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1 Introduction

In this document we present a description of the Support Vector Machine
algorithm for imputation. We choose to solve the ‘imputation’ problem by
extracting a number of standard classification and regression problems from
the data set that must be completed. In other words, we choose to manipulate
the problem so that it fits the algorithm. Section 2 gives details of this
approach.

In section 3 we give an overview of the algorithm in a ‘no-frills’ classi-
fication formulation. This reveals more clearly the SVM’s three interlinked
elements; 1) a linear algorithm having a dual form. 2) a projection of the
training data to a high-dimensional space prior to application of the linear
algorithm, and 3) a capacity measure or regularisation term. An appendix
contains a formal derivation of the SVM, firstly for classification and secondly
for regression.

The fourth section describes kernel functions. These supply the non-linear
projection of the data. We explain how this projection can be left implicit.
A second appendix contains Mercer’s Theorem. which gives conditions that
must be satisfied for a function to be kernel.

Section 5 discusses Optimisation Theory. The training of the SVM re-
quires the solution of a quadratic programme.

The bibliography lists publications that go into full detail. Vapnik’s key
work [4] is listed, and also a short introductory text by Cristianini and Shawe-
Taylor [7]. Two shorter tutorials are [12] for SVM regression and [16] for
classification. The web-site, www.kernel-machines.org contains a large
repository of documents concerning Support Vector Machines and related
algorithms.



2 The Support Vector Machine Imputation
Harness

The application of the SVM algorithm to imputation is achieved through
manipulation of the problem. No change to the core algorithm is made.
For a data set A™*™, we produce p ! interlinked prediction ‘models’. The
problems are interlinked in the following sense: values on variable X that
have been predicted by one SVM may subsequently be used as training data
by another SVM trained to predict variable X;. To aid in the presentation,
we will refer to an SVM trained to impute the ;' variable as SV M;.

Any model of the form y = f(x1,...x,; 0) for the conditional expectation,
E(Y|X;,...X.n). can be applied using the same ‘prediction-approach’. The
method presently exploits no special feature of the algorithm used?.

The steps that are described in this section are only required for problems
in which more than one variable is missing. When a single variable is missing
the problem will be treated straightforwardly as a classification or regression
task.

2.1 Training data must be fully observed

SVMs can be trained to predict only one variable X; at a time. For the
sake of clarity we will use the subscript j to denote the variable currently
being imputed, known as the target variable. Other variables, known as input
variables will be denoted Xy together, or Xj, .1;ef1..n}\; individually.

Once X; is chosen, a dependency is learnt by training on fully observed
pairs, (Xk,Xj). When the parameters of the machine, SV M, have been
‘learned’, the imputations are obtained by applying the function to those
units lacking X;. SVM,(xk) = X;j.

Other variables X}, may be incomplete in a unit however, not just X;.
We must consider how to handle this additional missingness when it occurs
in either training or testing units. Our decision on how to handle the former
will affect how we handle the latter.

for a dataset with p missing variables.
Zapart from its superior predictive accuracy.



2.2 Training Data Heuristics

We assemble those units which are complete in X;, we will denote this set
trainset;. We can choose to estimate, or discard missing input variables
from this set. An alternative is to discard those units that are missing input
values. In the test phase however all units lacking X; must be treated.

We investigate three ‘dirty’ methods. The first heuristic: heuristicl
assumes that a sufficiently large subset of the data exists which is complete.
This subset alone is used for training, incomplete units are discarded.

This approach makes the assumption that the missing data patterns are
‘missing completely at random’(MCAR).

A second approach heuristic2 completes those Xj, variables that are
missing. No data or variables are discarded. We use the feature mean or mode
in = pg;. This approach assumes that the input variables are themselves
correlated. Perturbing one variable by introducing its mean or mode hence
does not distort the relationship with the target variable.

We note that training data can be weighted variably in the SVM, through
setting a different C; for each unit. Lower values would signify a unit with
more ‘pseudo’ values.

A third approach heuriste3 discards any missing training variables, X, ,
using a subset of the m — 1 measurements on each unit, to build the model.
These variables are also discarded from testset,.

In summary, the optimal heuristic must be ascertained for each data set
and for each missing variable within the dataset, by validation.

2.3 Test data treatment

Once SV M, has been trained we assemble all units with variable X; missing,
denoted testset;. This set may exhibit missingness on other variables also.
We order our approaches according to the approach chosen for trainset;.

Testing for heuristics 1 and 2 If the model was built using method 1
or 2, any missing X, in the testset; will need to be estimated for SV M; to
be applied. We use a feature mean or mode, depending on the type of Xj,.

Testing for heuristic 3 If heuristic3 was used for trainset;, applica-
tion of the model will require deletion of the same variables. If the testset;
exhibits missingness also in other variables, these must be estimated (before
the support vector machine can give predictions.



2.4 Iteration

If heuristic2 was applied to trainset; we may be able to improve the quality
of imputations by iterating. When Xj. is subsequently imputed we may use
this value in trainset; to reestimate SV M;. This approach resembles EM in
some respects.

3 Overview of Support Vector Machines

The support vector machines [4] is a new tool for prediction and function
estimation. Given a training set of input-output pairs, {(z1,y1), (22, y2)

o (Tn.yn)} € R" x £1 ., the SVM algorithm estimates a function (f) such
that, for (z,y) drawn according to the same distribution, P(X.,Y’) as the
training set, f(z) = y. The function describes a non-linear decision surface
that separates the two classes of data, denoted by +1 or -1 (the label y).

The SVM can be adapted to perform multi-class classification (y € 1,2, ..N)
and regression (y € IR). The SVM can be most clearly understood, in its clas-
sification form, as an extension of Rosenblatt’s perceptron algorithm. The
perceptron learns a linear discriminant function, f(z) = sign((w - z;) + b).
(w,b) are the parameters that are to be estimated.

The SVM extends this algorithm in two respects. It introduces non-linear
decision surfaces, and a means of avoiding overfitting. The first is achieved
through a non-linear projection of the data into a higher dimensional feature
space prior to estimation of the linear discriminant. The linear model learned
in this space is equivalent to a non-linear model in the input space. For exam-
ple, a point x € IR* with position, x = (z;,z,23) could be projected to the
new space IR® with coordinates x’ = (1, 72, ¥3, c;2%, cy22). The new features
are more ‘exotic’ functions of the original attributes. The SVM algorithm
finding a linear discriminant function in this feature space is equivalent to
the estimation of a polynomial discriminant in the original space IR®.

F(x') = (W - X') + b=wiz) + wyzy + .. w4cx? + wscors + b

The second extension of the perceptron algorithm concerns capacity con-
trol or regularisation. The problem of overfitting is well understood; if the
projection introduce enough new features, we would learn the noise on the
data, and not the underlying dependency. The SVM achieves good gener-
alisation by choosing a discriminant function that maximally separates the



two classes in the feature space. The Euclidean distance between the closest
point and the decision surface is known as the margin. This maximisation of
the margin acts as a form of regularisation. This is due to constants ¢; that
are associated with the added dimensions. (¢; and ¢ in the example above).
Their effect is to penalise discriminants that exploit the new features.

This SVM algorithm can be formulated in such a way that it only requires
the calculation of the dot product (-), between training points to find w.
Moreover this parameter vector is always expressable as a weighted sum of
training points, w = Y a;X;. Hence in test or prediction phase, test points
also only occur as dot products: f(z) = sign(} o;(x;-z)+b). An algorithm
with this feature is known as having a dual form. The SVM algorithm exploits
the dual form by finding functions that perform the non linear projection
described above, and the dot product in one step. These ‘kernel functions’
k(x,y) equate (¢(z), P(y)). The positions of the points in the feature space
are in fact never calculated. There are many choices of kernel function, some
of which have implicit feature spaces of infinite dimension. Such feature
spaces provide a large number of models. Maximising the margin however is
able to effectively choose the model with lowest capacity.

Support vector machines are motivated by bounds on the generalisa-
tion error. They can be understood as linear algorithms working in an
implicit high-dimensional feature space, with an objective function to be
minimised that is quadratic and convex. Overfitting is avoided by control-
ling a dimension-independent parameter, the margin. which can be calculated
using only the dot products of the training set data. The solution of the con-
vex quadratic programme results in a hypothesis that is often sparse. l.e.
f(z) =", ayk(x;, z) , and many « are zero.

4 Kernel Functions

The concept of a kernel function was introduced in the overview in section
2. There we considered expanding the representation of each data point by
adding features (quadratic functions) of the original attributes. We view this
new representation as a ‘projection’; + — ¢(x) of the input vector into a new
space.

The kernel function projects two points into the new space and calculates
the dot product in that space, in one step. The new position of each data



point remains implicit.

K(z,y) = (o) o(y))

If the projection had been into a much higher-dimensional space, this
‘trick’ can provide great computational efficiency.

To make the concept clear we give an example of a polynomial kernel
function and calculate the (usually) implicit feature vectors, ¢(x). Mercer’s
Theorem. given in the appendix specifies the general conditions that must
hold for a function to be a kernel.

We will consider a projection of two data points x, y.from a two to a 5 di-
mensional space. (In fact all the points exist in a four-dimensional subspace,
as the fifth feature is constant).

X = (371,.1'2)/ — (p(X) = (\/§$1: \/5372::5%::0%: 1)/

Y= (yl:yZ)/ — Cb(yv) = (\/iylt \/§y2: y% y% 1)/
The dot product in this feature space is,

(A(x) - d(y)) = 2z1y1 + 2720 + 27y; + 25y5 + 1

= (x1y1 +22y2 + 1) = ((x-y) + 1)

If our algorithm only requires dot products of the data points (a dual
algorithm), the projection may remain implicit, as we need only calculate
this last term. We also note that the number of tunable parameters remains
unchanged whichever kernel we chose, unlike a neural network where the
number of parameters is a function of the architecture.

All functions of the form, k(z, y) = ({x-2)+1)¢ where d is specified by the
user, can be used as kernels. A theorem from functional analysis provides a
general characterisation of all functions that can do service as a kernel. This
theorem, known as Mercer’s Theorem, is given in an appendix. It allows us
to use kernels, for example the ‘RBF’ kernel, with an implicit feature space
of infinite dimension.



4.1 Commonly used kernels

A full list of kernels may be found at http//:www.clrc.svm.rhul.ac.uk.
We describe those used so far in experiments for the Euredit project.

e The simplest kernel, supplying a linear solution, is the dot product for
the input space:-

k(z.y) = (z-y)

e Polynomial kernels are of the form:-

Fa.y) = (o o) +1)°

where d is user defined. As d gets larger, the SVM is able to supply
higher capacity models.

e Radial basis function kernels are of the form:-

o = yI?
T

K y) = eop(—1"—

where o is user defined. This kernel has an infinite dimensional feature
space. As o gets larger the capacity gets lower.

5 Optimisation Issues

Both classification and regression SVMs are estimated by solving a particular
class of optimisation problem known as a quadratic programme (QP). These
comprise of a convex quadratic objective function which must be maximised
subject to linear constraints.

QPs are solved by defining a function (known as a Lagrangian) which
incorporates information about both the objective function and the con-
straints, and whose stationarity can be used to detect solutions of the con-
strained problem. The Lagrangian is the sum of the objective function and
a weighted some of the constraints:-

Liw,a) = f(w) + i_n: a;h;(w)

9



Here f(w) is the objective function, the constraints are h;(w) and the
« are known as Lagrange multipliers. We seek the values of the o at the
minimum of L. For an SVM,

Diw,a) = 5w w) = Y aulul(w i) )~ 1

The constraints of a Lagrangian function can sometimes by simplified by
transposing to a Dual Form. We impose stationarity, and observe that, at
the extremum,

oL

E:W—E yl’Oé,'X,':O
0L =0
5y T

Hence w = Y"1 | ayyix;. The weight vector can be written as a linear combi-
nation of the training points. Substituting back into the Lagrangian function;

1 n n n
L(w.,b.a)= 5 Z Yiyjaic(X; - X;) — Z iy (X; - X;) + Z Q;
=1

1,5=1 1,5=1

n 1 n
= a; - 5 > viyjoioi(Xi - X;)
=1

1,5=1

These a coefficients are the parameters of the model we seek.

5.1 Commercial Toolboxes

QPs are relatively well understood problems and a number of commercial
packages exist for solving them. The Royal Holloway implementation allows
the user to choose between the LOQO [10] , MINOS [11] and BOTTOU rou-
tines. The first two are commercially available general-purpose QP solvers.
The last is a routine specifically created for the SVM at Royal Holloway.
However, it should be noted that features of the SVM problem can be ex-
ploited by specialist software increasing the speed considerably, particularly
in the case of regression.
We briefly recount descriptions of these packages given in [12]

“MINOS uses a reduced gradient algorithm in conjunction with a quasi-
Newton algorithm. The constraints are handled by an active set strategy and
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feasibility is maintained throughout the process. The variables are classified
as basic, superbasic, and nonbasic; at the solution, the basic and superbasic
variables are away from their bounds. The null space is spanned by a matrix
that is constructed from the coefficient matrix of the basic variables by using
a sparse factorization. On the active constraint manifold .a quasi-Newton
appprosimation to the reduced Hessian is maintained.” More briefly:
“LOQO wuses a primal-dual logarithmic barrier algorithm with a predictor-
corrector step.”

5.2 Chunking, Decomposition and SMO

SVMs are limited by the size of the Hessian matriz K™*" = k(z;,z;), which
must be held in memory. This is the matrix containing the dot products
of all training points, in the feature space. Problems of more than a 1000
data points become unmanageable on most systems. An approach that has
been proposed for handling larger datasets called chunking takes advantage
of ‘active set’ methods in optimisation. These simplify the problem by tem-
porarily discarding inactive constraints. An arbitrary subset of the data is
selected and the SVM is trained. The support vectors are retained and added
to them are a set of M points from the unsampled data that most violate
the Karush-Kuhn Tucker conditions.

This procedure is iterated, initialising a for each new sub-problem with
the values output from the previous stage, halting when some stopping cri-
terion is satisfied.

SMO. (Sequential Minimal Optimisation) was proposed by Platt [14] in
1999. This algorithm selects subsets of just 2 data points and optimises
the target function with respect to them. It has been reported to be several
orders of magnitude faster and exhibit better scaling properties than classical
chunking.

A Formal Derivation of Support Vector Ma-

chines
Suppose we are given a set of vectors Xy,...,Xr and we have a supervisor
which gives us a label y;, t = 1,....T. for each of the given vectors. Our

11



problem is to construct a learning machine which minimises some measure
of discrepancy between its prediction ¢ and the label y of a new example .

In the case of classification the label has only two values: y, € {—1,1};
that is, each vector z; belongs to one of two classes. The loss function in this
case measures the number of incorrectly classified vectors: the loss suffered

at trial ¢ is
. 0. if Y = gt-
L(ye. G) =< e
(ye: Ge) { 1. otherwise.

In the case of regression estimation the label y; is a real value: y; € IR.
Naturally, the loss function L is defined differently. For example, sometimes
it is useful to define it as the cumulative square loss,

L(yt: gt) - (yt - gt)zt

and sometimes as cumulative absolute loss,

L(yt:ﬁt) = |yt - igt|:

where y; is the supervisor’s assignment and ¢; is the predicted value.

A.1 SVM for Classification

Let us suppose that the training data consists of

where x; € R" and y; € {—1,1}, ¢t = 1,...,T. We can try to separate the
data by a hyperplane

(w-x)+b=0, (1)

where w are weights and b is a coefficient.

The intuition behind the SVM approach is that a separating hyperplane
is optimal, if it minimizes the number of errors and maximizes the distance
between the hyperplane and the closest (to the hyperplane) vectors.

Formally, it can be expressed as the following quadratic optimization
problem: minimize the quadratic form

Liw.6) = 3w-w) 40 (L6 )

t=1

12
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Figure 1: classification

under the linear constraints

ftz()t: T (4)

Here the “slack variables” & represent the magnitude of error.

The first term in (2) maximizes the margin of the separating hyperplane,
while the second term controls, using a coefficient C, the number and magni-
tude of errors in the training set that we are prepared to ignore. The higher
the value of C, the fewer errors are accepted; when C = oc the data must be
linearly separated (otherwise, the loss will be infinite).

Figure 1 illustrates the SVM approach to classification.

The Dual Representation of Classification

Using Lagrange multipliers the original setting of the problem can be replaced
by the “dual” setting: maximize the quadratic form

T 1 T
Z Qp — 5 Z ytysatozsfx’(xt,xs) (5)
t=1

t.s=1
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under the “box” constraints
0<ey<C., t=1.2.....T. (6)

Here. K is a ‘kernel function’ and the values oy, t = 1,....T. are Lagrange
multipliers, which play the role of the weights for each vector. For each non-
zero weight oy the corresponding vector x; is called a support vector. Using
kernels K makes it possible to construct nonlinear separating surfaces.

In this dual form the coefficients w of the hyperplane are not used explic-
itly: they are replaced by a linear combination of hyperplanes. The dual ap-
proach allows the construction of hyperplanes in the high dimensional space.

If x is a new vector, then the prediction y will be:
T
y = sign (Z oy K (x4, %) + b) : (7)
t=1

(We omit the details of computing the coefficient b in the dual setting.)
After the problem is transformed to a quadratic optimization problem it
can be solved using standard software packages.

A.2 SVM for Regression Estimation

The problem is to find a regression function
y=(w-x)+b

that would have the best fit for the new examples. Let us fix some tolerance
limit (or “insensitivity zone” ¢ > 0) so that errors of less than ¢ will not be
punished. The following loss function can be used:

— { 07 lf|yt_gt|§€

lys — U] — €, otherwise.

L(yt,j&t) = Iyt — U

The regression estimation problem can now be formulated in the following
way: find the minimum of the objective function

o)+ (36 +)) )

t=1

14



Figure 2: Regression estimation

subject to the constraints

y—(w-x) —b<e+&,t=1..., T (9)
(w-x)+b—y <e+ & t=1,....T, (10)
& >0, t=1,...,T, (11)
630, t=1,... T (12)

Roughly, the algorithm finds the flattest function (by minimizing the norm
of w) which passes within ¢ distance of the training examples.
Figure 2 illustrates this approach.
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The Dual Representation of Regression Estimation

As in the case of classification the problem can be represented using Lagrange
multipliers. The problem becomes: find a and o* such that the expression

—ez a; +oy) —I—Zyt F—o)— = Z Yys(af —ag)(a) —as) K (x4, x5) (13)

tsl

is maximized subject to the box constraints
0<ao;<C, t=1,2,....T, (14)
0<a;<C. t=1,2,....T. (15)

and the constraint .
> (a7 —a) = 0.
=1

The solution to this dual problem gives the following prediction § on a new
example X:

M’ﬂ

— o) K(x4,x) 4 b. (16)
t:l

Similarly to the case of classification, K enables us to perform nonlinear

regression estimation.

The desired regression function should pass through (or near) the training
points (at least if we assume C to be large). When the free parameter ¢ is
small, the regression function is not very smooth; when ¢ = 0, the function
must pass through all training examples. When ¢ increases the regression
function becomes smoother, and the number of support vectors decreases.
Thus, the tradeoff between the accuracy of approximation and the complexity
of approximation is controlled.

Kernel methods share the following elements: they transform the original
problem into a high dimensional space using the kernel technique, and control
dimension-independent capacity measures to avoid overfitting.

B Mercer’s Theorm

We mention this theorem briefly, which gives the conditions for a function to
be a kernel. Let X be a compact subset of IR". Suppose K is a continuous
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symmetric function such that the integral operator Tk : Lo(X) — Lo(X),

(T = [ KCx)fx)dx

X

is positive, that is

/XXX K(x,z)f(x)f(z)dxdz > 0

for all f € Ly(X). Then we can expand K(x,z) in a uniformly convergent
series in terms of T s eigen-functions ¢; € Ly(X), normalised in such a way
that |||z, = 1, and positive assoicated eigenvalues A\; > 0,

inf

K(x,z) = Z_: Ajoi(x)0;(z)

A corollary of this theorem is that , for any finite subset of X, the corre-

sponding matrix G, ; = K(x;,X;), must be positive semi-definite.
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