USING ROBUST TREE-BASED METHODS FOR OUTLIER AND ERROR DETECTION

Ray Chambers(1), Adão Hentges(2) and Xinqiang Zhao(1)
(1)
Department of Social Statistics, University of Southampton

Highfield, Southampton SO17 1BJ

(2)
Departamento de Estatística, Universidade Federal do RS

Caixa Postal 15080, 91509-900 Porto Alegre RS, Brazil.

September 6, 2002

Address for correspondence:
Professor R.L. Chambers

Department of Social Statistics

University of Southampton

Highfield

Southampton SO17 1BJ

(email: rc6@soton.ac.uk)

Abstract: Editing in surveys of economic populations is often complicated by the fact that outliers due to errors in the data are mixed in with correct, but extreme, data values. In this paper we focus on a technique for error identification in such long tailed data distributions based on fitting robust tree-based models to the error contaminated data. An application to a data set created as part of the Euredit project, and which contains a mix of extreme errors and true outliers, as well as missing data, is described. The tree-based approach can be carried out on a variable by variable basis or on a multivariate basis.

Key words: Survey data editing; regression tree model; gross errors; missing data; random donor imputation; mean imputation; M-estimates

1. Introduction

1.1 Overview

Outliers are a not uncommon phenomenon in business and economic surveys. These are data values that are so unlike values associated with other sample units that ignoring them can lead to wildly inaccurate survey estimates. Outlier identification and correction is therefore an important objective of survey processing, particularly for surveys carried out by national statistical agencies. In most cases these processing systems operate by applying a series of “soft edits” that identify data values that lie outside bounds determined by the expectations of subject matter specialists. These values are then investigated further, in many cases by re-contacting the survey respondent, to establish whether they are due to errors in the data capture process or whether they are in fact valid. Chambers (1986) refers to the latter valid values as representative outliers, insofar as there is typically no reason to believe that they are unique within the survey population. Data values that are identified as errors, on the other hand, are not representative, and it is assumed that they are corrected as part of survey processing. A common class of such errors within the business survey context is where the survey questionnaire asks for answers to be provided in one type of unit (e.g. thousands of pounds) while the respondent mistakenly provides the required data in another unit (e.g. single pounds). Sample cases containing this type of error therefore have true data values inflated by a factor of 1000. Left uncorrected, such values can seriously destabilise the survey estimates.

The standard approach to the type of situation described above is to identify as many errors as possible at the editing stage of survey processing, to establish what the correct values should be, and to substitute these into the sample data. If a “correct” value is in fact identical to the value that triggered the soft edit failure, then the outlier is in fact not an error but is representative. In this case the usual strategy is to replace it by an imputed value, typically one that is subjectively determined as “more typical”. In continuing surveys this can be the previous value of the same variable, provided that value is acceptable.

There are two major problems with this approach. The first is that it can be extremely labour intensive and hence costly. This is because the soft edit bounds are often such that a large proportion of the sample data values lie outside them. This leads to many unnecessary re-contacts of surveyed individuals or businesses, resulting in an increase in response burden. Secondly, the subjective corrections applied to representative outliers tend to lead to biases in the survey estimates, particularly for estimates of change. Since there are often large numbers of such representative outliers identified by this type of strategy, the resulting biases from their “correction” can be substantial.

This paper describes research aimed at identifying an editing and imputation strategy for surveys subject to outliers that overcomes some of the problems identified above. In particular, the aim is to develop an automated strategy that identifies and corrects as many non-representative outliers errors in the data as possible, while minimising the number of representative outliers that are corrected at the same time. In particular, the methods explored below do not rely on external specification of soft edit bounds but instead use modern robust methods to identify potential errors, including serious outliers, from the sample data alone. Since missing sample data is another form of error, the methods we describe can clearly be used to impute these values as well.

1.2 The Euredit Project and the ABI Data

This research has been carried out as part of the Euredit project (Euredit, 2000). This project is aimed at the development and evaluation of new methods for editing and imputation, and contains research strands that focus on

1. Development of a methodological evaluation framework and evaluation criteria for edit and imputation;

2. Production of a standard collection of data sets that can be used to evaluate edit and imputation methodology;

3. Evaluation of “standard” methods of edit and imputation;

4. Development and evaluation a range of new and existing techniques, focussing in particular on modern computer-intensive methods;

5. Comparison and evaluation of these methods using the standard data sets produced for this purpose;

6. Identification and disseminate of best methods for particular data situations.

In this paper we use a data set created within the Euredit project to evaluate the methods we propose. The values in this data set are based on data provided by 6099 businesses that responded to the UK Annual Business Inquiry (ABI). There are two versions of the ABI data. The first contains data that has been thorough checked for the presence of errors and has complete response. These data values therefore constitute “truth”, and so we refer to it as the true data below. The second contains data values for the same businesses but simulated to represent the values that were observed before this thorough checking process was been carried out. These data therefore contain errors as well as missing values, and can be considered as representing the type of “raw” data that are typically obtained. We refer to it as the perturbed data below. It should be noted that both the true data and the perturbed data contain a significant number of true extreme values (i.e. representative outliers).

Table 1. ABI variables

	Name
	
	Description

	turnover
	
	Total turnover

	emptotc
	
	Total employment costs

	purtot
	
	Total purchases of goods and services

	taxtot
	
	Total taxes paid

	assacq
	
	Total cost of all capital assets acquired

	assdisp
	
	Total proceeds from capital asset disposal

	employ
	
	Total number of employees

	turnreg
	
	Turnover value on register (sample frame)

	empreg
	
	Employment size group from register: 1 = 0 to 9 employees, 2 = 10 to 19 employees, 3 = 20 to 49 employees, 4 = 50 to 99 employees, 5 = 100 to 249 employees, 6 = 250 or more employees

Table 1 lists the ABI variables we consider in this paper. These variables represent the major outcome variables for the survey. In addition we assume that we have access to two auxiliary variables on the sample frame for the ABI (the Inter-Departmental Business Register or IDBR). These auxiliary variables are the estimated turnover of a business (turnreg, defined in terms of the IDBR value of turnover for a business, in thousands of pounds) and the size classification of a business (empreg, made up of 6 classes defined in terms of the IDBR count of the number of employees of the business). By definition, both these auxiliary variables have no missing values and no errors. They are also not the same as the actual turnover and actual employment class of a business.

In Figures 1 and 2 we illustrate the type of data that are contained in the true data and the perturbed data. These show the relationship between two important ABI variables, turnover and assacq, and the auxiliary variable turnreg. In the raw scale these data are extremely heterogeneous, so both plots show the data on the log scale. It is clear that although the general relationship between turnreg and these two survey variables is linear in the log scale, comparison of the true data and the perturbed data plots show there are a very large number of significant errors (these appear on the perturbed data plot, but not on the true data plot) and large representative outliers (these appear on both plots).

Figures 1 and 2 about here

2. Outlier Identification via Forward Search

This method was suggested by Hadi and Simonoff (1993). See also Atkinson (1994) and Riani and Atkinson (2000). The basic idea is simple. In order to avoid the well-known masking problem that can occur when there are multiple outliers in a data set (see Barnett and Lewis, 1994), the algorithm starts from an initial subset of observations of size m < n that is chosen to be outlier free. Here n denotes the number of observations in the complete data set. A regression model for the variable of interest is estimated from this initial “clean” subset. Fitted values generated by this model are then used to generate n distances to the actual sample data values. The next step in the algorithm redefines the clean subset to contain those observations corresponding to the m+1 smallest of these distances and the procedure repeated. The algorithm stops when distances to all sample observations outside the clean subset are all too large or when this subset contains all n sample units.

In order to more accurately specify this forward search procedure, we assume values of a p-dimensional multivariate survey variable Y and a q-dimensional multivariate auxiliary variable X are available for the sample of size n. We denote an individual’s value of Y and X by
[image: image1.wmf] and
[image: image2.wmf] respectively. The matrix of sample values of Y and X is denoted by
[image: image3.wmf]and
[image: image4.wmf] respectively. We seek to identify possible outliers in y.

Generally identification of such outliers is relative to some assumed model for the conditional distribution of Y given X in the sample. Given the linear structure shown in Figures 1 and 2, we assume that a linear model
[image: image5.wmf] can be used to characterise this conditional distribution for each component of Y, where
[image: image6.wmf] is a q-vector of unknown parameters and
[image: image7.wmf] is a random error with variance
[image: image8.wmf]. A large residual for one or more components of Y is typically taken as evidence that the unit is a potential outlier.

For p = 1 we drop the subscript j and let
[image: image9.wmf] and
[image: image10.wmf] denote the regression model parameter estimates based on a clean subset of size m. For an arbitrary sample unit i, Hadi and Simonoff (1993) suggest the distance from the observed value
[image: image11.wmf] to the fitted value generated by these estimates be calculated as

[image: image12.wmf]
where
[image: image13.wmf] denotes the matrix of values of X associated with the sample observations making up the clean subset, and
[image: image14.wmf] takes the value 1 if observation i is in this subset and –1 otherwise. The clean subset of size m+1 is then defined by those sample units with the m+1 smallest values of
[image: image15.wmf]. For p > 1, Hadi (1994) and Riani and Atkinson (2000) use the squared Mahalanobis distance

[image: image16.wmf]
where
[image: image17.wmf] denotes the fitted value for
[image: image18.wmf] generated by the estimated regression models for the components of this vector, and
[image: image19.wmf] denotes the estimated covariance matrix of the errors associated with these models. The summation here is over the observations making up the clean subset of size m.

For p = 1 Hadi and Simonoff (1993) suggest stopping the forward search when the (m+1)th order statistic for the distances
[image: image20.wmf] is greater than the 1 – /2(m+1) quantile of the t-distribution on mq degrees of freedom. When this occurs the remaining n-m sample observations are declared as outliers. Similarly, when p>1, Hadi (1994) suggests the forward search be stopped when the (m+1)th order statistic for the squared Mahalanobis distances
[image: image21.wmf] exceeds the 1/n quantile of the chi-squared distribution on p degrees of freedom.

Definition of the initial clean subset is important for implementing the forward search procedure. Since the residuals from the estimated fit based on the initial clean subset define subsequent clean subsets, it is important that the parameter estimates defining this estimated fit are unaffected by possible outliers in the initial subset. This can be achieved by selecting observations to enter this subset only after they have been thoroughly checked. Alternatively, we use an outlier robust estimation procedure applied to the entire sample to define a set of robust residuals, with the initial subset then corresponding to the m observations with smallest absolute residuals relative to this initial fit. Our experience is that this choice is typically sufficient to allow use of more efficient, but non-robust, least squares estimation methods in subsequent steps of the forward search algorithm.

Before ending this section, we should point out that the forward search method described above is based on a linear model for the non-outlier data, with stopping rules that implicitly assume that the error term in this model is normally distributed. Although Figures 1 and 2 indicate that these assumptions are not unreasonable for logarithmic transforms of the ABI data, it is also clear that they are unlikely to hold exactly. Consequently, in the following section we develop an outlier identification algorithm that is more flexible in its approach.

3. Outlier Identification via Robust Tree Modelling

Regression tree models (Breiman, Freidman, Olshen and Stone, 1984) are now widely used in statistical data analysis, especially in data mining applications. Here we use a tree modelling approach that is robust to the presence of outliers in data to identify gross errors and extreme outliers. The WAID software for regression and classification tree modelling that was used for this purpose was developed for missing data imputation under the Autimp project (Chambers et al, 2001). Under the Euredit project a toolkit of programs has been created that emulates and extends the capabilities of WAID. These programs work both under S-PLUS (MathSoft, 1999), and under R, a public domain statistical software package that is compatible with S-PLUS (Fox and Monette, 2002). Similar software products are CART (Steinberg and Colla, 1995), the S-PLUS tree function and the CHAID program in SPSS AnswerTree (SPSS, 1998). The code for the WAID toolkit is available from the authors.

The basic idea behind WAID is to sequentially divide the original data set into subgroups or nodes that are increasingly more homogeneous with respect to the values of a response variable. The splits themselves are defined in terms of the values of a set of categorical covariates. The WAID splitting algorithm is described below. By definition, WAID is a nonparametric statistical procedure. It also has the capacity to implement outlier robust splitting based on M-estimation methodology (Huber, 1981). In this case outliers are down-weighted when calculating the measure of within node heterogeneity (weighted residual sum of squares) used to decide whether a node should be split or not. The weights used for this purpose are themselves based on outlier robust influence functions.

3.1 The WAID Regression Tree Algorithm for Univariate Y
The univariate version of WAID assumes a rectangular data set containing n observations, values {yi} of a scalar response variable Y and values {x1i, ..., xpi} of p covariates X1, ..., Xp. The values of Y are allowed to contain outliers. In contrast, the covariates X1, ..., Xp are all assumed to be categorical. No missing X-values are allowed in the current version of WAID. For a scalar response variable WAID builds a regression tree. If the response variable is categorical, WAID builds a classification tree. The only difference between these two types of trees is the heterogeneity measure used to determine tree-splitting behaviour. Since our focus is outlier identification, we are concerned with scalar response variables only and so we restrict consideration to WAID's regression tree algorithm.

The basic idea used in WAID (as well as other tree-based methods) is to split the original data set into smaller subsets or nodes in which the Y-values are more homogeneous. In WAID this is accomplished by sequential binary splitting. At each step in the splitting process, all nodes created up to that point are examined in order to identify the one with minimal homogeneity. An optimal binary split of this "parent" node is then carried out. This is based on identifying a set of values of one of the covariates X1, ..., Xp such that a split of the parent node into one “child” node containing only cases possessing these values and another child node containing the remaining cases maximes (minimises) the homogeneity (heterogeneity) of these child nodes. The measure of heterogeneity used is the weighted sum of squares of residuals (WSSR) defined with respect to a robust measure of the location of the Y-values in the parent node. The splitting process continues until a suitable stopping criterion is met. At present this is when either (i) all candidate parent nodes are effectively homogeneous; (b) all candidate parent nodes are too small to split further; or (c) a user-specified maximum number of nodes is reached. Unlike some other tree modelling software packages (e.g. CART), there is no attempt to find an "optimal" tree. The set of nodes defining the final tree are typically referred to as the terminal nodes of the tree.

3.1.1 Calculation of WSSR and Robust Weights

We denote the values of the response variable Y in node k by
[image: image22.wmf], where nk is the number of observations in node k. The weighted sum of squared residuals within this node (WSSRk) is then

[image: image23.wmf]
where wi is the weight attached to ith case in node k and
[image: image24.wmf] is the weighted mean of Y in node k,

[image: image25.wmf].

The weight wi is calculated as the ratio

[image: image26.wmf]
where ((x) denotes an appropriately chosen influence function. The S-PLUS/R toolkit version of WAID computes these weights by first calling the robust regression function rlm in the MASS robust statistics library (Venables and Ripley, 1994), available for both R and S-PLUS. This function returns weight values which are then rescaled within WAID to sum to the number nk of cases within node k.

A standard (nonrobust) regression tree in WAID uses the Ordinary Least Squares (OLS) influence function, ((x) = x, in which case wi = 1. Besides OLS, WAID currently has three robust weighting schemes, corresponding to the weighting options available for rlm(). The default is the biweight influence function,
[image: image27.wmf], where c is a tuning constant. The value c = 4.685 gives 95% efficiency at the normal (Venables and Ripley, 1994, p. 251).

3.1.2 Optimal Splitting

Without loss of generality, we consider optimal splitting of the kth parent node. Suppose there are nk observations in this node and p covariates X1, ..., Xp. The best split for each covariate Xj, j = 1, ..., p is defined by the subset of values of Xj that generates child nodes with a WSSR value smaller than that generated by any other split of the parent node based on Xj. The optimal split overall is then defined as the best (in terms of minimising the WSSR value generated by the resulting child nodes) among these covariate-specific optimal splits.

For convenience, we let Vj denote the set containing the mj unique values of Xj for the cases in the parent node. The search procedure for the best split based on Xj is then:

Step 1: Sort the mj values in Vj. WAID allows a covariate to be declared as monotone or non-monotone. If Xj is monotone then the values in Vj are sorted in ascending order. If Xj is non-monotone, then the values in Vj are sorted as
[image: image28.wmf] where
[image: image29.wmf] and

[image: image30.wmf].

Let Lqj denote the values in Vj that are to the "left" of vq with Rqj denoting the corresponding set of values in Vj that are to the "right" of vq. We can then split the parent node into two child nodes at this value vq. This split corresponds to a left child node (NodeLqkj) and right child node (NodeRqkj) defined by

[image: image31.wmf]

[image: image32.wmf].

Step II: Calculate a WSSR value for each of the mj - 1 possible splits of Vj. For each vq (Vj the WSSR values for the child nodes corresponding to a split at this value are

[image: image33.wmf]

[image: image34.wmf]
where
[image: image35.wmf] and
[image: image36.wmf] is defined similarly. The within-group WSSR associated with a split at vq (Vj is then

[image: image37.wmf].

Step III: Find the best splitting value vq (Vj. This is the value vq that generates the minimum value of WSSRqkj among all values vq in Vj. The overall best split among the candidate best splits defined by each covariate is the split that generates the minimum value of WSSRqkj over both q and j.

3.2 The WAID Regression Tree Algorithm for Multivariate Y
The WAID programs can also build a robust regression tree for a p-dimensional response variable Y, and so can be used for multivariate outlier detection. The only difference between the univariate and multivariate tree fitting procedures is the method used to calculate the heterogeneity of a candidate node. Three options are available in this regard. In what follows tree “stages” are indexed by k (k = 1 corresponds to the original unsplit data set and k = K denotes the final stage of the tree), and the candidate nodes for splitting at stage k are indexed by h.

Option 1: The program first grows p univariate trees, one for each component of the response vector. Each such tree is characterised by an n (K matrix of robust weights, where column k of this matrix contains the weights used to determine node heterogeneity for all candidate nodes at stage k of the tree growing procedure.

Let
[image: image38.wmf] denote the weight associated with observation i at stage k of the univariate tree defined by response variable j. WAID then builds a tree using the following heterogeneity measure for candidate node h at stage k of the multivariate tree:

[image: image39.wmf]
where

[image: image40.wmf].

We can think of this as an “average heterogeneity” approach. Note that it is not scale invariant – a component response variable that is much larger in scale than the other component response variables will dominate this heterogeneity measure and hence dominate the tree growing process. Consequently component variables that differ wildly in terms of scale should be first rescaled before this option is used to build a multivariate tree.

Option 2: Here again WAID grows p univariate trees to obtain the weights
[image: image41.wmf]. However, in this case the measure of heterogeneity for candidate node h at stage k in the multivariate tree is

[image: image42.wmf]
where

[image: image43.wmf]
and

[image: image44.wmf].

We can think of this approach as an “average weight” approach. It also is not scale invariant.

Option 3: This is the only truly multivariate tree growing option in WAID, in the sense that the weights defined at each stage and the associated measures of within node heterogeneity are defined directly from a multivariate extension of the robust weighting procedure used in the standard univariate WAID tree-building algorithm. In particular, the weight associated with observation i in candidate node h at stage k is calculated iteratively as

[image: image45.wmf]
where yi denoted the p-vector of response values for this case,
[image: image46.wmf], the function corresponds to a robust influence function (e.g. the biweight) and
[image: image47.wmf], where
[image: image48.wmf].

3.3 Outlier Identification using WAID

Each time WAID splits the data set to create two new nodes it creates a new set of robust weights for the units making up those nodes. These weights are scaled so that they sum to the number of observations in the node, with outliers receiving weights close to zero and inliers (i.e. non-outliers) receiving weights around one. These weights reflect distance from a robust estimate of location for the values in the node. Consequently a value that is not immediately identifiable as an outlier within larger nodes created earlier in the tree building process is more likely to become identified as such as it is classified into smaller and smaller nodes. In effect, the weights associated with such units tend to move towards zero. The WAID outlier identification algorithm defines an outlier as an observation with an average weight over all node splits that is less than a specified threshold. This threshold is selected as the value at which the most observations that are "real" errors are identified as outliers and where the least number of error-free observations are classified as outliers.

We can calculate an "average" weight for every case in the original data set by averaging its weight over all splits defining the final tree. If a case is not involved in a particular split (it is not in the node that is selected for splitting) its weight remains unchanged from the last split in which it was involved. Outlier identification using a robust WAID tree is then based on the fact that outliers are likely to have small weights in most of the nodes in which they appear in such a tree. Consequently they will also have small average weights across all node splits, and we can therefore identify them as outliers on the basis that their average weight is below a defined threshold. Note that we do not distinguish between outliers that appear early on in the construction of the tree and then gradually become "less" outlier-like because of progressive refinement by the tree-building process and outliers that are "hidden" early on in the tree-building process and then become more and more outlying relative to their within-node comparators in later stages of the tree.

The task is therefore one of finding a threshold value such that "important" outliers are identified as having average weights less than this threshold. The set of identified outliers for a given threshold w can be denoted

out(w) = {i,
[image: image49.wmf] < w, i=1, ..., n}

where
[image: image50.wmf] is the average weight of the ith case, with
[image: image51.wmf] denoting the weight of the ith unit at the kth split, and m is the total number of splits defining the tree.

An optimal threshold value w* is therefore one that successfully identifies outliers without also mis-identifying non-outliers. That is, it maximises the proportion of "true" outliers identified and minimises the proportion of "false" outliers identified. Identification of this optimal value therefore requires information about true outliers to be available. In practice this information will not be available. However, information is often available about known errors in the data, most of which are associated with outlying values. Consequently, we choose w* to optimise identification of these errors.

Put Nerrors equal to the total number of true errors, and, for a given threshold w, put Noutliers(w) equal to the total number of outliers identified by WAID on the basis of the specified threshold w, nerrors(w) equal to the corresponding number of errors identified as outliers, and nnon-errors(w) equal to the total number of non-errors identified as outliers. The proportion of error-generated outliers identified by WAID is then

[image: image52.wmf]
while the proportion of non-errors identified as outliers using the threshold w is

[image: image53.wmf].

We denote the optimal threshold value as

[image: image54.wmf].

This definition is a simple implementation of the idea that at the optimal threshold value WAID identifies most of the error-generated outliers as well as minimises the number of non-errors identified as outliers. In the next section we illustrate this approach using the perturbed data.

3.4 Outlier and Missing Data Imputation using WAID

Once a set of outliers has been identified, the robust tree structure generated by the WAID algorithm can be used to impute replacement values for these units. Two imputation methods are particularly suited for use with WAID trees. These are mean imputation and random donor imputation within terminal nodes. In the context of outlier-contaminated data, these imputation methods need to be modified as follows:

· Use a robust weighted mean within a terminal node for mean imputation.

· Identify a donor within a terminal node by randomly selecting a value from those cases within the node whose average weights are greater than the outlier threshold w*.

Note that imputation for missing (rather than outlier) values proceeds in exactly the same way. That is, the record with a missing value is "dropped" down the WAID tree until it reaches a terminal node. It is then imputed using either the weighted mean for the node or via a donor value obtained from a non-outlier in the node.

4. Identifying Errors and Outliers in the Perturbed Data
4.1 Error Detection using Forward Search

Table 2 shows the incidence of errors and missing values for each of the ABI variables in the perturbed data. It also shows the incidence of “n/a” codes for these variables (indicating no response was required for that variable for a sampled business) and the incidence of zero values. Note the large number of zero values for the assdisp and assacq variables.

Table 2. Incidence of incorrect and non-standard data types in the perturbed data.

	Data type
	Variables

	
	turnover
	emptotc
	purtot
	taxtot
	assacq
	assdisp
	employ

	n/a
	0
	0
	0
	0
	908
	1389
	0

	missing
	42
	41
	28
	45
	57
	63
	35

	errors
	241
	332
	629
	482
	248
	223
	49

	zero
	3
	658
	5
	390
	2106
	3208
	721

We first applied the forward search algorithm described in Section 2 to these data treating each variable separately (i.e. a univariate forward search). In each case we fitted a linear model in the logarithm of the variable concerned, using the logarithm of turnreg as the covariate. Two types of model were investigated. The first (across stratum) was fitted using all cases in the data set. The second (stratum level) fitted a separate linear model in each stratum in the data set, where these strata corresponded to a more detailed industry classification of the sample businesses. Cases with zero, n/a or missing values were excluded from the outlier search procedure. As described in Section 2, the initial subset for the forward search procedure was defined by the smallest (in absolute terms) residuals from a robust biweight fit to the entire data set. After some experimentation, we fixed the size of this initial data set at 70 per cent of the size of the overall data set. The stopping rule suggested by Hadi and Simonoff (1993) was used, with
[image: image55.wmf] = 0.01. Table 3 shows the results from this univariate outlier search.

Table 3. Numbers of outliers detected (with numbers of errors detected as a consequence in parentheses) using univariate forward search applied to the perturbed data.

	Model level
	Variables

	
	turnover
	emptotc
	purtot
	taxtot
	assacq
	assdisp
	employ

	Across stratum
	349

(225)
	226

(219)
	361

(281)
	224

(219)
	8

(8)
	14

(14)
	11

(5)

	Stratum level
	467

(227)
	279

(237)
	441

(294)
	245

(235)
	102

(90)
	56

(52)
	77

(24)

Table 4. Error detection performance of multivariate forward search procedure (across stratum model) applied to perturbed data. Numbers in columns labelled (a) refer to all cases, while numbers in columns labelled (b) refer to cases with “significant” errors.

	Number of errors per record
	Total number of records
	Records declared as outliers

	
	(a)
	(b)
	(a)
	(b)

	0
	4294
	4577
	96
	145

	1
	489
	374
	194
	172

	2
	165
	8
	31
	5

	3
	13
	2
	3
	2

	4
	154
	155
	154
	155

	5
	3
	2
	3
	2

	Total
	5118
	5118
	481
	481

A multivariate forward search was also carried out. In this case we restricted attention to the 5118 cases where turnover, emptotc, purtot, taxtot and employ are all strictly positive. We excluded the variables assacq and assdisp from consideration because of the large number of zero values for these variables meant that only a small number of cases have values for all seven variables that are strictly positive (and hence can be logarithmically transformed). In the columns labelled (a) in Table 4 we show the number of cases with errors detected by this method distributed according to the number of errors in each case. We see that out of a total of 824 cases with one or more errors, the multivariate forward search detected 385. It also identified 96 cases with no errors as outliers. Note that this relates to cases with any error, no matter how small. If we restrict attention to only those cases with “significant” errors in one or more of turnover, emptotc, purtot, taxtot and employ, i.e. those cases where the perturbed values of these variables differ by more than 100 per cent from their true values, then we obtain the results shown in the columns labelled (b) in Table 4. In this case the multivariate forward search procedure finds 336 out of the 541 cases with at least one such “significant” error.

In Table 5 we contrast the performance of the multivariate forward search with that of the individual univariate forward search procedures. Here we see that 36 records were identified as outliers by the multivariate search and were not identified as such by any of the univariate searches. Furthermore only 14 records were identified by one of the univariate searches as containing an outlier and were not identified as such by the multivariate search. All records containing two or more outliers (as identified by the univariate searches) were also identified as outliers by the multivariate search.

Table 5. Comparing the outlier detection performances of the univariate and multivariate forward searches (across stratum model) applied to the perturbed data.

	Number of outliers detected by univariate search
	Total number of records
	Number of records not identified by multivariate search
	Number of records identified by multivariate search

	0
	4659
	4623
	36

	1
	254
	14
	240

	2
	39
	0
	39

	3
	16
	0
	16

	4
	146
	0
	146

	5
	4
	0
	4

	Total
	5118
	4637
	481

Given that the multivariate forward search cannot deal with the zeros in the perturbed data, and given the lack of a strong differentiation in the performance of these two methods with these data, we restrict attention to comparisons with the univariate forward search method in what follows.

4.2 Error Detection using WAID

Initially we focus on a univariate approach, building robust trees for the individual variables in Table 1. We provide results below for the turnover, emptotc, and assacq variables. In particular, for turnover and emptotc we built trees for the logarithm of the variable value + 1, while for assacq we built a tree for the positive values of this variable (i.e. we excluded cases with zero value for assacq). All trees used the register variables turnreg and empreg as covariates. Since turnreg is not categorical, we first categorised this variable by classifying the values in the ABI data set into their percentile classes. Both covariates were treated as monotone in the tree building process and each tree was built using the default option of robust location estimates based on the biweight influence function (c = 4.685). All trees were grown to 50 terminal nodes, with no node containing less than 5 cases, and with missing values of the relevant variable excluded (these were imputed later).

Comparison of the trees grown using the true data and the perturbed data showed that they were virtually identical, indicating that the errors in the perturbed data has virtually no impact on the tree growing process. Furthermore, these trees were substantially different from corresponding non-robust trees grown from these data sets.

Figure 3 shows the plots of R1(w) and R1(w)(1R2(w)) generated by these trees for the variables turnover, emptotc and assacq. We see that for turnover, R1(w)(1R2(w)) attains a maximum very early, then falls away steadily. This behaviour is reflected in the plot for R1(w), which shows that over 75% of the errors in turnover are detected using small values of w, with few non-errors detected at the same time. The optimal values of w for emptotc and assacq are larger, reflecting the fact that the relationships between these variables and the covariates are more non-linear. For all three variables remaining errors are then gradually detected, at the cost of identifying increasing numbers of non-errors as outliers.

Figure 3 about here

In most cases, errors detected at larger values of w are “non-significant”, reflecting small differences from corresponding true values. As in the previous section, we define a “significant” error as one where the relative difference between the error value and the true value is greater than one. Table 6 shows the values of R1(w) (denoted Rsig) when only significant errors are taken into account. Observe that for all three variables approximately 92 per cent of such errors are identified at the optimal value w*.

Table 6 also contrasts the performance of the WAID procedure with the corresponding forward search procedures. Here we see that for turnover this approach does identify all the significant errors in the data, but at the cost of identifying many more outliers than the WAID-based procedure. In comparison, for emptotc and assacq the WAID-based procedure is clearly superior in terms of identifying significant errors, while at the same time keeping the number of non-errors identified as outliers to an acceptable level.

Table 6. Univariate WAID error detection performance (perturbed data) for turnover, emptotc and assacq compared with the corresponding forward search (FS) performance. Note that WAID results are for w = w*.

	Method
	Outliers detected

(Nout)
	Errors detected

(Nerror)
	Significant errors detected

(Nsig)
	R1
	Rsig
	R2
	R1(1R2)

	turnover

	WAID
	199
	193
	191
	0.801
	0.918
	0.030
	0.7767

	FS/Across
	349
	225
	206
	0.941
	1.000
	0.355
	0.6069

	FS/Stratum
	467
	227
	206
	0.950
	1.000
	0.514
	0.4617

	emptotc

	WAID
	299
	250
	211
	0.753
	0.921
	0.164
	0.6296

	FS/Across
	226
	219
	218
	0.664
	0.823
	0.031
	0.6431

	FS/Stratum
	279
	237
	229
	0.718
	0.864
	0.151
	0.5766

	assacq

	WAID
	203
	187
	121
	0.766
	0.924
	0.079
	0.7060

	FS/Across
	8
	8
	8
	0.033
	0.035
	0
	0.0331

	FS/Stratum
	102
	90
	90
	0.372
	0.390
	0.118
	0.3281

The trees used in the preceding analysis all had 50 terminal nodes. A natural question to ask at this stage is therefore about the impact of tree size (as measured by numbers of terminal nodes) on outlier identification performance. Rather surprisingly, at least as far as the perturbed data is concerned, tree size turns out to have little such impact. This is illustrated in Table 7, which shows the performance characteristics of trees of varying size for the turnover and assacq variables. Provided a tree has 10 or more terminal nodes, there is little to be gained by increasing the size of the tree, and excessively large trees can in fact have slightly poorer outlier detection performance compared with smaller trees.

Table 7. Impact of tree size (numbers of terminal nodes) on outlier and error detection performance with the perturbed data. In all cases the optimal value w* was used.

	Size
	wopt
	Nout
	Nerror
	Nsig
	R1
	Rsig
	R2
	R1(1R2)

	turnover

	5
	0.100
	193
	185
	183
	0.768
	0.880
	0.042
	0.7358

	10
	0.072
	204
	194
	191
	0.805
	0.918
	0.049
	0.7655

	25
	0.029
	199
	193
	191
	0.801
	0.918
	0.030
	0.7767

	50
	0.016
	199
	193
	191
	0.801
	0.918
	0.030
	0.7767

	100
	0.008
	199
	193
	191
	0.801
	0.918
	0.030
	0.7767

	assacq

	5
	0.703
	213
	186
	120
	0.762
	0.916
	0.127
	0.6657

	10
	0.706
	227
	198
	123
	0.812
	0.939
	0.128
	0.7078

	25
	0.676
	224
	195
	122
	0.799
	0.931
	0.130
	0.6957

	50
	0.581
	203
	187
	121
	0.766
	0.924
	0.079
	0.7060

	100
	0.619
	213
	185
	120
	0.758
	 0.916
	0.132
	0.6585

So far we have investigated the performance of univariate trees for outlier and error detection. We now consider the use of a multivariate tree for the same purpose. As with the multivariate forward search procedure, we restrict attention to the five ABI variables turnover, emptotc, purtot, taxtot and employ where excessive zero values are not a problem. Again, all data values were transformed to the logarithmic scale after adding one, so zero values were included (unlike the forward search procedure). However, cases with missing data for any component variable were excluded, leading to a total of 5908 cases being used in tree construction. Table 8 shows that this subset contained virtually all the errors in the perturbed data.

Table 8. Incidence of errors in the subset of the perturbed data used to grow the multivariate tree.

	
	Errors in data set
	Errors excluded

	turnover
	232
	9

	purtot
	603
	26

	taxtot
	471
	11

	emptotc
	332
	6

	employ
	46
	3

Recollect that there are three options available for growing a multivariate tree, corresponding to the way the “multivariate heterogeneity” associated with a particular tree split is defined (see Section 3.2). In Figure 4 we show how the error detection performance for the turnover variable for the three different trees generated by these options varies with w.

Figure 4 about here

Table 9. Error detection performance for a multivariate tree based on the perturbed data. Results for the three multivariate options, with w = w*, are set out below each other for each variable. Note that for option 1, the optimal value w* is the optimal univariate value.

	w*
	Nout
	Nerror
	Nsig
	R1
	Rsig
	R2
	R1(1R2)

	turnover

	0.0339
	193
	189
	187
	0.8147
	0.9167
	0.0207
	0.7978

	0.3299
	191
	182
	182
	0.7845
	0.8922
	0.0471
	0.7475

	0.1101
	195
	184
	183
	0.7931
	0.8971
	0.0564
	0.7484

	purtot

	0.0330
	235
	229
	229
	0.3798
	0.9124
	0.0255
	0.3701

	0.3299
	191
	182
	182
	0.3018
	0.7251
	0.0471
	0.2876

	0.1055
	292
	233
	229
	0.3864
	0.9124
	0.2021
	0.3083

	taxtot

	0.5393
	382
	311
	310
	0.6603
	0.7209
	0.1859
	0.5376

	0.3299
	191
	182
	182
	0.3864
	0.4233
	0.0471
	0.3682

	0.0450
	205
	194
	194
	0.4119
	0.4512
	0.0537
	0.3898

	emptotc

	0.2930
	238
	214
	213
	0.6564
	0.8161
	0.1008
	0.5902

	0.3299
	191
	182
	182
	0.5583
	0.6973
	0.0471
	0.5320

	0.0127
	194
	183
	183
	0.5614
	0.7011
	0.0567
	0.5295

	employ

	0.3932
	97
	27
	22
	0.5870
	0.7586
	0.7216
	0.1634

	0.9514
	1197
	36
	26
	0.7826
	0.8966
	0.9699
	0.0235

	0.6013
	1431
	39
	28
	0.8478
	0.9655
	0.9727
	0.0231

In Table 9 we show the error detection performance diagnostics for each of the five component variables and for each option at the optimal value of w thus defined. Observe that option 1 (average heterogeneity) always does significantly better than the two other multivariate options. Comparing the results in Table 9 with those in Table 6, we see that none of the multivariate trees perform significantly better than the corresponding univariate trees. This is consistent with our earlier observation about the lack of a similar improvement using the forward search approach, and indicates that, for the perturbed data at least, virtually all the errors are in low dimensions and so are easily detected via a univariate outlier search procedures.

Finally, we consider the imputation performance of the tree-based method. This is illustrated in Figure 5 where we compare the imputations for missing values, detected error values and true outlier values for turnover values in the perturbed data with their actual values in the true data. These imputations were generated using the robust univariate tree model for turnover that was created from the perturbed data.

Figure 5 about here

Two types of imputations are shown. Both are node-specific, in the sense that the case requiring imputation is “placed” in its appropriate terminal node depending on its values of turnreg and empreg. The first is a based on a random draw from those cases within a terminal node with average weights greater than the optimal cutoff w* for turnover (donor). The other is the weighted average value of turnover in the terminal node (mean). In all cases the values shown are on the “log plus one” scale, i.e. they correspond to the logarithm of the appropriate value plus one.

Inspection of the plots in Figure 5 show clearly that that for missing values and detected errors, these imputations appear to be quite acceptable, with most falling on or near the y = x line shown on the plot. For the true outliers, however, the imputations are far from their corresponding true (and outlying) values. This illustrates an important characteristic of robust imputation for outlier values – by definition this type of imputation cannot seek to recover the value being imputed.

Table 10. Imputation performance of robust univariate tree-based models for perturbed data. All comparisons are on the “log plus one” scale. The results for assacq and assdisp are for non-zero true values of these variables.

	Variable
	% Relative difference between means of imputed and true values
	Correlation between imputed and true values

	
	Donor
	Mean
	Donor
	Mean

	Missing values

	turnover
	-1.58
	-0.55
	0.9174
	0.9394

	emptotc
	11.06
	9.19
	0.7415
	0.7813

	purtot
	-2.91
	-0.47
	0.8235
	0.9526

	taxtot
	-6.25
	-8.19
	0.7861
	0.8388

	assacq
	-33.11
	-15.05
	0.3782
	0.7777

	assdisp
	-34.66
	-22.57
	0.5418
	0.5875

	employ
	-1.43
	-2.53
	0.8578
	0.9127

	Detected errors

	turnover
	0.17
	-0.34
	0.8832
	0.9254

	emptotc
	-0.01
	1.07
	0.8149
	0.8973

	purtot
	-0.28
	0.33
	0.9366
	0.9658

	taxtot
	0.43
	-1.78
	0.8152
	0.8821

	assacq
	-18.52
	-11.75
	0.7422
	0.8820

	assdisp
	-10.11
	-5.11
	0.5522
	0.7521

	employ
	-5.45
	-3.37
	0.9381
	0.9520

	True outliers

	turnover
	25.70
	25.05
	0.0815
	0.1071

	emptotc
	184.56
	185.25
	-0.0090
	0.1024

	purtot
	24.81
	23.70
	-0.2054
	-0.2466

	taxtot
	-26.76
	-26.08
	-0.0066
	0.0964

	assacq
	-16.04
	-10.67
	-0.1890
	-0.1668

	assdisp
	-27.77
	-37.74
	-0.0011
	-0.0134

	employ
	42.83
	48.03
	0.2520
	0.2391

In Table 10 we provide values for two summary measures of imputation performance. These are the relative difference (in per cent) of the means of the imputed and true values for each type of imputation and for each ABI variable, and the corresponding correlations between these values. These results confirm the evidence in the plots in Figure 5. The robust WAID tree-based imputations work well for missing values and detected errors. However, as one would expect, these imputations are far from the “truth” when it comes to imputation of detected true outliers. Effectively, what imputation is doing in this case is replacing an outlying value with one that is an inlier.

As an aside, we note the clear superiority of mean imputation over donor imputation that is evident in Table 10, especially as far as the correlation measure is concerned.

5. Discussion

In this paper we describe a robust nonparametric approach to identification of gross errors and outliers in survey data. Software (WAID) for implementing this approach is also described, and evaluated using a realistic business survey data set. Overall, the method performs rather well and, for the application we consider, seems preferable to a more standard outlier search algorithm (the forward search procedure). Unfortunately, the data set we used for the application did not appear to have a significant number of truly multivariate outliers, and so we are unable at this stage to recommend the multivariate version of the procedure.

Our approach is dependent on choice of a tuning constant, corresponding to the optimal weight cutoff w*. At present we determine the value of this constant using a “completely edited” data set obtained from a previous survey. This assumes that the value of w* remains the same over time. This is unlikely to be the case. Further work therefore needs to be carried out to determine an optimum updating strategy for this parameter.

The problem of dealing with “special” values (e.g. zero) when carrying out error detection remains an open problem. In this paper we have implicitly assumed these values are recorded without error. However, this will typically not be true. Alternative tree models (classification tree models) need to be constructed to predict when an observed special value is an error. Some experience in using these models in the Euredit project however seems to show that if such errors are randomly distributed over the survey data base, then there is little that can be done to automatically fix them.

Finally, we note that imputation of detected errors, missing values and outliers using the robust WAID tree model works well, at least for missing values and detected errors. Imputation for true outliers is problematic, since the objective here is clearly not to recover the outlier value, but to replace it by something more “reasonable”. In this paper we adopt the attitude that this corresponds to replacing the outlier value by a value more consistent with inliers (relative to the robust tree model) in the data. An alternative approach is to replace the detected outlier value by a less extreme value, but not necessarily one that is an inlier value. This approach is investigated in Ren and Chambers (2002).

References

Atkinson, A.C. (1994). Fast very robust methods for the detection of multiple outliers. Journal of the American Statistical Association, 89, 1329-1339.

Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. New York: Wiley.

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984). Classification and Regression Trees. Pacific Grove: Wadsworth.

Chambers, R. L. (1986). Outlier robust finite population estimation. Journal of the American Statistical Association 81, 1063-1069.

Chambers, R.L., Hoogland, J., Laaksonen, S., Mesa, D.M., Pannekoek, J., Piela, P., Tsai, P. and De Waal, T. (2001). The AUTIMP project: Evaluation of imputation software. Statistics Netherlands, Voorburg.

Fox, J. and Monette, G. (2002). An R and S-PLUS Companion to Applied Regression. California: Sage Publications.

Hadi, A.S. and Simonoff, J.F. (1993). Procedures for the identification of multiple outliers in linear models. Journal of the Royal Statistical Society B, 56, 393-396.

Huber, P.J. (1981). Robust Statistics. New York: Wiley.

MathSoft (1999). S-PLUS 2000 User’s Guide. Data Analysis Products Division, Seattle, WA: MathSoft, Inc.

Ren, R. and Chambers, R. (2002). Outlier robust imputation of survey data via reverse calibration. Submitted for publication.

Riani, M. and Atkinson, A.C. (2000). Robust diagnostic data analysis: Transformations in regression. Technometrics, 42, 384-398.

SPSS (1998). AnswerTree 2.0 User’s Guide. Chicago, IL: SPSS Inc.

Steinberg, D. and Colla, P. (1995). Tree-Structured Non-Parametric Data Analysis. San Diego, CA: Salford Systems, Inc.

Venables, W.N. and Ripley, B.D. (1994). Modern Applied Statistics with S-PLUS. New York: Springer.

Figure 1. Plot of the true data, log scale. In both cases the x-axis is the log (turnreg + 1).

(a) log(turnover + 1)

[image: image56.emf]
(b) log(assacq + 1)

[image: image57.emf]
Figure 2. Plot of the perturbed data, log scale. “∆” indicates an error value, while “�” indicates a true value. In both cases the x-axis is log(turnreg + 1)

(a) log(turnover + 1)

[image: image58.emf]
(b) log(assacq + 1)

[image: image59.emf]
Figure 3. Plots of R1(w) and R1(w)(1R2(w)) for univariate WAID trees. The x-axis is the value of w. The dashed line is R1(w). The solid line is R1(w)(1R2(w)).

(a) turnover
[image: image60.png]
(b) emptotc
[image: image61.png]
(c) assacq
[image: image62.png]
Figure 4. Plots of R1(w) and R1(w)(1R2(w)) for multivariate WAID trees for turnover. The x-axis is the value of w. The dashed line is R1(w). The solid line is R1(w)(1R2(w)).

(a) option 1 (average heterogeneity)

[image: image63.png]
(b) option 2 (average weight)

[image: image64.png]
 (c) option 3 (full multivariate)

[image: image65.png]
Figure 5. Robust WAID tree-based imputations for logarithm of turnover + 1. The x-axis is the imputed value; the y-axis is the true value. Plot on left shows imputed value randomly chosen from donors with average weights greater than w* in terminal node. Plot on right shows imputed value set to robust mean value within terminal node. Line shown in the plot is the y = x line.

(a) missing values

[image: image66.emf][image: image67.emf]
(b) detected errors

[image: image68.emf][image: image69.emf]
(c) true outliers

[image: image70.emf][image: image71.emf]
17

_1090764117.unknown

_1090764126.unknown

_1090764130.unknown

_1090764134.unknown

_1092210126.unknown

_1092210183.unknown

_1092210188.unknown

_1092210151.unknown

_1092210118.unknown

_1090764133.unknown

_1090764128.unknown

_1090764129.unknown

_1090764127.unknown

_1090764122.unknown

_1090764124.unknown

_1090764125.unknown

_1090764123.unknown

_1090764119.unknown

_1090764121.unknown

_1090764118.unknown

_1090764105.unknown

_1090764112.unknown

_1090764115.unknown

_1090764116.unknown

_1090764113.unknown

_1090764110.unknown

_1090764111.unknown

_1090764106.unknown

_1090764096.unknown

_1090764100.unknown

_1090764103.unknown

_1090764104.unknown

_1090764101.unknown

_1090764098.unknown

_1090764099.unknown

_1090764097.unknown

_1090764092.unknown

_1090764094.unknown

_1090764095.unknown

_1090764093.unknown

_967026140.unknown

_1090764089.unknown

_1090764091.unknown

_1090764086.unknown

_1090764087.unknown

_1090764085.unknown

_1090764083.unknown

_966193410.unknown

_966197798.unknown

_967026056.unknown

_966333033.unknown

_966196112.unknown

_966197784.unknown

_966193478.unknown

_966192990.unknown

