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Abstract

In this paper we present an EM algorithm for the imputation of missing datain a
multivariate linear regression model. The method is then applied to the imputation
of missing financial time series data in a varieties of ways: using straight forward
linear regression of the log return price series against a common set of indexes, a
nonparametric form of this, and finally one using a lagged covariates as well as the
set of indexes, i.e. a multivariate AR regression model.

Key words: Imputation, AR model, multivariate linear regression, non-parametric regres-
sion

1 Introduction

The purpose of this paper is to describe the EM algorithm for estimating the parameters
in a multivariate regression model. The model is then applied to the Eur®dit time series
panel data set in a variety of ways.

The multivariate model has the advantage that it can easily take covariates in to
account. It is therefore expected to outperform the simpler approaches covered in the
earlier working paper by Kokic (2001).

We begin with a technical description of the model and theory underlying the EM
algorithm in this case. In the following section we re-derive some results that have
already been obtained by Little and Rubin (1987), but in a considerably more convenient
form for the current application.

2 The Multivariate Regression Model

Suppose that there are n observations in the dataset, and for the i** observation, i =
1,...,m, y; is a (k x 1) vector response variable, and z; a (p x 1) vector of explanatory
variables. We assume that y; is related to x; according to the multivariate regression
model:

Yi; = BIJ,‘Z' + &, (2.1)

where ¢; ~ NID(0, %) (i.e. independent multivariate normal random variables), B is a
(p X k) matrix of unknown regression coefficients and ¥ is a (k x k) correlation matrix
(unknown).

For convenience we define X = (z1,...,2,)’, and Y = (y1,...,yn). The (complete
data) maximum likelihood estimates (MLEs) of B and ¥ are:

B=(X'X)"'X'Y = (X'X)™") iy}, and
%
Sw=n"1Y (yi — B'zi)(yi — B'zy)'.
i

We use the unbiased estimate of ¥ instead:

S=(n-p)'Y (yi— B'zi)(y: — B'zi)" (2.2)

i
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Tt is straight forward to show that B = B + R, where R = (X'X)~' ¥, z¢}, and so
yi — B'zi = &; — R'z; (2.3)

For simplicity and without loss of generality, assume that

n ! X'X =n7! Zx,x; =1. (2.4)
Then,
R=n"1 Z Ti€h,
B=B+ r:_l Z zie;, and (2.5)
N = (n—p) ! Z B'CCZ — B'%‘)'

(n—p) ! Z R'wz — I%'wz-)'
=(n—p)! Zeie- —n(n—p) 'R'R

(n—p) ! Z —ntzlr)eiel —ntn —p) ! Zmémjeia‘;-. (2.6)
i#j
One additional result that also follows from (2.4) and will be used in the following is:

n! Z zhz; = trace(n ' X X') = trace(n ' X'X) = p. (2.7)

3 The EM Algorithm for the Regression Model

Suppose that some of the y values are missing or partly missing, but that we still wish
to estimate the mean and covariance matrix3. To do this we use the EM algorithm.
There are two steps involved in the EM algorithm, the E-step and M-step. By taking
the conditional expectations of the B and 3 estimates, given the observed data and the
current estimates, we can avoid the need to separately determine the M-step. In other
words, to apply the EM algorithm all we require is computable expressions for:

E(B | observed data, B, & known), and E(3 | observed data, B, & known)  (3.1)

Given that B is known in (3.1), when y; is missing ¢; is missing, and vice versa, thus we
can use the results at (2.5) or (2.6) above to obtain closed form expressions for (3.1).
To derive these, some simple results are first established (or presented).

Let us denote the conditioning at (3.1) by E*. Let ¢ = (¢},e})’ ~ N(0,%), where &1
is the missing data and &2 is the observed data. Also let

(X1 Y2
3 =
Yo1 Yoo
3Since, in the end, we need to perform imputation, it is necessary to assume the z; have no missing
values. If the only objective is to estimate B and X, then there is no need to impose this condition.
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where the partition is according to the missing/nonmissing data. Assuming non-informative
non-response, from standard results for the multivariate normal distribution:

21222_2152 = f['ey, if €9 is not empty, and

E*(El | 62) = {

0, otherwise,

Y11 + D19855 Bo1 + BleaehB, if €9 is not empty, and

3, otherwise.

E*(e1€] | &2) = {

where 8 = X5, 591. Let 8* = (8, Io) = X5, Do, where B = (X91, B29). Thus,

o4 ' .
. €o = B*eq, if €9 is not empty, and
E(e|e2) = <I22 (3.2)
0, otherwise,
Y11 — D185 8
E*(86,‘62)= ( 11 62 22 21 8>+E*(6|€2)E*(E|62),

=Y —E{E*(c|e2)E*(c | e2)'} + E*(c | e2) E*(¢ | €2)’ (3.3)

. (Iﬁl> S22 (B Iz) + E*(c | e2)E*(c | &2)'

22

-+ (Ii;) (e28h — B92) (B In2),

B+ B (e2eh, — Ba2)B*,  if €9 is not empty, and (3.4)
>, otherwise. '

where I is an identity matrix.

For subsequent developments (3.3) is a more convenient form for algebraic repre-
sentation of the final solution, while (3.4) is more convenient for algorithmic purposes.
For observation i let €} also denote the observed data (note that the subscripts of the
observed and missing data may be different for each observation). Also let

o — E*(ei | e)E*(ei | €f) — E{E*(¢; | €f)E*(ei | €})'}, if &2 is not empty, and
Z 0, otherwise.

(3.5)
This is the second term in (3.3) for the i*? observation. Then from (2.5),

E*(B)=B+E'(R)=B+n""Y zE*(e}|e}), (3.6)

2
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and from (2.6), (2.7), (3.3) and (3.5),
E*(3) = (n—p) 12 —ntrle)E* (eiel | €F)

- n_l(n —p)7' ) aia B (e | €)) EY (] | €5)
i#]
(n—p) IZ —n" 2l (2 + C;) — n(n — p) LE*(R)E*(R)

£ el e | B )

S ) Y G i) BB

%

—n Tt n—p) Tt Y aiai B {E (e | €)) B (el | €])}
)

=%+ (n—p)! Z C; —n(n —p) LE*(R)E*(R) + Op(n"2), as n — oo, (3.7)

provided that for all 7 and n, z}z; is bounded above. Together (3.6) and (3.7) specify
algebraically how the EM algorithm would operate: in the r** iteration step, the B and
¥ used to determine the various terms on the right hand side of these two expressions are
replaced by their current estimates, B,_; and ,_; say. Note that 8; must be computed
separately for each observation ¢ in the definition of C; and E*(g; | €f). Also, note that
(3.7) is not guaranteed to produce a positive definite result, so it may be necessary to
introduce a ridge parameter to ensure that this is the case. More details will be given
section 4.

First, though, let us briefly examine the impact of assumption (2.4) on the estimating
equations in the EM algorithm in this case. The equations that are used in the algorithm
are (3.2), (3.4), (3.5), (3.6) and (3.7). Clearly, the only term in these equations affected
by the removal of assumption (2.7) is the definition of E*(R) in (3.6) and (3.7), and

this simply becomes:
E*(R) = (X'X)" 1> 2;E*(ejle}). (3.8)
i

After estimating the model parameters one needs to impute the missing values. To
perform this task we simply utilise equations (2.1) and (3.2) together with the final
estimates B and Y of B and X, respectively:

i = B'z; + E*(eile]). (3.9)

4 Specification of the Algorithm

The algorithm is briefly as follows. We do not give full specifications as these are con-
tained in the associated MatLab source code where these procedures are implemented.

1. Set r =1 for the first iteration of the EM algorithm.

2. Define the default values of B and X:
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(a) If default values are available denote these by Bp = (bp1,...,bpg) and Xp =
(o Djl)'
(b) When no default values are available set Bp =0 and Xp = 1.

3. Construct an initial estimate of B:

(a) Determine I;j by univariate regression* of the 1; against X using the observed
set of data for the j** component only.

(b) When the j® univariate regressions cannot be performed (e.g. no observa-
tions in y;) use the default value from Bp: I;j = bp;.

(c) Combine these to form the initial estimate By = (b1, ..., by).
4. Construct an initial estimate of X:

(a) Using the residuals from the univariate regressions at (3a) for components j
and [, construct an estimate 7;; based on the non-missing values in common.
(b) When there are no observations in common set 6o;; = opji.

(c) Let B = (Goji) + A2, where Ay > 0 is large enough to ensure that the
estimate is positive definite.

5. Increment r and update the EM algorithm estimates of B and 3:

(a) r<r+1
(b) For each observation i compute E*(g;|e}) and C;. This involves the following
steps:
i. Using B = B,_; in (2.1), compute ¢;, and then remove the missing
elements to form &;.
ii. If ef is empty set E*(e;lef) = 0 and C; = 0, then start processing the
next observation.
iii. Delete the rows of ¥,_; corresponding to the missing elements of y; to
form 27_1,2. Now delete the columns of this corresponding to the missing
elements of y; to form ir—1,22-

iv. Compute 8}_; = i;_lmgflr_l,z, and then expression (3.2) and the second
term in (3.4).
(c) Compute (3.8)% and as at (3.6) add this to B,_; to obtain B,
(d) Ignoring the O,(n2) term and using 22—1 in place of X, compute the right-
hand side of expression (3.7) to obtain 3.
(e) As at step 4c, add 3] to 3, where A3 = max{d — emin,r, 0} and emin s is the
minimum eigenvalue of ¥,.

6. Repeat the entire process from step 5 until the estimates of B and ¥ converge.

7. Finally, using expression (3.9), impute the missing y-values.

Tt may be necessary to use univariate ridge regression to overcome collinearity problems, see Mar-
quardt and Snee (1975), where the ridge parameter A; is set to a small positive constant.

SIf the minimum eigenvalue of 21 iS €min,1 say, then set Ao = max{d — €min,1,0}, where d is a small
positive constant. Prior to this computation it may be necessary to make ¥; symmetric.

5As at step 3a, it may be necessary to use ridge regression to deal with multicollinearity. In this case
it would make sense to use the same value of the ridge regression parameter
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5 Application of the EM Algorithm to Financial Time Se-
ries Data

We consider three different ways of imputing financial time series data with the EM
algorithm: using stock indexes and exchange rates as the covariates in the linear re-
gression model in section 5.2, a nonparametric regression form of this model in section
5.3, and finally in section 5.4 using lagged variables and indexes as covariates. It is also
possible to consider a non-parametric form of the last model, and we describe it briefly
in passing, but it is not developed any further in this paper.

To be consistent with the last-value carried forward imputation method, which has
the best overall performance out of all simple methods examined (Kokic 2001), we
propose that a log-return pre-transformation of the data be performed. This has impli-
cations for the post-processing of the data, see section 5.1. For a brief overview of the
data see the documentation provided with the financial time series CD for the Eur®dit
project.

For convenience, we shall use standard MatLab notation for sub-indexing of matrixes
throughout this section (The MathWorks, Inc. 1999).

5.1 Pre- and post-transformation of the data

Let us denote the price (or index) time series by {Py,t = 1,...,T} where t is time
(days) and ¢ = 1,..., I is an instrument or index label, and let P = (P;) be the matrix
of all these values. In all cases P; € R* U {.}, i.e. the values are either positive real
numbers, or missing, denoted by “”. In the Eur®dit project the dimension of P is
1304 x 99, that is there are 1304 daily values for 99 time series.

Since these time series include weekends and public holidays when no prices can be
observed, and because no missing observations are allowed in the explanatory data, all
rows with completely missing data are first removed from the price matrix P. These rows
may be added back in once the imputation of the missing prices has been completed.

Preprocessing consists of taking the log returns of each time series:

Zy =

{log(PtH,i/ P;;) if both values are non-missing, and (5.1)

otherwise.

Note that this results in one less observation in each time series, and if there is a
continuous subsequence, t = [ + 1,...,l + m, say, of m missing values in {P;}, this
results in a subsequence of m + 1 missing values in {Z;} when 0 < I < T — m, and
exactly m missing values when [ = 0 or T'— m. However, for reasons of consistency, the
imputed values Z in this subsequence should be constrained to add to the log return of
the non-missing values just before and after the subsequence:

I+m
Z Zyi = lOg(]DH_m_H’Z'/P”), f0<l<T—m. (5.2)
t=l

But for the imputation methods we are considering there is no guarantee that this
constraint will be satisfied. For example, the last-value carried forward imputation
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technique Z;; = 0 which in general does not satisfy the above constraint. Thus we
propose the following simple post-imputation adjustment:

. (5.3)
Tt ifl=0o0rl=T—m.

s {Zm- + A {log(Prym1i/ Pu) — S Z}, if0<1<t<l+m<T,
Note that the {Z;;} will satisfy expression (5.2). One minor disadvantage of this adjust-
ment is the need for revision of the imputed values. However, there is only one revision
required, and this is made once a new price can be observed.

Finally, these imputed values must be transformed back to the original scale. The
manner this is performed depends on the arrangement of and types of missing values
in the price time series. There are essentially two types to consider: type 1. normal
missing values for which imputation should be performed, and type 2. naturally missing
values for which imputation should not be performed (e.g. beyond the expiry date of
an instrument). We now present an algorithm for performing the back-transformation.

1. FOI‘tzl,...,T—l, set pli:Pli,

5 _ Zyiy, i Zy = -,
te — .
Zy, otherwise, and

) Py if P14 # -(type 1), )
Py =1 -(type 1), if Pyy1; = -(type 1) and P; = - and

j2¥ exp(Zti), otherwise.
2. Fort="T,...,2, set

3 Py if Pp_y; # -(type 1), .
P;_1; =4 -(type 1), if 15t,1,i = -(type 1) and P,; = - and

By exp(—ZAt,l,i), otherwise.

5.2 Imputation using stock and exchange rate index covariates

It is possible to partition Z into several parts: Z = Z(1), ..., Z®) where Z() are US
shares, Z(?) are UK shares, Z(®) are UK bonds (Gilts), Z(*) are UK derivatives and Z(®)
are stock indexes and exchange rates. In the Eur®dit project the dimensions of these
matrixes are 1303 x 9, 1303 x 6, 1303 x 36, 1303 x 36 and 1303 x 12, respectively. We
may subdivide each Z = Z() into blocks covering one year or other time-spans of data.
Denote the resulting submatrix of data by Z = Z®/), where v = 1,...,U represent
the time partition, and j = 1,...,5 represents the data partition. In the case U = 1,
ZW3) = ZU), For the imputation model (2.1) we suggest two separate specification of
Y and X be used.

Specification R.1:

1. Perform the pre-transformation (5.1) on P to obtain Z = [Z(l), e, Z(5)]
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2. Set Y = [z, 23, zB) 7], X = z0).
3. Impute using the EM algorithm in section 4 to obtain Z.

4. Perform the post-transformation (5.3) on the imputed values to obtain Z.

5. Transform back using the algorithm presented in section 5.1 to obtain the imputed

values P.
Specification R.2:
1. Perform the pre-transformation (5.1) on P to obtain Z = [Z(1,... Z()]
2. Separately for each u =1,...,5 and j = 1,...,4 perform the following;:
(a) Set Y = Z(®9) and X = Z(45)

(b) Impute using the EM algorithm in section 4.

3. Perform the post-transformations in section 5.1 to obtain the imputed values P.

5.3 Imputation using a nonparametric regression model

Nonparametric regression is relatively straightforward generalisation of the regression
approach. With financial data it makes sense to apply the method using time as the
smoothing variable, and lagged observations only as this will minimise the number of
revisions required for missing observations to one (if the post-imputation adjustment
(5.2) is applied). It would be possible to use an exponential weighting in the smoothing
window as well, but for simplicity in the current situation we only use fixed weights.
The approach proceeds as follows.

Specification NP:
1. Perform the pre-transformation (5.1) on P to obtain Z = [Z(D, ... Z(®)]
2. Set j = 1, the length of the estimation window to h = 1007, and w = (1,...,h).
3. Set Yini = ZU) and Xin; = Z0).

4. Using the EM algorithm on Yj,; and Xj,j, estimate B and ¥, but don’t impute
any missing values. Denote the parameter estimates by Bp and ¥ p, respectively.

5. Set Y = Yini(w,:) and X = Xini(w,:).

6. Apply the EM algorithm using Y, X and the default parameters Bp and Xp.
Replace Bp and Xp by the EM algorithm estimates B and X, respectively. Save
the imputed values: Y;Eflz) «Y.

7. Move the estimation window forward one step: w « w + 1.

8. Set Y = Yiui(w,:) and X = Xjpi(w,:).

"Other values should be tested, e.g. h = 50,100,150, 200, 250, and only the value giving the best
result used in the end.
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9. Apply the EM algorithm using ¥, X and the default parameters Bp and Xp. Re-
place Bp and £p by the EM algorithm estimates B and ¥, respectlvely Append
the imputed values from the last row of Y to VAIRI A «— Y U).y Y (h,:)]8.

mp° ~1mp imp?

10. Repeat the algorithm from step 7 until the end of Yjy,; is reached (i.e. there are no
more values in Yiy; left to impute).

11. Repeat the algorithm from step 2 for j = 2,3 and 4.

12. Set Z = [, v z06).

mp? ° imp’

13. Perform the post-transformations in section 5.1 to obtain the imputed values P.

5.4 Imputation using a multivariate AR regression model

In this subsection we show how to apply the EM imputation algorithm (section 4) to two
types of time series models. The first is a multivariate AR model with covariates. To
avoid collinearity problems we propose that a simple lag 1 structure be used (i.e. only
include lags of one point back in time). Specification of the model and the algorithm is
given below and is referred to as the MARX1 specification (multivariate auto-regressive
with an X-covariate).

The second model for imputation is referred to as AR5X. For this model we propose
the use of a univariate response variables, the covariates are the same z-variables as used
in MARX1, and include 4 lagged values of the response variable, but exclude lagged
values of the z-variables.

Due to efficiency of markets we would not expect strong relationships with the lag
covariates, and so it would be surprising if the two models proposed significantly out-
perform either of the regression models for imputation proposed in section 5.2. However,
this fact is still worth testing. If results show that these models improve imputation per-
formance significantly, then it may be worth considering how to apply the EM-algorithm
approach to ARMA models, but this is a difficult problem and so won’t be address in
the current paper. We now present the two algorithm specifications.

Specification MARX1:

1. Perform the pre-transformation (5.1) on P to obtain Z = [Z(1, ... Z®)].
2. Set j =1 and let T be the number of rows in Z.

3. Initially set Y = Z\) and X = Z©),

4. Apply the EM algorithm to form an initial imputed data set 2.

5. Define the additional covariate Z(®) = Y(1:T —1,:) and §; = Y (1,:).

6. Set Y =20)(2:T,:), X = [2®)(2:T,:),Z0(1:T - 1,:),2O)].

8When the last row of ¥ has no missing values then it is more efficient to immediately return to step
7, rather than unnecessarily performing the EM algorithm
9This step is necessary as the covariate matrix must not have any missing values.
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10.
11.

12.

13.

Apply the EM algorithm to Y and X to form the current imputed data set Y.

. Set ZOO) = [j; Y (1: T —2,:)]'°.

. Repeat from step 6 until convergence.

Set ZU) «+ [§1;Y].
Repeat the algorithm from step 3 for j = 2,3 and 4.
Set 7 = [Z0V,..., 7, 70)]

Perform the post-transformations in section 5.1 to obtain the imputed values P.

Specification AR5X:

1.

2.

10.
11.
12.

13.

14.

Perform the pre-transformation (5.1) on P to obtain Z = [Z(),... Z0O)].

Set m = 1, let T' be the number of rows in Z and M the number of columns in
(ZzW),...,Zz"].

. Initially set Y = Z(:,m) and X = Z©®),

Apply the EM algorithm to form an initial imputed data set Y.

. Define the additional covariate Z(®) = [Y(1: T—5),Y(2: T—4),Y(3:T—3),Y (4 :

T—2),Y(5:T—1)] and let §; = Y (1:5).

. Set Y =Z(6:T,m) and X = [Z2O)(6:T,:), Z®)].

Apply the EM algorithm to Y and X to form the current imputed data set Y.

. Set ? — [1171,?]

. Set ZO) = [Y(1:T—5),Y(2:T—4),Y(3:T—-3),Y(4:T—2),Y(5:T—1)].

Repeat from step 6 until convergence.
Set V(™) V.
Repeat the algorithm from step 3 form =2,..., M.

Set Z = [FO),... 70N, 76,

Perform the post-transformations in section 5.1 to obtain the imputed values P.

10The influence of the first observation should diminish quickly as the number of iterations of the
algorithm increases
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6 Assessment results

Analysis of the data was performed using the financial panel/time series data from the
Eur®dit project. For a full description of this data and how missing observations were
generated see the documentation associated with the data. A total of 87 daily time
series covering the time period from the beginning of 1995 to the end of 1999 were used
in the analysis, 36 of which are bond time series. The various algorithms described in
section 5 were applied to the data. For all methods it was found that the convergence
of the EM algorithm was extremely fast and reliable, usually requiring less than 5
iterations. Unfortunately, this was not the case for the derivatives. The EM method,
in all cases, required over 100 iterations for the derivative instruments, and sometimes
they did not converge at all. It was therefore decided to remove the 36 derivative
instruments from the analysis, and to deal with these separately in the following section
(section 7). Thus, all the results in this section exclude the 36 derivative instruments.
In addition, for purposes of comparison, the last-value carried forward (LVCF) method
was also included in the analysis. In an earlier paper Kokic (2001) found that the LVCF
method worked best out of all the simple imputation methods (these included linear
interpolation, the Black-Scholes pricing formula for options and term structure pricing
for bonds).

Assessment was performed on the basis of two criteria, distributional accuracy and
predictive accuracy as defined in Chambers (2000). Note that a fuller set of assessments
will be performed in a later stage of the Eur®dit project. In all cases assessment was
performed on the pretransformed log-return data because, on practical grounds, this is
the most sensible to use. In addition, observations where the log return of the non-
missing data equals zero were excluded from the analysis, because they have already
been imputed at their original source and it would bias the results in favour of the LVCF
technique if they were included in the assessment. In fact, excluding these observations
only had an impact on some of the distribution assessment results.

For the first assessment criterion the Wald statistic was used, see expression (14) of
Chambers (2000). Specifically, this statistic and the corresponding p-value, computed on
the basis of a x? approximation, was determined over all imputed observations separately
for each time series. The resulting set of p-values were then summarised using box plots
as shown in figures 1-5 in the appendix. Note that in these figures small values of
p close to zero indicate a significant departure from preservation of distribution. For
predictive accuracy expression (19) in Chambers (2000) with w; = 1 was used. This
statistic can be interpreted as the average error of imputation. In effective it is a relative
measure because the log-return data is a rate of change variable. Again the statistic was
computed separately for each time series and then the set of results were summarised
using box plots (see figures 6-10).

To briefly describe these results let us begin by looking at distributional accuracy.
Examining figures 1 and 5, one immediately sees that the simple LVCF method per-
forms worse of all and, not surprisingly, all methods perform worse the greater degree of
missingness. The method that holds up best against this downward trend with increas-
ing degree of missingness is R1, while the worst by far is LVCF. The remaining methods
perform almost equally as well and are only slightly worse than the R1 method. In
particular, there is no evidence of any additional benefits from the more sophisticated
non-parametric approaches or the time series approaches compared to the two regression



EUREDIT deliverables D 5.7.1 and D 5.7.2 part B 12

techniques.

In terms of predictive accuracy there are very little differences between the results.
Figure 6 shows that the LVCF method is slightly worse than the other approaches,
otherwise there is little to distinguish the remain imputation methods. All methods
predict bonds more accurately than shares (Figures 9 and 10). In terms of degree-of-
missingness (figures 7 and 8) there seems to be little, if any, improvement over the LVCF
technique.

7 Option pricing results

As mentioned in the previous section, applying the EM-algorithm directly to the log-
returns of the option prices was not successful. The algorithm typically required several
hundred iterations to converge, and often it did not converge at all. The solution to
this problem is to apply the EM-algorithm directly to the missing volatilities data. The
reason for doing this is the following. In banks the Black-Scholes pricing formula is
almost exclusively used to price European call and put options, and to be effective this
formula requires accurate estimates of the strike-to-underlying ratio and the volatility
index. The first term can usually be estimated accurately, whereas the second is more
problematic. The volatilities are normally estimated by inverting the Black-Scholes
pricing formula, but this can only be done when the derivative price is known. Thus
one obtains missing volatilities exactly where there are missing derivative prices'!. We
used three methods for imputing the missing volatilities, and hence obtain imputed
prices: the standard basic method as described in Kokic (2001) (BSBASE), carrying
the last volatility forward approach (BSLVCF), and using the EM algorithm together
with a more sophisticated multivariate regression model applied to the log returns of the
volatilities (BSEM). For simplicity, we only included an intercept term in the regression
model as it made little sense to include the log-returns of the index data Zs).

The results presented in Appendix A.3 clearly demonstrate the enormous improve-
ment in performance of both the BSLVCF and BSEM approaches compared to the
BSBASE method. Overall the BSLVCF method seems best of all, although for predic-
tive accuracy BSEM works slightly better when the degree-of-missingness is medium or
high (see figure 12). It is somewhat surprising that the BSEM approach is outperformed
by the simpler BSLVCF method in terms of distributional accuracy (figure 11). Perhaps
the reason for this is that the multivariate normality assumption underlying the BSEM
approach is not valid and hence outliers are adversely affecting its performance.
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A Figures

A.1 Wald statistics

Different methods
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A.2 Distance statistics
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Figure 8: Predictive accuracy of the log-return imputed values by degree-of-missingness
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Figure 9: Predictive accuracy of the log-return imputed values by instrument type



EUREDIT deliverables D 5.7.1 and D 5.7.2 part B 23

NP Regression h=50 NP Regression h=100
+ +
+ +
8 + 8 +
8 8
@ —3 @ —3
[a) [a)
| |
| |
-4 -4
) | ) |
Shares Bonds Shares Bonds
NP Regression h=150 Last Value Carried Forward
+ + N
+ +
8 + 8
g 8
5 -3f 7 -3 -
a [a)
| ——
|
-4} -4
. | . .
Shares Bonds Shares Bonds

Figure 10: Predictive accuracy of the log-return imputed values by instrument type
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A.3 Option pricing results
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Figure 11: Distributional accuracy for option pricing methods by degree of missingness
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Figure 12: Predictive accuracy for option pricing methods by degree of missingness



