordered[r,v]])
k <- length(observations.imputed.by.r.on.v)
common.observations <- missing.matrix[,variables.to.be.imputed[v]]&

missing.matrix[,regressors.list.ordered[r,v]]
if (robust.regression=="irls")
{

regression.coeff <-
rreg(x=data[common.observations,regressors.list.ordered[r,v]],

y=data[common.observations,variables.to.be.imputed[v]],
wx=sampling.weights[common.observations])$coef

}
else
{

regression.coeff <-
c(0,regressors.cor[v,regressors.list.ordered[r,v]]*
mads[variables.to.be.imputed[v]]/

mads[regressors.list.ordered[r,v]])
regression.coeff[1] <-
medians[variables.to.be.imputed[v]]-regression.coeff[2]*

medians[regressors.list.ordered[r,v]]
}
data[observations.imputed.by.r.on.v,variables.to.be.imputed[v]] <-
matrix(c(rep(1,k),
data[observations.imputed.by.r.on.v,regressors.list.ordered[r,v]]),
k,2)%*%regression.coeff
observations.to.be.imputed[observations.imputed.by.r.on.v] <- F
if (output)
cat(" ",k,"observations imputed using regressor",
regressors.list.ordered[r,v],"(cor=",
scatter[variables.to.be.imputed[v],regressors.list.ordered[r,v]],
"slope=",regression.coeff[2],
"intercept=",regression.coeff[1],")\n")
if (sum(observations.to.be.imputed)>0) next
break

}
}
if (output) cat("End of imputation in",proc.time()-imputation.time,"seconds\n")

}
#scatter <- 2*sin(pi*scatter/6) #standardization moved in front of imputation
scatter <- t(t(mads * scatter) * mads)
new.basis <- eigen.Hermitian(scatter)$vectors
data <- data %*% new.basis
center <- apply(data, 2, f.wquant, w = sampling.weights)
scatter <-
(correction.constant*apply(abs(sweep(data, 2, center, "-")), 2,

f.wquant, w = sampling.weights))ˆ2
if(sum(scatter == 0) > 0)
{

cat("Some mads are 0. Using", prob.quantile,
"quantile absolute deviations!\n")
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scatter <-
apply(abs(sweep(data, 2, center, "-")), 2, f.wquant,

w = sampling.weights, prob = prob.quantile)ˆ2
if(sum(scatter == 0) > 0)
{

stop("Please, increase the quantile probablity\n")
}

}
center <- as.vector(new.basis %*% center)
scatter <- as.matrix(new.basis %*% diag(scatter) %*% t(new.basis))
data <- data %*% t(new.basis)

#
############ Mahalanobis distances ############
#

dist.with.imputed.values <- mahalanobis(data, center, scatter)
data[!missing.matrix] <- NA
s.patterns <-
apply(matrix(as.integer(is.na(data)),n,p),1,paste,sep="",collapse="")
perm <- order(s.patterns)
data <- data[perm,]
s.patterns <- s.patterns[perm]
s.counts <- as.vector(table(s.patterns))
s.id <- cumsum(s.counts)
S <- length(s.id)
missing.items <- is.na(data[s.id,,drop=F])
nb.missing.items <- apply(missing.items,1,sum)
indices <- (!missing.items[1,])
if (md.type=="c") metric <- solve(scatter) else metric <- scatter
dist <-
mahalanobis(data[1:s.id[1],indices,drop=F],center[indices],

metric[indices,indices],inverted=(md.type=="c"))*p/(p-nb.missing.items[1])
if (S>1)
{

for (i in 2:S)
{

indices <- (!missing.items[i,])
dist <-
c(dist,mahalanobis(data[(s.id[i-1]+1):s.id[i],indices,drop=F],
center[indices],metric[indices,indices,drop=F],
inverted=(md.type=="c"))*p/(p-nb.missing.items[i]))

}
}

#
############ Choice of outliers ############
#

good <- (1:n)[dist/median(dist) <= qf(alpha,p,n-p)/qf(0.5,p,n-p)]
outliers <- (1:n)[ - good]

#
############ Computation time stop ############
#

calc.time <- proc.time() - calc.time
#
############ Results ############
#

TRC.r <<- list(sample.size = n,
number.of.variables = p,
significance.level = alpha,
computation.time = calc.time,
center = center,
scatter = scatter,
robust.regression=robust.regression,
md.type=md.type,
good.data = perm[good],
outliers = perm[outliers],
dist = dist[order(perm)],
dist.with.imputed.values = dist.with.imputed.values)

#
############ Output ############
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#
cat("\n", "TRC has detected", length(outliers), "outlier(s) in", calc.time,
"seconds.\n\n")
cat(" The results are in TRC.r$...", "\n")
cat(" ... = sample.size, number.of.variable, significance.level,
computation.time\n")
cat(" center, scatter\n")
cat(" robust.regression, md.type\n")
cat(" good.data, outliers, dist, dist.with.imputed.values\n\n")

}

B BEM

# BEM Algorithm for Multivariate Outlier Detection in
# Incomplete Multivariate Normal Data
#
# BEM algorithm as described in:
# Beguin, C. and Hulliger B., (2002),
# EUREDIT Workpackage x.2
# Develop and evaluate new methods for statistical outlier
# detection and outlier robust multivariate imputation,
# Technical report, EUREDIT 2002.
#
# BACON approach as described in:
# Billor, N., Hadi, A. S. and Velleman , P. F. (2000),
# BACON: Blocked Adaptive Computationally-Efficient
# Outlier Nominators,’’ Computational Statistics and
# Analysis, in press.
#
# EM approach as described in:
# Schafer J.L. (2000),
# Analysis of Incomplete Multivariate Data,
# Monographs on Statistics and Applied Probability 72,
# Chapman & Hall.
#
# Program by Cedric Beguin
# Last modified : April 17, 2002
# Copyright : Swiss Federal Statistical Office, 2002
#
#
################## Weighted median ##################
#
# Defined as in Beguin-Hulliger (2002)
# Accepts missing values
#
weighted.median <- function(x,w)
{

if (!missing(w))
w <- w[!is.na(x)]

else
return(median(x,na.rm=T))

x <- x[!is.na(x)]
ordre <- order(x)
x <- x[ordre]
w <- w[ordre]
n <- length(x)
pos <- compare(cumsum(w),sum(w)/2)
if (sum(abs(pos))==n)
{

return(x[(pos+c(-1,pos[1:(n-1)]))==0])
}
else
{

pos <- (1:n)[pos==0]
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return((w[pos]*x[pos]+w[pos+1]*x[pos+1])/(w[pos]+w[pos+1]))
}

}
#
################## Weighted variance/covariance matrix ##################
#
# Does not accept missing values
#
weighted.var <-
function(x,w=rep(1,nrow(as.matrix(x))),mean=apply(as.matrix(x),2,weighted.mean,w=w))
{

x <- as.matrix(x)
return((t(sweep(x,2,mean))%*%diag(w)%*%sweep(x,2,mean))/(sum(w)-1))

}
#
################## Weighted mean with missing values ##################
#
# Does accept missing values
#
weighted.mean.na <- function(x,w=rep(1,length(x)))
{

w <- w[!is.na(x)]
x <- x[!is.na(x)]
return(weighted.mean(x,w))

}
#
################## Univariate weighted variance with missing values ##################
#
# Does accept missing values
#
weighted.var.na <- function(x,w=rep(1,length(x)),mean=weighted.mean.na(x))
{

w <- w[!is.na(x)]
x <- x[!is.na(x)]
return(sum(w*(x-mean)ˆ2)/(sum(w)-1))

}
#
################## Sweep operator ##################
#
# Definition of the sweep and reverse-sweep operator (Schafer pp 159-160)
#
sweep.operator <- function(M,k)
{

Gjk <- M[,k]
Hkk <- 1/M[k,k]
M <- M-(Gjk%*%t(Gjk))*Hkk
M[k,] <- M[,k] <- Gjk*Hkk
M[k,k] <- -Hkk
return(M)

}
reverse.sweep.operator <- function(M,k)
{

Gjk <- M[,k]
Hkk <- -1/M[k,k]
M <- M+(Gjk%*%t(Gjk))*Hkk
M[k,] <- M[,k] <- Gjk*Hkk
M[k,k] <- Hkk
return(M)

}
#
################## ##################
################## EM for multivariate normal data ##################
################## ##################
#
# This version of EM does not contain the computation of the observed sufficient
# statistics, they will be computed in the main program and passed as parameters
# as well as the statistics on the missingness patterns.
#
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EM.normal <-
function(data, weights=rep(1,nrow(data)), n=sum(weights) ,p=ncol(data), s.counts,

s.id,S,T.obs,start.mean=rep(0,p),start.var=diag(1,p),numb.it=10,Estep.output=F)
{
#
################## Initialization ##################
#
# Creates theta which is the matrix form of the initial parameter used by EM
#
theta <- matrix(0,p+1,p+1)
theta[1,1] <- -1
theta[1,2:(p+1)] <- theta[2:(p+1),1] <- start.mean
theta[2:(p+1),2:(p+1)] <- start.var
#
################## Iterations of EM ##################
#
for (boucle in 1:numb.it)
{

if (Estep.output) cat("E-step ",boucle,"\n")
#
################## The E-step ##################
#
# Initializing T.tot to T.obs
#
T.tot <- T.obs
#
# Start loop on missing patterns s from 1 to S
#
for (s in 1:S)
{

#
# Identification of the indices of x.mis and x.obs
#
x.mis.id <- (1:p)[is.na(data[s.id[s],])]
x.obs.id <- (1:p)[-x.mis.id]
#
# Sweep of theta over the indices of x.obs
#
C.s <- theta
for (k in x.obs.id)

if (C.s[k+1,k+1]!=0)
{C.s <- sweep.operator(C.s,k+1)}

#
# Start loop over all observations x having missing pattern s
#
for (i in 1:s.counts[s])
{

if (s==1) {
x <- data[i,]
weight <- weights[i]

}
else {

x <- data[s.id[s-1]+i,]
weight <- weights[s.id[s-1]+i]

}
#
# Computation of x.star=E(x.mis|x.obs)
#
x.star <- x
for (k in x.mis.id)

x.star[k] <- C.s[1,k+1]+sum(C.s[x.obs.id+1,k+1]*x[x.obs.id])
#
# Updating T.tot
#
T.tot[1,] <- T.tot[,1] <- T.tot[1,]+weight*c(1,x.star)
T.tot[2:(p+1),2:(p+1)] <-

T.tot[2:(p+1),2:(p+1)]+weight*(x.star%*%t(x.star))
T.tot[x.mis.id+1,x.mis.id+1] <-
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T.tot[x.mis.id+1,x.mis.id+1]+weight*C.s[x.mis.id+1,x.mis.id+1]
}

}
#
################## The M-step ##################
#
theta <- sweep.operator(T.tot/n,1)

}
#
################## End of EM ##################
#
return(theta)
}
#
################## ##################
################## BEM ##################
################## ##################
#
# Main program; will use EM for each computation of a location and scatter
# estimate when items are missing.
#
BEM <- function(data,weights,v=2,c0=3,alpha=0.99,em.steps.start=10,

em.steps.loop=5,better.estimation=F,steps.output=F)
{
################## Preprocessing of the data ##################
#
# Removing the unit(s) with all items missing
#
n <- nrow(data)
p <- ncol(data)
if (missing(weights)) weights <- rep(1,n)
new.indices <- which(apply(is.na(data),1,prod)==0)
if (length(new.indices)<n)
{

cat("Warning: missing observations",which(apply(is.na(data),1,prod)==1),
"removed from the data\n")
data <- data[new.indices,]
weights <- weights[new.indices]
n <- nrow(data)

}
if (steps.output) cat("End of preprocessing\n")
#
############ Computation time start ############
#

calc.time <- proc.time()
#
# Order the data by missingness patterns :
# s.patterns = vector of length n, with the missingness patterns stocked as strings
# of the type "11010...011" with "1" for missing.
# data, weights and s.patterns ordered using s.patterns’ order
#
s.patterns <- apply(matrix(as.integer(is.na(data)),n,p),1,paste,sep="",collapse="")
perm <- order(s.patterns)
data <- data[perm,]
s.patterns <- s.patterns[perm]
weights <- weights[perm]
#
# Missingness patterns stats :
#
# s.counts = counts of the different missingness patterns ordered alphabetically.
# s.id = indices of the last observation of each missingness pattern in the
# dataset ordered by missingness pattern.
# S = total number of different missingness patterns
# missing.items = missing items for each pattern
# nb.missing.items = number of missing items for each pattern
#
s.counts <- as.vector(table(s.patterns))
s.id <- cumsum(s.counts)
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S <- length(s.id)
missing.items <- is.na(data[s.id,,drop=F])
nb.missing.items <- apply(missing.items,1,sum)
if (steps.output) cat("End of missingness statistics\n")
#
################## Constants ##################
#
# Constants used by the BACON algorithm to select the good points
#

N <- sum(weights)
initial.length <- c0*p
if (initial.length>n)
stop("\nInitial length bigger than number of observations. Please, decrease c0.")
c.np <- 1 + (p+1)/(N-p) + 2/(N-1-3*p)
h <- floor((N+p+1)/2)
chi.sq <- qchisq(alpha,p)

#
################## Step 1 ##################
#
# The two possible starts for BACON, modified to deal with missing items:
# Version 2 (default): the distances are simply the Euclidean diatances
# form the componentwise median; the median is computed simply by removing
# the missing items in each variable; missing values in an observation are not
# included in the distance to the median, if pg is the number of columns in which no
# missing values occur for that observation, then the distance returned is sqrt(p/pg)
# times the Euclidean distance between the two vectors of length pg shortened to
# exclude missing values.
# Version 1 : the usual mean and covariance matrix are used to compute Mahalanobis
# distances; both mean and covariance are computed by EM if any missing value occurs;
# the Mahalanobis distance for an observation is computed by restricting the mean and
# the covariance matrix to the subspace of non-missing variables and the sqrt(p/pg)
# correction is used as in Version 1.
#

if (v==2)
{
#
# Version 2
#

EM.mean <- apply(data,2,weighted.median,w=weights)
dist <-
apply(sweep(data,2,EM.mean)ˆ2,1,sum,na.rm=T)*p/(p-apply(is.na(data),1,sum))

}
else
{
#
# Version 1
#

if (S==1 & nb.missing.items[1]==0)
{
#
# Case where no missing value occurs => regular mean and covariance matrix
#

EM.mean <- apply(data,2,weighted.mean,w=weights)
EM.var <- weighted.var(data,w=weights,mean=EM.mean)

}
else
{
#
# Case where missing values occur => mean and covariance matrix computed by EM
#

T.obs <- matrix(0,p+1,p+1)
if (nb.missing.items[1]==0)
{
#
# Case where some observations are complete (no missing item) =>
# computation of the sufficient statistics on these observations and then EM.
#

if (steps.output) cat("Preparation of T_obs for version 1\n")
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weights.obs <- weights[1:s.counts[1]]
T.obs[1,] <- T.obs[,1] <-
c(sum(weights.obs),apply(weights.obs*data[1:s.counts[1],],2,sum))
for (i in 1:s.counts[1])
{

T.obs[2:(p+1),2:(p+1)] <-
T.obs[2:(p+1),2:(p+1)]+weights.obs[i]*data[i,]%*%t(data[i,])

}
EM.result <-
EM.normal(data=data[(s.id[1]+1):n,,drop=F],

weights=weights[(s.id[1]+1):n],n=N,p=p,
s.counts=s.counts[2:S],s.id=s.id[2:S]-s.id[1],S=S-1,T.obs=T.obs,
start.mean=apply(data,2,weighted.mean.na,w=weights),
start.var=diag(apply(data,2,weighted.var.na,w=weights)),
numb.it=em.steps.start)

}
else
{
#
# Case where all observations have missing items => EM
#

EM.result <-
EM.normal(data=data,weights,n=N,p=p,
s.counts=s.counts,s.id=s.id,S,T.obs=T.obs,
start.mean=apply(data,2,weighted.mean.na,w=weights),
start.var=diag(apply(data,2,weighted.var.na,w=weights,)),
numb.it=em.steps.start)

}
EM.mean <- EM.result[1,2:(p+1)]
EM.var <- EM.result[2:(p+1),2:(p+1)]

}
#
# Computation of the Mahalanobis distances
#
indices <- (!missing.items[1,])
EM.var.inverse <- solve(EM.var)
dist <- mahalanobis(data[1:s.id[1],indices,drop=F],EM.mean[indices],

EM.var.inverse[indices,indices],inverted=T)*p/(p-nb.missing.items[1])
if (S>1)
{

for (i in 2:S)
{

indices <- (!missing.items[i,])
dist <- c(dist,mahalanobis(data[(s.id[i-1]+1):s.id[i],indices,drop=F],

EM.mean[indices],EM.var.inverse[indices,indices,drop=F],inverted=T)
*p/(p-nb.missing.items[i]))

}
}

}
#
if (steps.output) cat("Version ",v,": estimation of mean = ",signif(EM.mean,4),"\n")
#
# Selection of the initial basic good subset using the computed distance
#
ordre <- order(dist)
good <- ordre[1:initial.length]
good <- good[order(good)]
if (steps.output) cat("Initial good subset : ",length(good),"\n")
#
# Statistics of the missingness patterns of the good subset
#
n.good <- length(good)
s.patterns.good <- s.patterns[good]
s.counts.good <- as.vector(table(s.patterns.good))
s.id.good <- cumsum(s.counts.good)
S.good <- length(s.id.good)
missing.items.good <- is.na(data[good[s.id.good],,drop=F])
nb.missing.items.good <- apply(missing.items.good,1,sum)
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weights.good <- weights[good]
N.good <- sum(weights.good)
#
# Determination of the indices (if any) of the observations in the good subset
# without missing items
#
T.obs.good.exist <- (nb.missing.items.good[1]==0)
if (T.obs.good.exist)
{

T.obs.good.indices <- good[1:s.id.good[1]]
}
#
# Computation of mean and covariance matrix of the good subset by EM
#
if (S.good==1 & T.obs.good.exist)
{
#
# Case where no missing value occurs => regular mean and covariance matrix
# computed and the sufficient statistics deduced from them
#

EM.mean.good <- apply(data[good,],2,weighted.mean,w=weights.good)
EM.var.good <- weighted.var(data[good,],w=weights.good,mean=EM.mean.good)
T.obs.good <- matrix(0,p+1,p+1)
T.obs.good[1,] <- T.obs.good[,1] <- c(-1,EM.mean.good)
T.obs.good[2:(p+1),2:(p+1)] <- EM.var.good*(N.good-1)/N.good
T.obs.good <- reverse.sweep.operator(T.obs.good,1)*N.good
T.obs.good.exist <- T

}
else
{
#
# Case where missing values occur => mean and covariance matrix computed by EM
#

T.obs.good <- matrix(0,p+1,p+1)
if (T.obs.good.exist)
{
#
# Case where some observations are complete (no missing item) => computation of
# the sufficient statistics on these observations and then EM.
#

if (steps.output) cat("Preparation of T_obs\n")
weights.good.obs <- weights.good[1:s.counts.good[1]]
T.obs.good[1,] <- T.obs.good[,1] <-
c(sum(weights.good.obs),

apply(weights.good.obs*data[good[1:s.counts.good[1]],,drop=F],2,sum))
for (i in 1:s.counts.good[1])
{

T.obs.good[2:(p+1),2:(p+1)] <-
T.obs.good[2:(p+1),2:(p+1)]+weights.good.obs[i]*data[good[i],]%*%

t(data[good[i],])
}
EM.result.good <-
EM.normal(data=data[good[(s.id.good[1]+1):n.good],,drop=F],

weights=weights.good[(s.id.good[1]+1):n.good],n=N.good,p=p,
s.counts=s.counts.good[2:S.good],s.id=s.id.good[2:S.good]-s.id.good[1],
S=S.good-1,T.obs=T.obs.good,
start.mean=apply(data[good,],2,weighted.mean.na,w=weights.good),
start.var=diag(apply(data[good,],2,weighted.var.na,w=weights.good)),
numb.it=em.steps.loop)

}
else
{
#
# Case where all observations have missing items => EM
#

EM.result.good <-
EM.normal(data=data[good,,drop=F],weights=weights.good,n=N.good,p=p,

s.counts=s.counts.good,s.id=s.id.good,S=S.good,T.obs=T.obs.good,
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start.mean=apply(data[good,],2,weighted.mean.na,w=weights.good),
start.var=diag(apply(data[good,],2,weighted.var.na,w=weights.good)),
numb.it=em.steps.loop)

}
EM.mean.good <- EM.result.good[1,2:(p+1)]
EM.var.good <- EM.result.good[2:(p+1),2:(p+1)]

}
if (steps.output)
cat("First good subset estimation of mean = ",signif(EM.mean.good,4),"\n")
#
# Test if the size of the good subset is not too small (singular covariance matrix)
#
if (qr(EM.var.good)$rank < p)
{

stop("Initial subset size too small, please increase c0")
}

#
################## Step 2 to 4 ##################
#
# Main loop of BACON: increase the good subset using the Mahalanobis
# distances computed from it; the Mahalanobis distances are computed
# as in Version 1 of the start (see above).
#

count <- 0
repeat
{

count <- count+1
#
# Upgrade of the constants values used by BACON
#
r <- sum(weights.good)
c.hr <- max(0,(h-r)/(h+r))
test <- (c.np+c.hr)ˆ2*chi.sq
#
# Computation of the Mahalanobis distances
#
indices <- (!missing.items[1,])
EM.var.good.inverse <- solve(EM.var.good)
dist <-
mahalanobis(data[1:s.id[1],indices,drop=F],EM.mean.good[indices],
EM.var.good.inverse[indices,indices],inverted=T)*p/(p-nb.missing.items[1])
if (S>1)
{

for (i in 2:S)
{
indices <- (!missing.items[i,])
dist <- c(dist,mahalanobis(data[(s.id[i-1]+1):s.id[i],indices,drop=F],
EM.mean.good[indices],EM.var.good.inverse[indices,indices,drop=F],inverted=T)
*p/(p-nb.missing.items[i]))
}

}
#
# Memorization of some data on the preceeding good subset
#
oldgood <- good
T.obs.oldgood.exist <- T.obs.good.exist
if (T.obs.oldgood.exist)
{

T.obs.oldgood.indices <- T.obs.good.indices
}
#
# Determination of the new good subset
#
good <- (1:n)[dist<=test]
if (steps.output)
cat("Loop ",count,": start; test=",test,"; good subset=",length(good),"\n")
#
# Comparaison with the preceeding good subset, break if equality
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#
if (length(good)==length(oldgood))

{if (prod(good==oldgood)) break}
#
# Statistics of the missingness patterns of the new good subset
#
n.good <- length(good)
s.patterns.good <- s.patterns[good]
s.counts.good <- as.vector(table(s.patterns.good))
s.id.good <- cumsum(s.counts.good)
S.good <- length(s.id.good)
missing.items.good <- is.na(data[good[s.id.good],,drop=F])
nb.missing.items.good <- apply(missing.items.good,1,sum)
weights.good <- weights[good]
N.good <- sum(weights.good)
#
# Determination of the indices (if any) of the observations in the
# new good subset without missing items
#
T.obs.good.exist <- (nb.missing.items.good[1]==0)
if (T.obs.good.exist)
{

T.obs.good.indices <- good[1:s.id.good[1]]
}
#
# Computation of mean and covariance matrix of the new good subset
#
if (S.good==1 & T.obs.good.exist)
{
#
# Case where no missing value occurs => regular mean and covariance
# matrix computed and the sufficient statistics deduced from them
#

EM.mean.good <- apply(data[good,],2,weighted.mean,w=weights.good)
EM.var.good <- weighted.var(data[good,],w=weights.good,mean=EM.mean.good)
T.obs.good <- matrix(0,p+1,p+1)
T.obs.good[1,] <- T.obs.good[,1] <- c(-1,EM.mean.good)
T.obs.good[2:(p+1),2:(p+1)] <- EM.var.good*(N.good-1)/N.good
T.obs.good <- reverse.sweep.operator(T.obs.good,1)*N.good
T.obs.good.exist <- T

}
else
{

#
# Case where missing values occur => mean and covariance matrix computed
# by EM with starting parameters set to the preceeding estimates
#
if (T.obs.good.exist)
{
#
# Case where some observations are complete (no missing item) => computation of
# the sufficient statistics on these observations and then EM with starting
# parameters set to the preceeding estimates
#

if (T.obs.oldgood.exist)
{
#
# Case where sufficient statistics from complete data were computed
# in the preceeding good subset => upgrade of these statistics
# substracting the observations that were deleted from the precedding
# good subset and adding the observations that were added to it
#

if (steps.output) cat("Updating of T_obs\n")
good.boo <- oldgood.boo <- rep(F,n)
good.boo[T.obs.good.indices] <- T
oldgood.boo[T.obs.oldgood.indices] <- T
for (i in (1:n)[xor(good.boo,oldgood.boo)&oldgood.boo])
{
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T.obs.good[1,] <- T.obs.good[1,]-weights[i]*c(1,data[i,])
T.obs.good[2:(p+1),2:(p+1)] <-
T.obs.good[2:(p+1),2:(p+1)]-weights[i]*data[i,]%*%t(data[i,])

}
for (i in (1:n)[xor(good.boo,oldgood.boo)&good.boo] )
{

T.obs.good[1,] <- T.obs.good[1,]+weights[i]*c(1,data[i,])
T.obs.good[2:(p+1),2:(p+1)] <-
T.obs.good[2:(p+1),2:(p+1)]+weights[i]*data[i,]%*%t(data[i,])

}
T.obs.good[,1] <- T.obs.good[1,]

}
else
{
#
# Case where no sufficient statistics from complete data were computed
# in the preceeding good subset => computation of these statistics
# for the new good subset
#

if (steps.output) cat("New preparation of T_obs\n")
T.obs.good <- matrix(0,p+1,p+1)
weights.good.obs <- weights.good[1:s.counts.good[1]]
T.obs.good[1,] <- T.obs.good[,1] <-
c(sum(weights.good.obs),
apply(weights.good.obs*data[good[1:s.counts.good[1]],,drop=F],2,sum))
for (i in 1:s.counts.good[1])
{

T.obs.good[2:(p+1),2:(p+1)] <-
T.obs.good[2:(p+1),2:(p+1)]+

weights.good.obs[i]*data[good[i],]%*%t(data[good[i],])
}

}
EM.result.good <-
EM.normal(data=data[good[(s.id.good[1]+1):n.good],,drop=F],

weights.good[(s.id.good[1]+1):n.good],n=N.good,p=p,
s.counts=s.counts.good[2:S.good],
s.id=s.id.good[2:S.good]-s.id.good[1],
S=S.good-1,T.obs=T.obs.good, start.mean=EM.mean.good,
start.var=EM.var.good, numb.it=em.steps.loop)

}
else
{
#
# Case where all observations have missing items =>
# EM with starting parameters set to the preceeding estimates
#

T.obs.good <- matrix(0,p+1,p+1)
EM.result.good <-
EM.normal(data=data[good,,drop=F],weights.good,n=N.good,p=p,

s.counts=s.counts.good,s.id=s.id.good,S=S.good,T.obs=T.obs.good,
start.mean=EM.mean.good,start.var=EM.var.good,numb.it=em.steps.loop)

}
EM.mean.good <- EM.result.good[1,2:(p+1)]
EM.var.good <- EM.result.good[2:(p+1),2:(p+1)]

}
#
# Check if the computed convariance is singular, stop in that case.
#
if (steps.output) cat("Loop ",count," end: estimation of mean = ",

signif(EM.mean.good,4),"\n")
if (qr(EM.var.good)$rank < p)
stop("Singular covariance matrix with a particular subset

(try a bigger alpha).")
next

}
#
############ Computation time stop ############
#
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calc.time <- proc.time() - calc.time
#
################## Step 5 ##################
#
# Nominate the outliers using the original numbering
#

outliers <- perm[(1:n)[-good]]
#
# If a better estimation is seeked, "em.steps.start" more steps of EM are taken

if (better.estimation)
{

if (T.obs.good.exist)
{
#
# Case where some observations are complete, more steps of EM with
# the sufficient statistics computed before
#

EM.result.good <-
EM.normal(data=data[good[(s.id.good[1]+1):n.good],,drop=F],

weights.good[(s.id.good[1]+1):n.good],n=N.good,p=p,
s.counts=s.counts.good[2:S.good],s.id=s.id.good[2:S.good]-s.id.good[1],
S=S.good-1,T.obs=T.obs.good, start.mean=EM.mean.good,
start.var=EM.var.good,numb.it=em.steps.start)

}
else
{
#
# Case where all observations have missing items => more steps of EM
#

EM.result.good <-
EM.normal(data=data[good,,drop=F],weights.good,n=N.good,p=p,

s.counts=s.counts.good,s.id=s.id.good,S=S.good,T.obs=T.obs.good,
start.mean=EM.mean.good,start.var=EM.var.good,numb.it=em.steps.start)

}
EM.mean.good <- EM.result.good[1,2:(p+1)]
EM.var.good <- EM.result.good[2:(p+1),2:(p+1)]
#
# Computation of the Mahalanobis distances
#
indices <- (!missing.items[1,])
EM.var.good.inverse <- solve(EM.var.good)
dist <-
mahalanobis(data[1:s.id[1],indices,drop=F],EM.mean.good[indices],

EM.var.good.inverse[indices,indices],inverted=T)*p/(p-nb.missing.items[1])
if (S>1)
{

for (i in 2:S)
{
indices <- (!missing.items[i,])
dist <-
c(dist,mahalanobis(data[(s.id[i-1]+1):s.id[i],indices,drop=F],
EM.mean.good[indices],EM.var.good.inverse[indices,indices,drop=F],inverted=T)
*p/(p-nb.missing.items[i]))
}

}
}

#
################## Results ##################
#

BEM.r <<- list(sample.size = n,
number.of.variables = p,
significance.level = alpha,
initial.basic.subset.size = initial.length ,
final.basic.subset.size = length(good),
number.of.iterations = count,
computation.time = calc.time,
good.data = perm[good],
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outliers = outliers,
center = EM.mean.good,
scatter = EM.var.good,
dist = dist[order(perm)])

#
################## Output ##################
#

cat("\n","BEM has detected",length(outliers),"outlier(s) in",
calc.time,"seconds.","\n","\n")

cat(" The results are in BEM.r$...","\n")
cat(" ... = sample.size, number.of.variable, significance.level,","\n")
cat(" initial.basic.subset.size, final.basic.subset.size,","\n")
cat(" number.of.iterations, computation.time, good.data,","\n")
cat(" outliers, center, scatter, dist.","\n","\n")

}

C EA

EA <<- function(data,sampling.weights=rep(1,nrow(data)),reach="max",
transmission.function="power", power=ncol(data), distance.type="euclidean",
maxl=5, plotting=T, monitor=T, prob.quantile =0.9, random.start=F, fix.start,
threshold=F, deterministic=F)

{
# EPIDEMIC Algorithm for Multivariate Outlier Detection: f.ea
#
# EPIDEMIC approach as described in:
# Hulliger, B., Beguin, C.(2001,2002),
# Develop and evaluate new methods for statistical outlier
# detection and outlier robust multivariate imputation.
# EUREDIT Workpackage D4-5.2.1-2.C report
#
# Program by Cedric Beguin and Beat Hulliger
# Created : Wednesday, January 24, 2001
# Last modification : 13 March 2003
# Copyright Swiss Federal Statistical Office and EUREDIT, 2001
# maxl: Maximum number of steps without change
# prob.quantile: If mads fail take this quantile absolute deviation
#
########### Dimensions ############
#

mem.tally.reset()
n <- nrow(data)
p <- ncol(data)
complete.records <- apply(!is.na(data), 1, prod)
usable.records <- apply(!is.na(data), 1, sum) >= p/2
cat("\n Dimensions (n,p):", n, p)
cat("\n Number of complete records ", sum(complete.records))
cat("\n Number of records with maximum p/2 variables missing ",sum(usable.records))
cat("\n (All records with more than p/2 variables missing
are set to completely missing)")
data[!usable.records, ] <- NA
power_as.single(power)

#
# Standardization of weights
#

np <- sum(sampling.weights)
sampling.weights <- as.single((n * sampling.weights)/np)

#
############ Non-zero non-missing minimum function ############
#

nz.min <- function(x)
min(x[x != 0], na.rm = T) #

############ Addressing functions ############
#
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ind.dij <<- function(i, j, n)
{

(i - 1) * n - ((i + 1) * i)/2 + j
}
ind.dijs <- function(i, js, n)
{

indices <- c(ind.dij(js[js < i], i, n), ind.dij(i, js[js > i], n))
return(indices[!is.na(indices)])

}
#
#### Weighted quantile function (default weighted median)

f.wquant <- function(x, w, prob = 0.5)
{

if(missing(w))
return(quantile(x, prob, na.rm = T))

else w <- w[!is.na(x)]
x <- x[!is.na(x)]
ord <- order(x)
w <- w[ord]
x <- x[ord]
w.ord <- cumsum(w)/sum(w)
index <- 1:length(x)
upper.k.quant <- min(index[w.ord > prob])
lower.k.quant <- max(index[w.ord <= prob])
if(is.na(lower.k.quant)) {

cat("\n Dominance of one observation!")
lower.k.quant <- 1

}
if(w.ord[lower.k.quant] < prob)

return(x[upper.k.quant])
else
return((w[lower.k.quant]*x[lower.k.quant]+w[upper.k.quant]*

x[upper.k.quant])/(w[lower.k.quant] + w[upper.k.quant]))
}

############ Computation time start ############
#

calc.time <- proc.time()[1] #
############ Calibraton and setup ############
#

medians <- apply(data, 2, f.wquant, w = sampling.weights, prob = 0.5)
data <- sweep(data, 2, medians, "-")
mads <- apply(abs(data), 2, f.wquant, w = sampling.weights, prob = 0.5)
qads <- apply(abs(data), 2, f.wquant, w = sampling.weights, prob = prob.quantile)
if(sum(mads == 0) > 0) {

cat("\n Some mads are 0. Standardizing with ", prob.quantile,
" quantile absolute deviations!")

if(sum(qads == 0) > 0)
cat("\n Some quantile absolute deviations are 0. No standardization!")

else data <- sweep(data, 2, qads, "/")
}
else data <- sweep(data, 2, mads, "/")
if(monitor)

standardized.data <<- data
cat("\n memory use",mem.tally.report())
distances <- as.single(dist(data, metric = distance.type))
cat("\n memory use",mem.tally.report())

#
# The dist function handles missing values correctly except # if
there is no overlap (see counterprob)
#

cat("\n Distances finished")
if(monitor)

cat(", Computation time is ", proc.time()[1] - calc.time)
min.di <- rep(0, n)
means.di <- rep(0, n)

#
# Will be used for the sample spatial median and for d0
#
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for(i in 1:n) {
di <- distances[ind.dijs(i, 1:n, n)]
min.di[i] <- nz.min(di)

#
# weighted mean of distances to account for missing distances

means.di[i] <-
sum(di*sampling.weights[-i],na.rm=T)/sum(sampling.weights[-i][!is.na(di)])

}
if(monitor) cat("\n Computation time is ", proc.time()[1] - calc.time)
# Save min.di and means.di for later inspection
if(monitor) {

min.di <<- min.di
means.di <<- means.di

}
#
# Sample spatial median # Restrict to complete observations (for
sample spatial median)
#

means.di.complete <- means.di
means.di.complete[!complete.records] <- NA
sample.spatial.median.index <-
which(means.di.complete == min(means.di.complete, na.rm = T))[1]

#
# Determine tuning distance d0
#

max.min.di <- max(min.di, na.rm = T)
cat("\n Maximal distance to nearest neighbor is ", max.min.di)
if(reach=="max") {d0 <- min(max.min.di,2*sqrt(p))} else
{d0 <- min(f.wquant(min.di, w = sampling.weights, prob = 1-(p+1)/n), 2 * sqrt(p))}
cat("\n Transmission distance is ", d0, "\n")

#
# Calculation of counterprobabilities # counterprobabilities
stocked in distances vector to save memory
#

cat("\n memory use",mem.tally.report())
if (n%%2==0) {

l.batch_n-1
n.loops_n/2

} else {
l.batch_n
n.loops_(n-1)/2

}
if(transmission.function == "step") {

for(i in 1:n.loops) {
dij_distances[(i-1)*l.batch+(1:l.batch)]
dij_as.single(dij > d0)
dij[is.na(dij)]_1
distances[(i-1)*l.batch+(1:l.batch)]_as.single(dij)

}
}
else {

if(transmission.function == "linear") {
for(i in 1:n.loops) {

dij_distances[(i-1)*l.batch+(1:l.batch)]
dij_1 - pmax(0, d0 - dij)/d0
dij[is.na(dij)]_1
distances[(i-1)*l.batch+(1:l.batch)]_as.single(dij)

}
}
else {

if(transmission.function== "power") {
beta <- as.single((0.01ˆ(-1/power) - 1)/d0)
for(i in 1:n.loops) {

dij_distances[(i-1)*l.batch+(1:l.batch)]
dij <- 1 - (beta * dij + 1)ˆ(-power)
dij_ifelse( dij>d0,1,dij)
dij[is.na(dij)]_1
distances[(i-1)*l.batch+(1:l.batch)]_as.single(dij)
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}
}
else { # default transmission function is the root function

root_maxl
for(i in 1:n.loops) {
dij_distances[(i-1)*l.batch+(1:l.batch)]

dij <- 1-(1-dij/d0)ˆ(1/root)
dij_ifelse( dij>d0,1,dij)
dij[is.na(dij)]_1
distances[(i-1)*l.batch+(1:l.batch)]_as.single(dij)
}

}
}

}
cat("\n memory use",mem.tally.report())

#
############ Initialisation ############
#

cat("\n\n Initialisation of epidemic")
comp.time.init <- proc.time()[1] - calc.time
if(monitor)

cat("\n Initialisation time is ", comp.time.init)
if(random.start)

start.point <- sample(1:n, 1, prob = sampling.weights)
else {

if(!missing(fix.start))
start.point <- fix.start

else start.point <- sample.spatial.median.index
}
time <- 1
infected <- rep(F, n)
infected[c(start.point)] <- T
new.infected <- infected
n.infected <- sum(infected)
hprod <- rep(1, n)

infection.time <- rep(0, n)
infection.time[c(start.point)] <- time #

############ Main loop ############
#

repeat {
cat("\n time = ", time, " , infected = ", n.infected)
#print(mem.tally.report())
time <- time + 1
old.infected <- infected
if(sum(new.infected) > 1) {

hprod[!infected] <-
hprod[!infected]*

apply(sweep(sweep(matrix(distances[apply(as.matrix(which(!infected)),1,
ind.dijs,js=which(new.infected),n=n)],sum(new.infected),n-n.infected),1,
sampling.weights[new.infected],"ˆ" ),2,sampling.weights[!infected],"ˆ"),2,prod)

}
else {

if(sum(new.infected) == 1)
hprod[!infected] <-
hprod[!infected]*distances[apply(as.matrix(which(!infected)),1,ind.dijs,
js=which(new.infected),n=n)]ˆ(sampling.weights[new.infected]*
sampling.weights[!infected])

}
if (deterministic) {

n.to.infect_round(sum(1 - hprod[!infected]))
# HRK: expected number of infections
infected[!infected] <-
rank(1 - hprod[!infected])>=n-n.infected-n.to.infect

} else {
if (threshold)
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{infected[!infected] <- hprod[!infected]<=0.5ˆ(1/maxl)}
else
infected[!infected] <-

as.logical(rbinom(n - n.infected, 1, 1 - hprod[!infected]))}
new.infected <- infected & (!old.infected)
n.infected <- sum(infected)
infection.time[new.infected] <- time
if(n.infected == n) {

break
}
if((time - max(infection.time)) > maxl) {

break
}
next

}
cat("\n memory use",mem.tally.report())
duration <- max(infection.time)
if(monitor) last.infection.prob <<- 1 - hprod #

############ Impute infection.time for not infected #############
# This is to show better the healthy on a graph of infection times
#

infection.time[!infected] <- ceiling(1.2 * duration) #
############ Computation time stop ############
#

calc.time <- round(proc.time()[1] - calc.time, 5) #
############ Results ############
#

EA.r <<- list(sample.size = n, number.of.variables = p,
n.complete.records=sum(complete.records),n.usable.records=sum(usable.records),
medians=medians,mads=mads,prob.quantile=prob.quantile,quantile.deviations=qads,
start=start.point,transmission.function=transmission.function,power=power,
min.nn.dist=max.min.di,transmission.distance=d0,threshold=threshold,
distance.type=distance.type,deterministic=deterministic,
number.infected=n.infected,duration=duration,computation.time=calc.time,
initialisation.computation.time=comp.time.init)

EA.i <<- list(infected = infected, time = infection.time)
if(plotting)
{
ord_order(infection.time)
plot(infection.time[ord],cumsum(sampling.weights[ord]),

ylab = "cdf of infection time")
med.infection.time <-

f.wquant(infection.time,sampling.weights,0.5)
mad.infection.time <-

f.wquant(abs(infection.time-med.infection.time),sampling.weights,0.5)
cat("\n med and mad of infection times: ",med.infection.time,mad.infection.time)
if (mad.infection.time==0) mad.infection.time <- med.infection.time
cutpoint <- med.infection.time+4*mad.infection.time
cat("\n Proposed cutpoint is ",min(cutpoint,duration))
abline(v=cutpoint)
}

#
############ Output ############
#

cat("\n", "EA has finished with", n.infected, "infected points in", calc.time, "seconds.", "\n")
cat("The results are in EA.r$...", "\n")

cat("... = ", names(EA.r), "\n")
cat("\n and in EA.i$...\n")
cat("... = ", names(EA.i), "\n")

}
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D POEM

POEM <- function(data,weights,missing.matrix,outliers,errors,alpha=0.5,beta=0.5,
reweight.out=F,c=5,preliminary.mean.imputation=F,output=F)

{
# POEM Algorithm for multivariate weighted imPutation for Outliers, Edit failure and
# Missing values
#
# POEM algorithm as described in:
# Beguin, C. and Hulliger B., (2002),
# EUREDIT Workpackage x.2
# Develop and evaluate new methods for statistical outlier
# detection and outlier robust multivariate imputation,
# Technical report, EUREDIT 2002.
#
# Program by Cedric Beguin and Beat Hulliger
# Last modified : 18 February 2003
# Copyright : Swiss Federal Statistical Office, 2003
#
#
### Initial tests ###
#
if (!is.matrix(data)) stop("Data not in matrix form")
n <- nrow(data)
p <- ncol(data)
if (missing(weights)) {weights <- rep(1,n)}
if (missing(missing.matrix)){missing.matrix_(1-is.na(data))}
if (missing(errors)){errors_matrix(1,nrow=n,ncol=p)}
if (!is.vector(weights)) stop("Weights not in vector form")
if (!is.matrix(missing.matrix)) stop("Missing values not in matrix form")
if (!is.vector(outliers)) stop("Outliers not in vector form")
if (!is.matrix(errors)) stop("Errors not in matrix form")
if (length(weights)!=n) stop("Wrong length of weights")
if (nrow(missing.matrix)!=n | ncol(missing.matrix)!=p) stop("Missing values matrix
do not have same dimensions as data")
if (length(outliers)!=n) stop("Wrong length of outliers")
if (nrow(errors)!=n | ncol(errors)!=p) stop("Errors matrix do not have same
dimensions as data")
if (sum(is.na(weights))>0) stop("Missing values in weights")
if (sum(is.na(missing.matrix))>0) stop("Missing values in missing data matrix")
if (sum(is.na(outliers))>0) stop("Missing values in outliers")
if (sum(is.na(errors))>0) stop("Missing values in errors matrix")
#
############ Computation time start ############
#

calc.time <- proc.time()
library(Matrix)

#
#
### Set all missing values to zero ###
#
data[!(missing.matrix)] <- 0
#
### Computation of alpha_ij ###
#
alpha.ij <- missing.matrix*(alphaˆ(1-errors))
missing.errors <- missing.matrix*errors
#
### Computation of center ###
#
center <-

apply(outliers*weights*alpha.ij*data,2,sum)/apply(outliers*weights*alpha.ij,2,sum)
#
### Centering of data ###
#
data <- sweep(data,2,center,"-")
#
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### Computation of coordinates variances ###
#
variances <- apply(outliers*weights*alpha.ij*dataˆ2,2,sum)
variances <- variances/apply(outliers*weights*alpha.ij,2,sum)
if (sum(variances==0)>0)
{

zero.variances <- which(variances==0)
cat("Warning: Variable(s)",zero.variances,"has (have) zero variance(s)\n")
stop("\nRemove these variables or reduce the set of outliers\n")

}
#
### Standardization of data ###
#
data <- sweep(data,2,sqrt(variances),"/")
#
### Computation of covariance matrix ###
#
covariance <- (t(alpha.ij*data)%*%(outliers*weights*alpha.ij*data))
if (!preliminary.mean.imputation)
{

covariance <- covariance/(t(alpha.ij)%*%(outliers*weights*alpha.ij))
if (det.Matrix(covariance)$sign<0)
{
cat("Warning: Covariance matrix not positive definite with original data
including missing values\n")
cat(" Choose option preliminary.mean.imputation=T!\n")
}

}
else covariance <- covariance / sum(outliers*weights)

if (output) {cat("Covariance matrix\n")
print(covariance)}

#
### Reweighting of outliers ###
#
if (reweight.out)
{

MD <- mahalanobis(alpha.ij*data,rep(0,p),covariance)
if (!preliminary.mean.imputation)
{

MD <- pˆ2*MD/apply(alpha.ij,1,sum)ˆ2
if (min(MD)<0) cat ("Warning: Negative Mahalanobis distances\n")

}
outliers <- 1-(MD > (c*qchisq(2*pnorm(1)-1,p)))
cat("New set of",sum(1-outliers),"outliers generated\n")

}
#
### List of observations to be imputed ###
#
observations.with.errors <- (apply(missing.errors,1,sum)<p)
to.be.imputed <- which((1-outliers)|observations.with.errors)
imputed <- rep(0,n)
#
### Start of imputation process ###
#
### List of complete and correct donors ###
#
complete.donors <- apply(outliers*missing.errors,1,sum)==p
#
for (observation in to.be.imputed)
{

if (output) cat("Observation",observation,"imputed by donor ")
#
### List of potential donnors for the observation ###
#
if (outliers[observation]==1 & beta<1)
{
potential.donors <-
apply(outliers*sweep(missing.errors,2,(missing.errors[observation,]),"*"),
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1,sum)>= beta*p &
apply(sweep(1-missing.errors,2,(1-missing.matrix[observation,]),"*"),1,sum)==0 &
apply(sweep(1-missing.errors,2,(1-errors[observation,]),"*"),1,sum)==0
}
else
{

potential.donors <- complete.donors
}
potential.donors[observation] <- F
if (sum(potential.donors)==0)
{

cat("\nNo donor for observation ",observation,"\n")
stop("Please relax condition beta.")

}
#
### Distances of the observation to potential donors ###
#
distances.to.donors <-
mahalanobis(sweep(data[potential.donors,],2,data[observation,],"-")*

sweep(alpha.ij[potential.donors,],2,alpha.ij[observation,],"*"),
rep(0,p),covariance)

if (!preliminary.mean.imputation)
{
distances.to.donors <-

pˆ2*distances.to.donors/
apply(sweep(alpha.ij[potential.donors,],2,alpha.ij[observation,],"*"),1,sum)ˆ2

}
#
### Selection of the donor ###
#
donors <- which(distances.to.donors==min(distances.to.donors))
if (length(donors)==1)
{

imputed[observation] <- which(potential.donors)[donors]
}
else
{

imputed[observation] <- which(potential.donors)[sample(donors,1)]
}
if (output) cat(imputed[observation],"\n")
if (output) cat("minimum distance to donor: ",min(distances.to.donors),"\n")
if (min(distances.to.donors)<0) cat("Warning: Minimal distance to nearest
neighbour negative\n")

}
#
### Imputation ###
#
data[as.logical(1-outliers),] <- data[imputed[as.logical(1-outliers)],]
non.outliers.errors <- which(outliers & observations.with.errors)
data[non.outliers.errors,][missing.errors[non.outliers.errors,]<1] <-

data[imputed[non.outliers.errors],][missing.errors[non.outliers.errors,]<1]
#
############ Computation time stop ############
#

calc.time <- proc.time() - calc.time
#
################## Results ##################
#

POEM.r <<- list(covariance=covariance,
imputed.data = sweep(sweep(data,2,sqrt(variances),"*"),2,center,"+"),
imputed.observations = to.be.imputed,
donors = imputed[to.be.imputed],
outliers = (dimnames(data)[[1]])[as.logical(1-outliers)])

#
################## Output ##################
#

cat("\n","POEM has imputed",length(to.be.imputed),"observations(s) in",
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calc.time,"seconds.","\n","\n")
cat(" The results are in POEM.r$...","\n")
cat(" ... = covariance, imputed.data, imputed.observations, donors, outliers.\n")
cat("\n Preliminary mean imputation = ",preliminary.mean.imputation,"\n")

}
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Béguin, C. (2002). Outlier detection in multivariate data. Master’s thesis, Statistics Group,
University of Neucĥatel.
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