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1. Introduction

We take a sample of size n from a finite population of size N where y are observed
values of the multivariate variable Y = (Y3,...,Y,) and x values of the multivari-
ate covariate X = (X7y,..., X,). The covariate X will have a mix of categorical and
continuous variables, for which we have further information about the mean of their
components or the values of non sampled elements in the population. In addition, the
values x1,...,X, are supposed to be correctly measured. It will be assumed that the
method of sampling is ignorable given X, and that there is complete response.

Our goal is to identify possible unit outliers in the observed vector y = (y1,¥y2,-- -,
Vn), where each i~th component y; = (yi1,¥i2, .-, ¥ip) has p observed values for Y
components. A brief overview of the literature shows lots of different methods in order
to identify outliers and influential points in a data set. Generally the identification has
to be carried out relative to some assumed model for the conditional distribution of Y
given X in the sample.

Using the covariates available to specify a regression structure the standard linear
model Y = X + € will be considered, where (3 is a ¢ vector of unknown parameters
and € is a n vector of random errors. In order to locate possible outliers in the vector
(¥1,--.,¥n) the residuals are evaluated by fitting that model to a multivariate data
set. Large residuals from the estimation of Y given X will be evidence that the unit
where such deviation occur is a potential outlier.



A procedure for detection of multiple outliers in a sample may be insensitive when
some suspected units form subgroups, creating the masking effect (Barnett and Lewis,
1994). Robust methods are then necessary in order to locate the true outliers.

We concentrate attention on the robust forward search approach (Hadi and Simonoff,
1993; Atkinson, 1994; Riani and Atkinson, 2000). The algorithm will start from a
subset of observations intended to be outlier free. This subset is augmented at each
step using the units which best fit the regression model based on the clean data. The
search can stop when some significant outlier has joined the basic clean subset or it
may be carried out up to the full sample size n and the behaviour of the residuals
analyzed in order to detect suspicious units.

A real data set provided by the Office of National Statistics (ONS - United Kingdom)
will be used for practical applications. In this study the detection of outliers will be
initially explored on individual components of Y and later for the multivariate case

(p>1).

2. The forward search method

When masked multiple outliers are present in the data generally it is difficult to locate
the true outliers. A single search by fitting a model to the full sample (a one stage
search) may not reveal all the true outlying units. Starting with the full sample and
removing sequentially all the suspected units until no more outliers are present in the
data may be an appealing method. However, it is an expensive algorithm since the
swamping problem may also be present in the sample, affecting discordancy test for
blocks of two or more suspected units. A different option is the forward search method,
which seems to overcome those problems.

We follow the approach described by Hadi and Simonoff(1993) and similarly by Riani
and Atkinson(2000). The basic idea is to start with a relatively clean data set of size

m and include observations until only outlying observations remain out.
Let

Cmy = {(yi,x;), i=1,....m (m <n)} (1)

be the initial clean data, supposedly outlier—free, and (y,x) the sample values of the
response multivariate variable Y, and the covariate vector X,.



This starting subset of data may be defined in different ways. Hadi and Simonoff
(1993) suggests two procedures: by fitting a regression model to the full data and then
ordering the n observations by an appropriate diagnostic measure; or constructing a
single linkage clustering tree and ordering the clusters from most to least extreme by
the order of joining. Riani and Atkinson (2000) perform a robust analysis of the matrix
of bivariate scatterplots and take as the initial subset those observations that are not
outlying on any scatterplot.

The forward search then moves from m observations to m + 1 by choosing the m + 1
observations with the smallest residuals from the fit on data of C(,,). Standardized
residuals from the estimate B(m) for the linear regression model E(Y) = X are com-
puted by Hadi and Simonoff (1993) in the univariate case (p = 1) as
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where B(m) are the estimated regression coefficients computed from fitting the linear
model to C,) and
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the corresponding residual mean square. When ¢ € C(y,), d; is then the internally
studentized residual and when i ¢ C(,,), d; is the scaled prediction error based on the
subset C(). Atkinson (1994) uses almost similar residuals, except that for i € C(p, d;
is defined as the least squares residuals but in their comparison no evidence was found
in favor of one type.

For p > 1, Riani and Atkinson (2000) uses the squared Mahalanobis distances

A

d? = {(Yi_yi(m))T S(:;) (yi_yi(m))}a i=1,...,n} (4)

to order observations for the forward search where y;.,) and S(m) are obtained from
regression of Y on X based on the m observations from the basic clean data C',,). Hadi
(1994) creates a multi dimensional clean data by ordering the n observations according
to robust measures, using



Di(Lr, Sk) = J{vi—Le)" Sz' (vi—Le)}, i=1,...,n, (5)

where Lp and Sy are robust location and covariance matrix estimators from the fit
in the full sample. The observations are rearranged in ascending order according to
similar measure based on L(,,) and S, the mean and covariance matrix of the basic
subset. At the next step the clean data increases its size to m+ 1 using the n distances
obtained from C',y,)

A stopping criterion is used for Hadi and Simonoff (1993) in the forward search. For
p =1, d(s41) is defined as the (s + 1)-th order statistic of the n absolute residuals |d;|,
where s is the size of the current subset C,,). If

d(s+1) > t(a/2(5+1),sfq) (6)

then all observations satisfying |d;| > t(a/2(s+1),5—q) are declared outliers and the for-
ward search finishes.

For p > 1, similarly, Hadi (1994) orders the n evaluated squared Mahalanobis measures
D? and defines D(st) as the (s+1)—th order statistic of the DZ. In a regression model,
residuals from fitting of Y on X are used to evaluate D?. The multivariate search stops
if

D(23—|—1) > X%p,a/n)? (7)

and then all observations with D? > X( are identified as outliers. If the basic data

p.a/n)
set increases to C(y,) = C,), without the stopping criterion being met, then the data

set, is declared outlier free.

Atkinson (1994) and Riani and Atkinson (2000) perform forward searches but without
a stopping rule. The emphasis there is analyzing plots of the residuals obtained from
a full search, starting from the clean data and increasing up to the full sample size.
At each particular stage m,m + 1, m + 2,...,n each observation y; is tested if it is
an outlier according to the Mahalanobis distances from (4). The cuttof value used is
the maximum expected value from a sample of n chi—squared random variables on p
degrees of freedom, approximated by



E(max Xf,) = X?) {(n —0.5)/n}. (8)

Having then performed n — m steps in the algorithm it is possible to analyze the
behaviour of the sequence of the n residuals. Units with a clear outlying pattern
could be detected through the analysis of those residuals, with graphical plots being a
powerful aid.

When the full search ahead is performed, the units which have been identified as

outliers in most of the steps can have a close examination. Empirically we define a set

of outliers by taking the observations which are not on the current clean data when

the relative “jump” on the residual variance on the fit on C(,,) is maximum. Let
det(S(;)) — det(S;-1))

T, = , J=2,...,n, 9
f 4et(Sg 1) J )

where Sy = (m—q) ™t X, (yi—¥:)T (yi—y:) is the estimated residual covariance
matrix based on the clean data with current size m and det(S) its determinant. Since
the search is based in Mahalanobis distances in ascending order, an important outlier
joining the clean data at some stage should cause a breakdown for S(,,. At some
step j where 7; is maximum we declare the unit joining the clean data and all those
not included yet as outliers. The distribution of 7; is not available and is related to
the sequence Sy, S(m+1),- -+, Sn) With dependent components, since generally units
included in the clean data at step m should be present at step m + 1 too.

Also, considering the number of times each sample unit was declared outlier in the
whole search, we apply a binomial test to define a set of outlying units. For example,
suppose 7; is the true probability that sample unit ¢ is an outlier in the population.
Let

0i = Y1 Lk

be the number of times the unit was identified as outlier based on the n — m steps
performed, where I;; is equal 1 when residual d; is outlying on the k—th step of the
search and 0 otherwise.

Assume now that §; ~ B(n — m, 7;), at least approximately since the [, are not inde-
pendent. Defining p; = 6;/(n—m) we then declare unit i as a true outlier (by specifying



VJ(n—=m)—=1(1-7p;) - (10)
Vi (1—pi) (a)’

where c(q) is the cutoff given by the asymptotical normal N (0, 1) distribution.

These two empirical procedures will be performed just to have some comparison be-
tween the outliers defined by the precise stopping rule from Hadi, in a way to use
results from the full search and check if the outlying sets agree.

3. Example for MOD

As an illustration we apply the MOD approach to a perturbed data set provided by
the Office for National Statitics (ONS) both in the univariate and also the multivariate
case (p > 1). Since the true data is also available it may be possible to compare the
“cleaned” data set after the perturbed file has its outliers identified.

3.1. The data set in study

The UK Annual Business Inquiry (ABI) data set is a sample of 6099 enterprises carried
out in the private economy in 1997/1998 and contains responses to selected questions
for two sectors. Sector 1 is the base for five files, three of them about the year 1997,
which are developed for training purpose: sec197(true) has the true values, sec197(y2)
has missing values, sec197(y3) has errors and missing values. Similarly, sec198(y2) and
sec198(y3) refer to 1998.

The evaluation dataset to which the forward search will be applied is the file sec197(y3),
which had true values subjected to perturbation and some of them probably became
outliers. (The exact mechanism for perturbation of the true values is unknown and is
not our concern. However, it seems that basically part of the Y values are randomly
multiplied by constant numbers like 10, 100 or 1000 and part had added constant
values.) This working file is then a raw dataset including errors and outliers with in-
formation about 33 numerical variables from which 26 are independent and the other
7 can be derived from them.



Many variables in the list refer to expenditure on single components of business itens
like, for example, payments, taxes and purchases. Due to the dimensionality of the
data and to deal with some nonresponse and recorded zero values we have chosen to
work only with the following seven numeric response variables:

Y1 (turnowver): Total turnover,
taxtot): Total taxes paid,
purtot): Total purchases of goods and services,

oSS

(

(

(

(emptotc): Total employment costs,

(employ): Total number of employees,

Ys (assdisp): Total proceeds from capital asset disposal,
(

Y7 (assacq): Total costs of all capital assets acquired,

which refer to totals and perhaps may have been recorded with better precision than

individual expenditures.

Under the assumption of complete response, we impute the missing observations with
the true values provided by secl197(true) and actually define our working dataset as
only containing the original values plus the perturbed ones.

Two variables listed in the dataset were considered to be used as covariates to per-
form linear models fittings, namely turnreg (registered turnover) and empreg (regis-
tered number of employees), the last one available in a categorical type in the range
{0,1,...,5}. Only turnreg was used as covariate because in general it has a very good
linear relationship with the seven response variables, specially in log scale and then
we denote it by X. When we tried to fit Y;|X, i =1,...,7, within the six classes of
empreg no major changes were detected to justify including it as a second covariate.
Some classification variables such as, for example, class, are also available and will be
discussed later for stratification purposes when looking for appropriate models for Y| X.

For two non-—negative variables X and Y four partitions are possible: (X = 0,V =
0,(X =0,Y >0),(X >0Y =0) and (X > 0,Y > 0). In the real data the first
case would not be surely the situation of an enterprise “open for business” and should
not be present in the data. (X = 0,Y > 0) could only be some kind of activity where
the owner is the only employee and is not regarded as so when filling up the survey.
However, it is possible that (X > 0,Y = 0) has genuine units in the sample although
it suggests a wrongly recorded zero value for Y. In terms of estimation, in order to find
some estimate for py it would be essential to distinguish the observed y = 0 values
according to if it is a true zero or a wrongly recorded zero. Ren (2001)-b considers this



issues, where logistic models can be used to find estimates of the evaluation of the con-
ditional probability Prob(y = 0|z) and appropriate weights to the recorded y values can
then be applied to reach a good estimate of yy or for the population total Ty = SN | Y;.

In some editing process, initially applied to the data before searching for outliers, the
units related to the first three cases would probably be removed from the dataset.
Therefore, due to the nature of the business data only the last case (X > 0,Y > 0) will
be studied here, where we will search for outliers possibly present into it. (A similar
dataset will be defined for a search in the multivariate vector Y.)

The analysis of the sample, when the study is restricted to p = 1, non—missing Y and
(X > 0,Y > 0 leads to reduced individual data sets obtained from the ABI database.
(The multivariate case (p > 1) will also be considered but the study concentrates more
on p = 1.) Different proportions of units for each variable were perturbed as Table I
shows for those seven individual reduced datasets, from an initial analysis on the data.

Table I - Sample sizes(n;) and number of perturbed units (np;) for each individual
response variable Y;, ¢ =1,...,7, on reduced datasets defined by (X > 0,Y; > 0)

Variable 7, np;
Y) (turnover) | 6082 | 239
Y, (taxtot) 5694 | 474
(purtot) 6080 | 624
(emptotc) | 5423 | 330
(
(
(

employ) | 5363 | 46
assdisp) | 1451 | 219
assacq) 3048 | 242
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Figure 1 - Scatterplot for data about turnover and turnreg,

in the raw scale (a) and in the transformed log scale (b),
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Figure 2 - Scatterplot for data about response variables Y;, + =2,...,7 and X
in the transformed log scale, with perturbed units marked with “x
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From an exploratory data analysis for each particular response variable Y;, : =1,...,7,
it is clear that some transformation may be useful in order to provide a better linear fit
for Y| X as Figure la shows, for example, for Y7. There is a huge spread for the sample
y; data and a linear fit could suffer from the presence of influential or outlying values.
After a simple log transformation applied to both variables Figure 1b shows that it
may be easier now to search for outliers when the scale factor was kept in control and
a good linear fit holds for Y;|X. Units in the plot of Figure 1o marked with a “x”
symbol are those perturbed. It is clear that the most suspected values to be potential
outliers were artificially generated by the perturbation mechanism. However, not all
perturbed cases become outlying values, since lots of perturbed units are just inliers
and cannot be seen on the plot. Similarly, some non perturbed units have an outlying
pattern but cannot be seen on the plot because they are hidden in the main cloud of
perturbed values.

The forward search to find outliers would require a good explanatory covariate X to
predict Y and then identify outlying observations from the conditional distribution
Y1|X. Figure 2 also shows that a linear model looks appropriate for the other six
response variables and the covariate chosen when they are studied in log scale, except
for Y. Different power and log-log transformations were applied to the data but they
were unable to create two new better correlated variables. We thus concentrate our
search for outliers in the new variables defined by Z; = log(Y;), i =1,...,7, and use
V' = log(X) as the available covariate. Some adjustments may be needed for correcting
the bias in estimates in the raw scale for parameters of Y; if transformed data Z; is
used both for outlier detection as for estimation; see Ren (2001)-b.

3.2. The choice of the starting subset

A clean subset from the data is required for performing the forward search for outliers.
In order to define that subset the linear regression model is fitted to the data and the
units with smallest residuals from (2) chosen to create it. Many different proportions
of the sample were tried as the initial size for the clean data, such as 10%, 25%, 50%
and 75%, alternatively to m = ¢ + 1. No difference was found in the subset of units
declared as outliers according to the different size for the starting clean data when
checking the results. The proportion of detected outliers in the sample will generally
be small and the clean subset increases at each step with the units which best agrees
to the model fitted. Only at the last steps outlying units will then join it and so in
practical applications probably there is no need to start with a very small clean subset
to perform the search. Therefore, to save computational time the initial size was fixed
in 75% of the sample size n;,i =1,...,7.
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An important issue, however, concerns the way the regression model is fitted to the
data since the basic starting clean data will be created from it. Figure 3 shows just
for illustration part of the sample data for Z; : log(turnover), where an influential
point is present (actually an observation with turnreg = 0, but excluded from the
data according to discussion in §3.1). If we use a least square fit both to define the
clean subset and also to identify the outliers, it will arrive at units quite difficult to be
accepted as so, seen on the plot on Figure 3a with a cross symbol “+”. If a robust fit is
used (here via the RREG Splus routine) to define the starting clean data then a much
more reasonable set of outliers is identified even if at the next steps the ordinary least
squares fit is used. Most importantly, now the introduced influential point, highlighted
on both plots with a bigger symbol size, is identified as outlier.

Automatic programs that analyze large data sets may identify unreasonable units as
outliers and it seems that the basic clean data set C(,,) must be initially defined from
a robust fit. In general we found that as long as C(,, is defined by the m units with
smallest residuals from a robust fit in the whole sample there is no difference in the
final set of outliers, regardless of the type of fit, least squares or robust, used in the
subsequent steps. To be more specific, the n residuals at step m

ey = {(e1,---en)s e = (U — 3Bm)}

depend on the estimate B(m), which is found from the fit using only the clean data
Cim)- At the next step, the forward search moves to fitting m + 1 observations after
Cim+1) was defined by choosing the m + 1 units with smallest residuals from e,,).
When a robust fit is applied to the whole sample to choose the best m observations,
the starting data C,,) can be quite clean and free of outliers. At the stage m + 1
the estimates B(m—l—l) will not present big changes since the just introduced (m + 1)-th
observation has the best agreement with the last fit. The most important is that the
existing outliers (which will have the largest residuals) will not have any chance of
being selected at an early stage. Since they are not chosen to take part on Ci,41)
they will not influence B(m+1) nor will be able to change the ordering in the next set
of n residuals e, 1), which are used to define C(,,19). It thus may be an unnecessary
sophistication to continue to robustify the fit on C(41), Cmy2), - - -, if Cp) was already
created by a robust fit.

Atkinson (1994) defines a random starting clean data Ci,, and performs a series of
different forward searches. When defining C(,,) randomly we found that very soon
distinct forward searches have exactly the same working clean data C(,,,), after a few
s steps ahead. Hadi and Simonoff (1993) and Riani and Atkinson (2000) define a clean
data to start from a robustly chosen subset and that is the way we prefer to do here.
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The kind of fit (ordinary least squares or robust regression) for the next steps seems
to be equivalent as long as the initial subset is defined by a robust fit.

3.3 Implementation of the forward search

For each data set analyzed about univariate response variables Z;,i = 1,...,7, a for-
ward search was carried out starting with a clean subset defined by size 0.75n from
the robust fit. Hadi and Simonoff (1993) stopping rule (6) was used and the resulting
outliers identified. However, even after the stopping criterion had been met, the for-
ward search was performed up to the whole sample to record the number of times each
sample unit was declared as outlier and to have the sequence of residuals for all steps.

Figure 3 - Set of outliers (“+” symbol) identified in part of the Z; data,
which has one influential observation included,
according to type of fit used, (a¢)LS and (b) Robust

(a) LS (b) Robust
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We define three sets of outliers:

Ops: identified by Hadi and Simonoff stopping rule (6);

Opyj: identified by the maximum relative jump on 7 (9);

O,: identified by the binomial test on the proportion of steps that units were declared
outliers (10).
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The multivariate vector Z was defined for only the five first components, Z = (71, ..., Zs),
since Yz and Y7 had a large proportion of zeros. Both two components had also lots
of missing values even in the true data. We assumed data fully observed and so miss-
ing values on those two variables cannot be recovered. The starting subset had a size
m = p+ 1 = 6 units, chosen from the Mahalanobis distances (5) from a robust fit in
the full sample.

Here for p > 1 we identify outliers based on Hadi rule (7), comparing those results
with the binomial test and on the maximum relative jump on 7, the determinant of

the p X p clean residual covariance matrix.

The plot of residuals for the univariate search and the plot of the Mahalanobis distances
for the multivariate case will be used as an aid to identify graphically the outlying and

suspicious units.

Throughout his study any test performed will have a significance fixed at a = 0.01, as
we prefer to locate the most potential outliers, that is, our aim is to identify outliers
that are really important.

4. Results

4.1. Outlier detection for univariate data 7, ... 7Z;

Initially Table IT displays the proportion of steps out of the 1521 steps performed in
the forward search each unit in data set for variable Z; were declared outlier using rule
(8). At least all the 197 units which were identified as outliers in all the 1521 steps
performed must be declared outliers and some more units are also suspicious according

to the high proportion of steps they did not fit the clean data to join it.

Table II - Frequency of p;, the proportion number of steps
out of the 1521 steps performed,
units of response variable Z;:log(turnover) were declared outlier

Di 0 (0,10] | (10,20] | (20,30] | (30,40] | (40,50]
frequency | 5166 | 55 49 23 68 45
Di (50,60] | (60,70] | (70,80] | (80,90] | (90,100) | 100

frequency o7 97 108 165 22 197
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From this search the set of outliers Oy identified by Hadi and Simonoff stopping rule
has 349 units, which can be seen on Figure 4b. The figure displays the identified out-
liers with a cross symbol, in a plot with observed z; data against fitted data at the last
step of the search (a full sample fit).

Figure 4a displays the fit on the true data about variable Z;, which looks quite clean
with only a few potential outliers whereas the perturbed data had the most important
outlying units identified from the search, as Figure 4b shows. In real problems the true
data would not be available and here it is only shown to visualize whether O, is a
reasonable set of outliers or not.

The other two sets of outliers, denoted by O,,; and O, are also shown on Figure 5.
Comparing Figure 4b and Figure 5 it appears that the HS approach locates much more
outliers than the MJ and Binomial decision rule. A close examination on those three
sets shows that all 198 units on O, are included in the 268 components of O,,;, which
are also part of Oy, that is, Oy C Op; C Ops.

Figure 4 - (a) Fit on the true data for Z;:log(turnover) and (b) Set of outliers Oy
identified (with “4” symbol) for Z;:log(turnover) on the scatterplot
for perturbed data after 1521 steps performed
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The choice of the best set to represent the true outliers present on the data depend
on how conservative we are about rejecting observed values when they look suspicious.
Riani and Atkinson (2000) do not try to identify the outliers by a formal test but
instead study the residuals through “fan” plots, monitoring changes associated with
the fitting as the clean subset C,,) increases.
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Figure 5 - Set of outliers (a)O,,; and (b) O,
identified for Z;:log(turnover) on the scatterplot (“+” symbol)
for perturbed data after 1521 steps performed

observed Z1 value

fitted Z1 value fitted Z1 value

Figure 6 displays the standardized residuals for all the 6082 observed values for Z;, for
simplicity just for the last 400 steps of the search. It is clear that outliers are present
on the data and at last steps important variations happen on the residuals as those
outlying units are finally being included in the clean data. Not only the units with
largest residuals are outliers but also some units with residuals on the border of the
main bulk look very suspicious and therefore it may be the reason why Oj, includes
those observations. A clear cluster of outlying units can be seen on this plot. The
block of units with big positive standardized residuals corresponds exactly to the block
of perturbed values, far away from the linear fit of Z; on V', according to Figure 5.
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Figure 6 - Sequence of standardized residuals (2) for sample units of data
Zy:log(turnover) for the last 400 steps of the full forward search

standardized residuals

1200 1300 1400 1500

step on the forward search

For this data set it seems that there was no need to perform an expensive forward
search starting with 3/4 of the sample size and going 1521 steps ahead. The analysis
of the residuals clearly shows the outlying behaviour of some units as the clean data
is augmented and this pattern is quite monotonic. However, an important change on
the residuals is seen close to the step 1330, as important outliers start joining the clean
data at that stage. This number suggests about 190 outliers, which agrees with the
198 units detected on O,,.

4.2. Importance of the forward search for outlier detection

Despite Figure 6 suggests no need to perform an extensive forward search there is a
difference on results found from that approach and a simple outlier detection applied
to the whole sample. Figure 7 displays the outliers detected on a single search on data
about Zl when C(m) = C(n).

Comparing the set of outliers from Figure 7 against those defined by Os on Figure
4b, 151 more units are detected as outlying on the forward search than on the single
search. Probably, some backward search starting with the full sample n and deleting
the outliers at each step until only clean data remains would reach the same 349 units
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as those on O),;. However, sophisticated actions should be taken to prevent the masking
problem. At the second “trimming” step, we would need to insert back all the possible
combinations of Ay units previously detected as outliers at stage 1 (when my = n).
It would be then possible to check the impact some £ units from the first set of outliers
Ay would have on the construction of the second set Ay (when analyzing the new
dataset with size mp) = n — An) + k). In performing the backward search that way
only the true outliers should be identified.

Figure 7 - Set of outliers identified for Z;:log(turnover) on the scatterplot
(with “+” symbol) for perturbed data on a single search (m = n)
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The exhaustive enumeration of all A;y distinct tuples at current j +1 step may not be
feasible specially for the sample sizes of the datasets studied here. Therefore, it seems
that the forward search is less expensive and more reliable than the backward option.
Table III shows the number of ouliers identified at the last step (a single search with
the full sample) and those detected by the other rules considered in the forward search
for all the seven datasets analyzed.

Table IIT - Number of outliers detected in the last step(m = n)
and by the forward methods, for datasets about Z;,i =1,...,7.

search | Zy | Zy | Zs | Z4y | Zs | Zg | 27
m=mn | 198 | 231 | 242 | 225 | 51 | 37 | 121
Oy 198 | 232 | 243 | 225 | 62 | 43 | 128
Ops 349 | 224 | 361 | 226 | 11 | 14| 8
On; 268 | 231 | 295 | 225 | 55 | 38 | 123
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Particularly for variable Z; there is an extreme disagreement between the results from
the HS forward rule and from the single search (m = n). Outliers detected by the
HS rule seem to be important and reasonable in the six other datasets as Figure 8
shows the outlying points present on Op,. However, on data about Z; that rule has
a breakdown for only 8 units and fails in locating quite similar outlying units on the
same dataset. The main reason could be the nature of the data, where there is a huge
dispersion between the fitted and observed values due to the bad linear relationship.
Table TV follows the results from the outlier identification approach Oy, applied on
the seven individual perturbed data sets, according to the nature of the sample values
(perturbed or not). Perturbation has transformed some original values to ouliers but
from previous plots on Figure 16 and Figure 2 it could be seen that not all identified
outliers are perturbed observations, since outlying units were already present on the
true data sets.

Table IV - Frequency of the number of sample units on perturbed data sets
were identified as outliers by Oy, according to their status (perturbed or not)

Status Zy outlier | Z, outlier | Z3 outlier
no yes | no | yes | no | yes
Non pert. | 5719 | 124 | 5215 5 15376 | 80
Perturbed 14 | 225 | 255|219 | 343 | 281

Status Z, outlier | Zs outlier | Zg outlier | Z; outlier
no | yes| no |yes| no |yes| no |yes
Non pert. | 5086 7 | 5311 6 | 1232 0 | 2806 0
Perturbed | 111 | 219 41 51 205 | 14| 234 8




observed value

observed value

observed value

Figure 8 - Set of O, outliers identified for Z,, ..., Z;,
on the scatterplot (with “+” symbol) for perturbed data

(a) Zs : log(taztot)

(b) Z3 : log(purtot)

e
fitted value fitted value
(¢) Zy : log(emptotc) (d) Zs : log(employ)
’ - i ;
fitted value fitted value
(€) Zs : log(assdisp) (f) Z7 : log(assacq)

fitted value

fitted value
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Some idea of the performance for the outlier detection method HS can be perhaps better
obtained from the information on Table V, where units are investigated according to
their classification status (outlier or not), on both the true and the perturbed individual
data sets.

Table V - Frequency of the number of sample units on perturbed data sets
were identified as outliers by Oy, according to their classification status
(outlier or not) on the original true data sets

Status on true data Z, outlier Zs outlier Z3 outlier
no yes no yes no yes
Non outlier 5733 | 220 3200 | 5449 | 204 @9 | 5697 | 276 270
Outlier 0| 129® 3 6 M 21 | 84 ¥
Status on true data Z, outlier Zs outlier | Zg outlier | Z; outlier
no yes no yes no yes no yes
Non outlier 5173 1202 @92 [ 5349 [2 @ [ 1304 [ 3 ® [ 2943 [ 3 ®
Outlier 41 70 3160 0] 0 21 0

Small numbers on parentheses, on the columns for units related to identified outliers
on the perturbed data sets, denote the number of those observations that have been
subjected to perturbation. It can be seen, for example for variable Z;:log(turnover),
that 220 cases were detected as outliers in the perturbed data set although they had
not been declared as outlying previously in the original true data set. The small num-
ber in parentheses, (220), just indicates that all those 220 units had been perturbed,
which is the reason they are outliers in the new data set, that is, they are artificially
generated outliers. Figure 9 shows the situation about those perturbed 8 units, out
of the 129 cases, declared as outliers in both data sets, the original true data and the
perturbed version. It is clear that the perturbation mechanism just made their degree
of outlyingness worse.

Similarly, just for illustration, Figure 10 examines the 21 cases of Zs:log(purtot), which
were detected as outliers on the true data but not on the perturbed sample. The
introduction of huge outliers has made the 21 units no longer declared as outliers on
the perturbed data set.
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Figure 9 - Position of 8 particular observations of Z;:log(turnover)
a) declared as outliers in the original scale in the true data, and
(b) declared as outliers in the perturbed data after being subjected to perturbation

(a) True data (b) Perturbed data

20

15
I

log(turnover)
log(turnover)

10
I

log(turnreg) log(turnreg)

Figure 10 - Position of 21 particular observations of Zs:log(purtot)
(a) declared as outliers in the true data and (b) not declared outliers in the perturbed data

(a) True data (b) Perturbed data

20
I

log(purtot)
log(purtot)

log(turnreg) log(turnreg)

Results checked in different ways were found to be generally reasonable and so the
outlier detection via the forward search approach seems to perform well.
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4.3. Outlier detection for multivariate data Zs = (7, ..., Zs)

For a five dimension vector Z) we could make the partition of the associated data into
different subsets D(;), according to the number of components Zi, ..., Zs with non zero
values in their sample units. For Dy, for example, only two individual components
would be non zero, possibly reducing the outlier detection method to a two dimension
problem. In the ABI file under study with n = 6099 units, the partition with the high-
est frequency is D(s), where 5118 observations are non zero for all the five considered
components (Z; > 0,...,Z5; > 0). (Also, all those units have a non zero covariate
value, like for the univariate definition of the data sets.)

We then also illustrate the forward search for this particular subset of data. The
forward search starts now with a multivariate clean data defined by the units with
smallest Mahalanobis distances from the robust fit on the whole sample, according to
(5). Results are related to the starting basic subset with size fixed at p+1 = 6 and do
not disagree with those provided by another forward search, which started with sample
size m = 3.

By performing rotations on different combinations of three axes on the whole sample it
is possible to identify some blocks of observations that are far from the main cloud of
points. The forward search moves ahead at some stage by including a 5-dimensional
sample unit and then probably on the subsequent steps incorporates a block of neigh-
bouring units on that space. The sequence of the Mahalanobis distances seems to
reflect this kind of structure of the data. From the last 600 steps performed on the
search with Mahalanobis distances displayed on Figure 11, it is possible to visualize
some kind of a multi dimensional cluster, far from the main block.

Table VI also provides the frequency of the proportion of number of steps in which the
sample units were declared outlier in out of 5112 steps performed. The O, set has 359
units declared as outlier when applying the binomial test to the relative frequency of
times an observation is identified as outlying in the full search. Such number agrees
with information provided by Table VI and shows that the forward search is perhaps
worthwhile since the single outlier detection (for m = n) pointed out 345 units. By
using the information from the maximum relative jump on the determinant of the clean
residual variance, 7, this criterion identifies 351 outliers joining the clean data.

The Hadi rule has a breakdown for 481 outliers, according to the stopping criterion
(6), again identifying more outlying units than the other two rules.
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Table VI - Frequency of p;, the proportion number of steps

out of the 5112 steps performed,

units of multivariate vector D5 were declared outlier according to (8)

Di 0 | (0,10] | (10,20] | (20,30] | (30,40] | (40,50]
frequency | 24 | 1443 918 531 370 289
Di (50,60] | (60,70] | (70,80] | (80,90] | (90,100) | 100
frequency | 242 194 184 251 327 345

Figure 11 - Sequence of Mahalanobis distances (4) for sample units of D)
for the last 600 steps of the forward search

4500 4600

4700

4800

4900

step on the forward search

5000
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Concentrating only on the units detected in the O, set, we follow the number of
multivariate units detected as outliers according to the number of their individual
components with a particular characteristic. Table VII displays the possible impact
that perturbation in the individual components may have in the multivariate sample
unit, in order to cause it to be declared as a multivariate outlier.

Table VII - Frequency of the number of multivariate outliers from Oy,
according to nyer), the number of individual components of Ds)
which have been perturbed

Npery | Multivariate outlier | Total
No Yes

0 4198 96 4294
1 295 194 489
2 134 31 165
3 10 3 13
4 0 154 154
5 0 3 3

Total | 4637 481 5118

Since perturbation does not necessarily creates outliers, the declaration of a sample unit
as a multivariate outlier is considered according to the number of individual compo-
nents that were declared outlier in the univariate search. Again only outliers identified
by the HS rule are considered for results presented on Table VIII. It can be seen, for
example, that any unit with more than just one individual component 71, ..., Z5, iden-
tified as outlier in the univariate search is also declared as a multivariate outlier.

The most important finding, perhaps is related to the fact that 240 units out of the
254 units which have been detected as outlying in just one component have also been
identified as a multivariate outlier. It means that a univariate search in individual
components of the 5-dimension response vector will eventually identify almost the
same units as outliers, when comparing to the multivariate search.
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Table VIII - Frequency of the number of multivariate outliers from Oy,
according to n(na), the number of individual components of D5
detected as outliers on the univariate search

N(ind) | Multivariate outlier | Total
No Yes

0 4623 36 4659
1 14 240 254
2 0 39 39
3 0 16 16
4 0 146 146
5 0 4 4

Total | 4637 481 5118

4.4. Outlier detection within stratum

We also performed forward searches within groups defined by classification variables.
From the different options available, the best fitting for the selected response variables
Zy, ..., 2, against the covariate turnreg, all in log scale, was within the stratification
defined by the variable class. Small sample sizes for some classes forced to create then
27 groups, where the biggest had 2167 cases. By defining individual datasets with only
non-zero values there was a variation on the sample sizes of the 27 stratum. Generally
the linear relationship between Z; and V still holds but in some stratum the fit could

be poor.

Figure 12, for example, presents the location of the outliers in the univariate search on
the dataset about variable Z; when we apply the HS rule. The identification of 467
observations as outliers clearly outnumbers the 349 HS cases detected in the across—
stratum search since inliers on the overall data can be detected as outliers within
particular groups. Comparing Figure 12 against Figure 4 is not straightforward since
the plots are presented for fitted and observed values. All the 27 groups have sample
values plotted together in the same figure and so fitted values within strata differ from
those found by a overall across—stratum fit.
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Figure 12 - Outliers located for variable Z;:log(turnover) according to the HS rule

in the within stratum forward search (with “4” symbol)

observed Z1 value

fitted Z1 value within group

Similarly to Table III, results for the within strata search are presented on Table IX,

according to the rule used to detect outliers.

Table IX - Number of outliers detected in the last step(m = n)

and by different rules, for datasets about Z;, i =1, ...
in the within stratum forward search

search | Zy | Zy | Zs | Z4 | Zs | Zg | Zy
m=mn | 201 | 223|243 222 | 56 | 34 | 116
Oy 233 | 271 | 270 | 245 | 103 | 103 | 163
Ops 467 | 245 | 441 | 279 | 77 | 56 | 102
On; 286 | 276 | 309 | 250 | 82 | 89 | 155

777

For all variables studied a within stratum search locates more outliers than the across—

stratum study except on variable Zg, where Zg|V had not a good linear fitting. The

identification of multivariate outliers was not performed within stratum since most of

the 27 groups have a small sample size to justify a good fit in five dimension. However,

accordingly with the results above for the univariate search, it should be expected more

outlying multivariate units than the number located in the across stratum search.
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4.5. Performance evaluation of the HS rule

We follow the evaluation approach from and Xingiang and Chambers (2002), where
the measures suggested to evaluate the efficiency of an outlier detection method are
defined as:

_ Nerror

Rl - Npe'rt ’
_ Nsig

Rszg - Npert ?

— 1_ Ne’rror
R2 Nout ’

and N, refers to the number of true errors identified by the outlier detection rule,
Npert is the number of perturbed units in the data set , N,y is the number of detected
outliers and N, is the number of identified significant outliers, which have been sub-
jected to a strong perturbation (the observed value differs from the true value in more
than 100% of the true value, in absolute terms).

It is desirable that both Ry;, and Ry (1—R,) values are maximum. For the first measure,
a high value for R,;, means that the majority of the important outliers would have been
detected. For R;(1 — Ry) we want to identify as many outliers as possible but keeping
the number of non—errors identified as outliers as small as possible.

Table X1 that follow and Table X-2 to Table X-7 in the appendix present those eval-
uated measures for the Hadi/Simonoff approach, for the two kind of forward searches
performed, across and within stratum, both for significance levels 1% and 5% in the
outlier detection procedure.

It is also possible to have a preliminary comparison about the importance of the forward
search, taking a look at the evaluated measures for the performance of the single search
for outliers (m = n). In that latter simplistic approach, we just try to identify the
outliers present in the data looking just once at the whole sample. Usually this rule
identifies most of the important perturbed errors and then has a high value for R; and
Rig.

It seems that the single search performs quite well in terms of the measures R,
and R;(1 — Ry) as this conservative rule prefers to identify only the most important
outliers. As a consequence it results in a small value for the proportion Ry of non—errors
identified as outliers. More precise outlier detection methods, like the forward search
algorithm, can have a better performance in finding the true outliers (not subjected to
the perturbation mechanism) present in the data sets but would then assume a higher
value for R,.

At this stage we do not feel that the forward search is not worthwhile in terms of its
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computational cost by just comparing the tables for its evaluated performance to results
from the single search. Important issues like the presence of true outliers and masking
should be better explored in a further study in order to have a more comprehensive
evaluation of this more expensive Hadi/Simonoff algorithm.



Table X—1 - HS outlier identification performance on TURNOVER data

(n = 6082, 5843 true cases, 239 perturbed, 206 significant)

Number of accepted and rejected sample units in the editing process

by the type of search (across or within stratum),

according to their status (true or perturbed value)

Editing at significance 1%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5719 124 5603 240
Perturbed value 14 225 12 227
Total 5733 349 5615 467

Editing at significance 5%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5641 202 5483 360
Perturbed value 13 226 9 230
Total 5654 428 5492 590

Evaluated performance for the Hadi/Simonoff rule

Search Nout Nerror Nsig Rl Rsig RQ Rl(l B RQ)
Across 1% | 349 | 225 | 206 | 0.9414 | 1 | 0.3553 0.6069
Across 5% | 428 | 226 | 206 | 0.9456 | 1 | 0.4720 0.4993
Within 1% | 467 | 227 | 206 | 0.9498 | 1 | 0.5139 0.4617
Within 5% | 590 | 230 | 206 | 0.9623 | 1 | 0.6102 0.3752

Evaluated performance for the “single” search (m = n or last step only)

Search Nout

Nerror Nsig

Ry

Rsig RQ

Ri(1 - Ry)

Across 1% | 198
Across 5% | 209
Within 1% | 201

Within 5% | 211

190
192
191
195

189
190
189
193

0.7950 | 0.9175
0.8033 | 0.9223
0.7992 | 0.9175
0.8159 | 0.9369

0.0404 0.7629
0.0813 0.7380
0.0498 0.7594
0.0758 0.7540

29
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4.6. Post—editing for the HS outlier detection rule

Suppose once the most important outliers have been detected an editing process is
carried out with two possible options: impute the rejected observations or perform a
follow—up survey to recover/to confirm the true data, or just remove those suspicious
values from the data set being analyzed.

When an efficient imputation method is applied to replace the identified outliers hope-
fully all the rejected observations would have a donor value very close to the true
value. If such an efficient recovery for the identified observations at error is not feasi-
ble, suppose we then delete those suspicious values from our data and just work with
the remaining observations.

Figure 13 displays the histograms for the univariate data set about variable TURNOVER
in log scale, for the true observations and for the post—edited data, by assuming the
imputed value perfectly recovered the actual true value or by removing the rejected
values.

It is clear that the editing has been successful in detecting the majority of the important
outliers for the variable TURNOVER in log scale. These histograms reflect the good
performance for the HS outlier detection rule confirming the measures evaluated on
Table X—1.
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Figure 13 - True and post—edited data for 7,
after the Oy outliers (identified in the across stratum forward search)
have been corrected by appropriate imputed values or removed
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For the next four survey variables (TAXTOT, PURTOT, EMPTOTC and EMPLOY)
both options (a good imputation scheme or the deletion of identified errors) generate
clean data sets close to the true data as it can be seen from Figure 14 to Figure 17,
presented in the appendix with the corresponding tables for the evaluated performance
for the HS rule.

From Figure 18, however, it is clear that the Hadi/Simonoff rule fails in identifying
important perturbed values for the variable ASSDISP and the replacement of the few
outliers detected by the forward search, even when recovered perfectly by the true
value, is not enough to generate a clean distribution close to the true data. The
simplistic option of removing suspicious values from the sample still presents a post—
edited distribution far from the distribution of the true data. Figure 19 for the ASSACQ
data shows again the bad performance for the HS method as Table X-7 had already
suggested; see the appendix.
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5. General conclusions

Different rules for outlier detection have been subject of our investigation. For the
particular datasets and response variables used in the application of those techniques
some remarks could be mentioned:

(a) Tt appears that the forward search is important to be performed for outlier detec-
tion purpose since sets of outlying observations from different rules consistently differ
from the set located on a single search on the whole sample data. Probably in the per-
turbed datasets under study the most important outliers, detected on a single search,
were masking the presence of some more outlying observations. Those extra values
should also be identified and generally the forward search locates them. Despite the
computational cost involved in the forward search we believe it is a better procedure
than backward methods.

(b) For the three rules considered results suggest that the binomial test locates only
the most extreme outliers under the assumption that §, the probability that some unit
value is a true outlier in the population, is equal to 1. If that assumption is relaxed
to accept slightly less suspicious observations, by setting  to, say, 0.9, more outliers
should be identified.

The empirical rule based on the maximum relative increase on the residual variance
from the clean data (as it increases at each step) generally provides less outliers than
the HS rule. Although in some occasions the sets O,,; and Ops have almost similar
observations the rule from Hadi and Simonoff (1993) seems to depend not exactly on the
maximum relative increase on the clean residual variance. The first local maximum on
that relative increase, caused by the introduction of the first important outlier, seems
to cause the breakdown of the HS rule. Since an exact statistic is not available to test
the mazimum jump criterion and because its results should generally be similar to the
HS rule, we prefer to use the precise Hadi/Simonoff approach.

(¢) The kind of search, within or across—stratum, depends on the type of inference the
outlier identification is performed for. If estimation is desirable within stratum then
outliers need to be identified in each group to have the estimates more precise.

In our study results concentrate on the across—stratum search because some variables
present a bad fit with the covariate within some particular groups. In general the linear
relationship between the response variables and the covariate is quite good in the whole
sample data. Therefore the outliers can be reasonably well detected and we prefer to
refer on results from the across—stratum study.
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(d) The multivariate search for outliers was performed here only in a across—stratum
study mainly due to a good general fit for the whole sample and also due to small

sample sizes in some groups.

From the search on the individual components of the response vector it can be seen
that as long as an unit is detected as outlier in more than one component it will be
a multivariate outlier too. There is also a high relative frequency of units that are
declared as a multivariate outlier when they have just one single component identified

as outlying in an univariate search.

The last fact emphasizes the importance of the univariate search on individual compo-
nents of a response vector. For practical applications in real data problems, particularly
for the type of data this study explores, it would have the advantage of locating sus-
picious units in a survey when one single component is not acceptable. If the outlier
detection method is applied in a univariate way, the whole file obtained from some
sample unit could be rejected or at least subject to further investigation when just one
of its values recorded for those most important survey response variables is considered
outlier.
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APPENDIX

Table X—2 - HS outlier identification performance on TAXTOT data
to

Table X—7 - HS outlier identification performance on ASSACQ data

Figure 14 - True and post—edited data for Z,
to

Figure 19 - True and post—edited data for Z;
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Table X—2

- HS outlier identification performance on TAXTOT data

(n = 5694, 5220 true cases, 474 perturbed, 439 significant)

Number of accepted and rejected sample units in the editing process

by the type of search (across or within stratum),

according to their status (true or perturbed value)

Editing at significance 1%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5215 5) 5210 10
Perturbed value 255 219 239 235
Total 5470 224 5449 245

Editing at significance 5%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5214 6 5192 28
Perturbed value 251 223 231 243
Total 5465 229 5423 271

Evaluated performance for the Hadi/Simonoff rule

Search Nout Nerror Nsig Rl Rsig RQ Rl(l - RQ)
Across 1% | 224 | 219 | 219 | 0.4620 | 0.4989 | 0.0223 0.4517
Across 5% | 229 223 | 223 | 0.4705 | 0.5080 | 0.0262 0.4581
Within 1% | 245 235 | 235 | 0.4958 | 0.5353 | 0.0408 0.4755
Within 5% | 271 243 | 242 | 0.5127 | 0.5513 | 0.1033 0.4597

Evaluated performance for the “single” search (m = n or last step only)

Search Nout Nerror Nsig Rl Rsig RQ Rl(l B RQ)
Across 1% | 231 | 225 | 225 | 0.4717 | 0.5125 | 0.0260 0.4594
Across 5% | 247 | 238 | 238 | 0.5021 | 0.5421 | 0.0364 0.4838
Within 1% | 223 | 219 | 219 | 0.4620 | 0.4989 | 0.0179 0.4537
Within 5% | 254 | 246 | 246 | 0.5190 | 0.5604 | 0.0315 0.5026
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Table X-3 -

HS outlier identification performance on PURTOT data

(n = 6080, 5456 true cases, 624 perturbed, 252 significant)

Number of accepted and rejected sample units in the editing process

by the type of search (across or within stratum),

according to their status (true or perturbed value)

Editing at significance 1%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5376 80 5309 147
Perturbed value 343 281 330 294
Total 5719 361 5639 441

Editing at significance 5%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5344 112 5251 205
Perturbed value 337 287 321 303
Total 5681 399 5572 508

Evaluated performance for the Hadi/Simonoff rule

Search Nout Nerror Nsig Rl Rsig RQ Rl(l B RQ)
Across 1% | 361 | 281 | 247 | 0.4503 | 0.9802 | 0.2216 0.3505
Across 5% | 399 | 287 | 248 | 0.4599 | 0.9841 | 0.2807 0.3308
Within 1% | 441 | 294 | 250 | 0.4712 | 0.9921 | 0.3333 0.3141
Within 5% | 508 | 303 | 250 | 0.4856 | 0.9921 | 0.4035 0.2896

Evaluated performance for the “single” search (m = n or last step only)

Search Nout Nerror Nsig Rl Rsig RQ Rl(l B RQ)
Across 1% | 242 | 232 | 232 | 0.3718 | 0.9206 | 0.0413 0.3564
Across 5% | 249 | 235 | 235 | 0.3766 | 0.9325 | 0.0562 0.3554
Within 1% | 243 | 233 | 233 | 0.3734 | 0.9246 | 0.0412 0.3580
Within 5% | 253 | 238 | 237 | 0.3814 | 0.9405 | 0.0593 0.3588
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Table X-4 -

HS outlier identification performance on EMPTOTC data

(n = 5423, 5093 true cases, 330 perturbed, 265 significant)

Number of accepted and rejected sample units in the editing process

by the type of search (across or within stratum),

according to their status (true or perturbed value)

Editing at significance 1%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5086 7 5051 42
Perturbed value 111 219 93 237
Total 5197 226 5144 279

Editing at significance 5%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5083 10 5034 59
Perturbed value 106 224 84 246
Total 5189 234 5121 305

Evaluated performance for the Hadi/Simonoff rule

Search Nout Nerror Nsig Rl Rsig RQ Rl(l B RQ)
Across 1% | 226 | 219 | 218 | 0.6636 | 0.8226 | 0.0310 0.6431
Across 5% | 234 | 224 | 223 | 0.6788 | 0.8415 | 0.0427 0.6498
Within 1% | 279 | 237 | 229 | 0.7182 | 0.8642 | 0.1505 0.5766
Within 5% | 305 | 246 | 236 | 0.7455 | 0.8906 | 0.1934 0.5475

Evaluated performance for the “single” search (m = n or last step only)

Search Nout Nerror Nsig Rl Rsig RQ Rl(l B RQ)
Across 1% | 225 | 219 | 219 | 0.6636 | 0.8264 | 0.0267 0.6459
Across 5% | 245 | 233 | 233 | 0.7061 | 0.8792 | 0.0490 0.6715
Within 1% | 222 | 218 | 218 | 0.6606 | 0.8226 | 0.0180 0.6487
Within 5% | 242 | 234 | 234 | 0.7091 | 0.8830 | 0.0331 0.6856
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Table X-5 -

HS outlier identification performance on EMPLOY data

(n = 5363, 5317 true cases, 46 perturbed, 30 significant)

Number of accepted and rejected sample units in the editing process

by the type of search (across or within stratum),

according to their status (true or perturbed value)

Editing at significance 1%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5311 6 5264 593
Perturbed value 41 5 22 24
Total 5352 11 5286 7

Editing at significance 5%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 5308 9 5245 72
Perturbed value 38 8 22 24
Total 5346 17 5267 96

Evaluated performance for the Hadi/Simonoff rule

Search Nout Nerror Nsig Rl Rsig RQ Rl(l B RQ)
Across 1% | 11 3 5 | 0.1087 | 0.1667 | 0.5455 0.0494
Across 5% | 17 8 7 10.1739 | 0.2333 | 0.5294 0.0818
Within 1% | 77 24 19 | 0.5217 | 0.6333 | 0.6883 0.1626
Within 5% | 96 24 19 | 0.5217 | 0.6333 | 0.7500 0.1304

Evaluated performance for the “single” search (m = n or last step only)

Search Nout Nerror Nsig Rl Rsig RQ Rl(l B RQ)
Across 1% ol 17 17 | 0.3696 | 0.5667 | 0.6667 0.1232
Across 5% | 113 28 28 | 0.6087 | 0.9333 | 0.7522 0.1508
Within 1% | 56 27 27 1 0.5870 | 0.9000 | 0.5119 0.2830
Within 5% | 108 28 28 | 0.6087 | 0.9333 | 0.7407 0.1578
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Table X—6 - HS outlier identification performance on ASSDISP data

(n = 1451, 1232 true cases, 219 perturbed, 213 significant)

Number of accepted and rejected sample units in the editing process

by the type of search (across or within stratum),

according to their status (true or perturbed value)

Editing at significance 1%

Status of Y;;

Across stratum

Within stratum

accepted | rejected | accepted | rejected
True value 1232 0 1228 4
Perturbed value 205 14 167 52
Total 1437 14 1395 56

Editing at significance 5%

Status of Y;;

Across stratum

Within stratum

accepted | rejected | accepted | rejected
True value 1232 0 1218 14
Perturbed value 204 15 122 97
Total 1436 15 1340 111

Evaluated performance for the Hadi/Simonoff rule

Search Nout Nerror Nsig Rl

Ry Ry Ri(1 — Ry)

Across 1% 14 14
Across 5% 15 15
Within 1% 56 52
Within 5% | 111 97

14 | 0.0639 | 0.0657 0 0.0639
15 ] 0.0685 | 0.0704 0 0.0685
92 | 0.2374 | 0.2441 | 0.0714 0.2205
97 | 0.4429 | 0.4554 | 0.1261 0.3871

Evaluated performance for the “single” search (m = n or last step only)

Search Nout | Nerror Nsig Ry

Ry Ry Ry(1 — Ry)

Across 1% | 37 37
Across 5% | 73 71
Within 1% | 34 34
Within 5% | 73 68

37 10.1689 | 0.1737 0 0.1689
71 | 0.3242 | 0.3333 | 0.0274 0.3153
34 | 0.1553 | 0.1596 0 0.1553

68 | 0.3105 | 0.3192 | 0.0685 0.2892
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Table X-7 -

HS outlier identification performance on ASSACQ data

(n = 3048, 2806 true cases, 242 perturbed, 231 significant)

Number of accepted and rejected sample units in the editing process

by the type of search (across or within stratum),

according to their status (true or perturbed value)

Editing at significance 1%

Status of Yj; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 2806 0 2794 12
Perturbed value 234 8 152 90
Total 3040 8 2946 102

Editing at significance 5%

Status of Y;; Across stratum Within stratum
accepted | rejected | accepted | rejected
True value 2806 0 2792 14
Perturbed value 224 18 119 123
Total 3030 18 2911 137

Evaluated performance for the Hadi/Simonoff rule

Search Nout Nerror Nsig Rl Rsig RQ Rl(l - RQ)
Across 1% 8 8 8 10.0331 | 0.0346 0 0.0331
Across 5% 18 18 18 1 0.0744 | 0.0779 0 0.0744
Within 1% | 102 90 90 | 0.3719 | 0.3896 | 0.1176 0.3281
Within 5% | 137 | 123 123 | 0.5083 | 0.5235 | 0.1022 0.4564

Evaluated performance for the “single” search (m = n or last step only)

SearCh Nout Nerror Nsig Rl Rsig RQ Rl(l - RQ)
Across 1% | 121 119 119 | 0.4917 | 0.5152 | 0.0165 0.4836
Across 5% | 180 174 | 174 | 0.7190 | 0.7532 | 0.0333 0.6950
Within 1% | 116 114 | 114 | 0.4711 | 0.4935 | 0.0172 0.4630
Within 5% | 168 163 163 | 0.6736 | 0.7056 | 0.0298 0.6535
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Figure 14 - True and post—edited data for Z,
after the Oy outliers (identified in the across stratum forward search)
have been corrected by appropriate imputed values or removed
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Figure 15 - True and post—edited data for Z3
after the Oy outliers (identified in the across stratum forward search)

have been corrected by appropriate imputed values or removed
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Figure 16 - True and post—edited data for Z,
after the Oy outliers (identified in the across stratum forward search)
have been corrected by appropriate imputed values or removed
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Figure 17 - True and post—edited data for Z5
after the Oy outliers (identified in the across stratum forward search)
have been corrected by appropriate imputed values or removed
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Figure 18 - True and post—edited data for Zg
after the Oy outliers (identified in the across stratum forward search)
have been corrected by appropriate imputed values or removed
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Figure 19 - True and post—edited data for 2
after the Oy outliers (identified in the across stratum forward search)
have been corrected by appropriate imputed values or removed
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