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Summary

This report describes how the tree-structured self-organizing map (TS-SOM) can be used for
imputation of incomplete data sets. The text begins with a rough introduction of the SOM and
TS-SOM type of neural networks, and is followed by the description of the TS-SOM based imputation
methodology.

In the neural networks litterature there are many, often conflicting intepretations about the
role of the self-organizing map. The reason for confusion is that there is no generally accepted
objective for the method, only implementations, from which it is hard to make a distinction between
the fundamental idea and the choises made by the computer programmer. In this paper we assume
that the self-organizing map is a discrete approximation of a more gereric class of models, principal
latent surfaces. This is useful for our purposes, since it allows us to think the SOM as a nonlinear,
unsupervised regression model.

The TS-SOM is a fast and easy to use variant of the SOM. When all computational tricks
are used, our TS-SOM is faster to organize than any other clustering algorithm that we know,
although this might not be be true if the same speedup techniques would be used with other algo-
rithms. The computational complexity of the algorithm allows us to solve may real world problems
that could otherwise be solved with unrealisticly simple models only. By ease of use we mean that
TS-SOM, unlike most other neural networks algorithms, is not sensitive to any implementation
specific parameters. We do not need to play with training parameters to get TS-SOM well organized.

When using SOM type of learning algorithms for imputation, several alterntive approaches
can be taken. For example, we may use fully observed part of data for model building, and then
use the model as a map from observed variables to incomplete ones. The actual imputation of
values may simulate randomness around the model, or it may copy the missing values from the
observed samples. This type of methodology does not nessessary require the development of new
algoritms, instead it is a hyprid of basic tools of data analysis and statistical methods. This approach,
however, is limited by the availability of good fully observed data. The more ambiqutious way is
to modify the existing TS-SOM algorithms to be able to hande incomplete and erroneous data as well.

In this report we present a novel training algorithm for the tree-structured self-organizing
map. The new algorithm is capable of utilizing all information of the data set, including the situation
that no fully observed data vectors are available. The algorithm is derived as an incomplete likelihood
estimate for mixture models, which is our intepretation of the discrete SOM model. Unlike in most
training algorithms for incomplete data, we do not assume anything about missing values, i.e. we
do not explicitely build expected likelihood or impute during the training. Intrinsicly, however, the
our method is a variant of the EM-algorithm. When the method is fully impemented, it is not much
slower than the basic TS-SOM, and more importantly, its time complexity is the same with respect
to the number of clusters (neurons) and data records.

Finally, using a toy example the key characteristics of the meethodology are demonstraed. A
more troughout evaluation of the methodology is given in the documents, related to EurEdit data
sets Appendix 1 (DLFS), Appendix 2 (Sars), Appendix 3 (UK ABI Data), and Appendix 4 (Swiss).
Appendices 3 and 4 are in preparation (not included here). Another closely related document is
D4.5.1 explains how the TS-SOM algorithm can be used for error localication.

The methods are fully implemented under our NDA (Neural Data Analysis) software as described in
the document (D4.5.2 & D5.5.2)
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1 Introduction

In this section a brief review of Kohonen’s self-organizing map (Kohonen 1982) is given. Special
attention is made to introduce those characteristics and variations of the basic method that are later
needed in the derivation of the SOM training algorithm for incomplete data.

Note that this kind of description is not fully accecpted in the literature of the self-organizing map.
Some developers of the SOM methodology do not want to make any connections between the SOM
and principal curves, MDL, or mixture models. Here those connections are essential, and based
on the personal viewpoint of the author, see (Koikkalainen, 1999). Similar formulations of the
SOM can also be found from other authors, for example in (Utsugi, 1997), (Cherkassky 1995) and
(Hastie, Tibsirani and Friedman 2001).

1.1 Why neural networks for editing and imputation 7
The following motivation is adopted from Vladimir N. Vapnik (Vapnik 1995):

Ronald A. Fisher simplified the problem of statistical inference -estimating probability
measures- by reducing it to the problem of estimating parameters of density function.

As the information technology revolution provided opportunities for estimating high-
dimensional functions (in 1960s) the problem of “curse of dimensionality was discovered”:
Dense samples as needed to learn pdf well, but dense samples are hard to
get in high dimensions.

A neural network solution to this problem was discovered first time in the early
1990s.

What this means is that many traditional methods do not work well with high dimensional data.
In 1960’s people started to believe that this is a law of nature and nothing can be done. How-
ever we know due Kolmogorov’s Theorem (Hilberts 13th problem) that that any continuous function

f(z1,32,...,2p) in RM can be presented using a one dimensional function gy (u)
2M+1 M
f($17$27"'7$M): Z gf[z)"t(ﬁj(x’t)]a
j=1 i=1
where

{X\i}M, = universal constants (don’t depend on f).
{¢;(6)}M, = universal transformation (don’t depend on f).
9¢7(u) = continuous 1-D function. It totally characterizes f(z1,22,...,2ZMm).

Informally we may intepret this such that for any high dimensional estimation problem there is an
equivalent one dimensional problem. Therefore the problem of “curse of dimensionality” does not
exist in nature.

It is true that some tasks are more difficult than others and often the difficult ones are multi-
dimensional. But dimensionality of not the problem, rather the real underlying problem is
the COMPLEXITY of data, as noted in (Friedman 1995).

The benefit of neural networks is that they can be used, under some implementation limitations, for
any dimensional problems. The self-organizing map, for example, combines dimension reduction and
data modelling under a single learning algorithm.

In practice there is no free lunch as noted in ??. While some old problems are solved elegantly with
neural networks, some new ones are introduced. Most notably, it is hard to give an exact meaning for
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neural network parameters, and therefore traditional ways, based on parameter significance, cannot
be used for model validation.

1.2 Principal curves and surfaces and data complexity

The objective of any SOM algorithm is best explained via principal curves and surfaces
(Hastie and Stuezle 1989, LeBlanc and Tibshirani (1990)) that generalize the idea of SOM as regres-
sion surfaces of type

x(v) = EX|v'(X) = v], (1)

where M dimensional data vectors x € RM are projected onto lower S < M dimensional latent surface
v € R® via mapping

! _ : "
v/(x) = argmin Jx - x(v")|

as illustrated in Fig. 1.

Chart 1: The mapping of a vector X onto principal surface v.

2-D data, 1-D principal curve 1-D data, 2-D principal surface

% 4 X X3 A
el v

|

To represent data accurately the surface tends to fold inside data, and in the extreme case without

restrictions, the surface v may go trough all N samples {X(j) ;-V:l of a discrete data set. To control
the folding and to quarantee that a stable solution exists, the flexibility of principal curves and surfaces
must be penalized (regularized). If one expects that the solution must be smooth, then one but not

the only possibility, is to use a kernel smoother, which allows us to rewrite equation (1) in form

x(v) = /H(v - 2)E[X|v/(X) = z]dz, (2)

where kernel function sums to unity [ H(v)dv = 1. The most obvious choice is to use a gaussian
density

I _ 1 v?
(V|av) - (27_‘_0_12})5/2 eXp - 20_12)
as a kernel, where parameter o, controls the degree of smoothing.

In practice, and due the smoothing, we expect that there will be an error
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e =x(v'(X)) - X,

which is zero mean because equation (2) defines a regression model. The error term € is important
since it represents the randomness of data around our model x(v). A natural objective is then to
find such a model that separates the behavior of underlying, but unknown, true phonema from the
residual noise of measurements (samples). In neural networks, one tries to do this univerally, without
assumptions about the true model. Although it is practically impossible to find the model this way, it
is still possible to find good models by minimizing our uncertainty about them. Informally, we try to
do as good models as data allows, which is often quoted using Occam’s razor: “simplest explanation
is the best”.

The “best” model, from the information theoretic point of view, is the one that minimizes the joint
complexity of the model and residual randomness €

Comple, x(v)] = Comp [e|x(v)] Comp [x(V)] .
—— ——

residual model

In probabilistic terms, the concept of complexity, Comp, is quite similar to likelihood, which nicely
relates information theoretic methods like the Minimal Description Lenght (Rissanen 1989) (MDL)
to other model selection methods like the Akaike Information Criteria (Akaike 1977) (AIC). Like
likelihood, the complexity is often measured in log form, log Comp = L, which can be explained as a
lenght L of a description, i.e. computer program, that is required to represent the term.

When using MDL for principal curves and surfaces one tries to measure the description lenght of data
D = {X} via “best” model such that

L(D) = min | L [elx(v)] +L [x(v)]

residual model

The problem is to measure L[e|x(v)] and L[x(v)] in practice. To do this we must understand howto
implement principal curves and surfaces, and howto quantify their complexity.

2 The self-organizing map

The self-organizing map can be understod as a discretezed implementation of a principal surface, as
depicted in Fig. 2. In self-organizing map the continuous surface v is represented with a discrete
lattice of points v;, 1 € I, where I is a set of node (neuron) indexes. Therefore the cardinality of the
indexing set I is also the number of nodes in the SOM lattice.

In the SOM algorithm the locations of the nodes v; in data coordinates are parametrized via weight
vectors w; = x(v;) and the projection v/(X) from data onto the principal surface is replaced with a
discrete search

b(X(j)) = argmin [|w; — X(5)],

where b is the best matching node for a given sample X(j) € D.

The heart of the SOM algorithm is the updating rule for the weight parameter vectors. The complexity
of the SOM is again controlled via a smoother, as well as with the number of nodes of the lattice,
resolution, which implicitely defines a limit of how rich the solution can be. We shall later see that
the resolution of the SOM is en essential tool for us, when selecting the best possible model for the
imputation of incomplete data.
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Chart 2: The relation between a principal curve and its discrete impementation via the
self-organizing map.

principal curve 2 node som 8 node som

In discrete form the equation (2) of the smoothed principal curve can be written through a Naradaya-
Watson type of kernel estimator (see (?)). This is a weighted expectation of type

wi =Y hipE[X | b(X) =k, (3)

H(vika|<7u)

Ek H(v;—vi|ow)’

In the literature there are several SOM training rules to estimate equation (3) from data. Many of
them have been derived in an “ad hoc” manner. Yet, many of them do not actually solve (3), but
some, often unknown variation of it. In the early days, most of the proposed algorithms were based on
Robbins-Monro type of stochastic optimization, while the best algorithms today are batch algorithms,
variations of the famous Expectation Maximation (EM) algorithm. This is an important observation
because it introduces a possibility to derive an elegant incomplete data training algorithm
for self-organizing maps.

where the value of the kernel is computed in discrete lattice points such that h;, =

The SOM is often explained as a vector quantization algorithm, but in our context it is more useful
to think it as a mixture model, as shown in Fig. 3.

The SOM nodes (neurons) are now gaussian densities
1 —\T A1 =
Fx(x|vi, Ag) ~exp =5 (x = Wi) A7 (x — W) ¢,

where matrix A; defines the widths (variances) of the generator. In practice, however, we usually
assume that A; is diagonal (only diagonal elements are nonzero), which simplifies the use of the SOM
in practice, allowing us to compute all dimensions z1,z2, ..., zy independently. Futher simplification
is possible if we assume that node density variances are zero. Then the computation of variances can
be ignored, and all samples will be classifed into “hard”, nonoverlapping Voronoi regions around the
best matching nodes, as it is done in almost all SOM algorithms.

The likelihood function for the mixture version of the SOM can now be written as

J

£(w;D) =[] { > hik fx(X(j)|vk,Ak)Pr(k)} :
% k

It is then a simple task to derive the maximum likelihood solution for the SOM mixture model. The



EurepIT REPORT No D5.5.1: JYU/SOM IMPUTATION (DRAFT 28.MAR.2002)

Chart 3: lllustration of the SOM as a mixture model, where each node is a Gaussian
generator.

solution is similar to standard mixture update, execpt that the centroids are also smoothed on the
SOM lattice as follows

AL(W) 1 _
= 0 = W, = —<——— h/z N Xk 4
6Wi Zk hi,ka; kTR TR ( )
where
_ 1 .
X = Fk Z X(j)- (5)
JEQ

Equation (5) is a mean of classified samples (using maximum probability Pr(k|X(j))) to component
k, which are given as a set

U = {7 | b(X(H)) = k}, (6)

where Ny, is its cardinality (therefore the prior probability of component k is Pr(k) = Xt). Note the

difference to standard mixture model, where we compute probabilities Pr(k|X(5)) for all nodes, and
J— _ 1 ) . .

then use update Xj = 721- Sr X G) > Pr(k[X ()X ().

2.1 The SOM algorithm in practice

The problem with the maximun likelihood updating rule (4) is that it requires the knowledge of
which of the samples X (j) will be associated to which of the nodes v;. Actually we do not have
this information before the training is complete, and therefore the training algorithm must deal with
incomplete information. The usual way to solve the problem is to use the EM-algorithm.

In the EM-algorithm the unknown likelihood L£(W) is replaced with an expected likelihood
Q(Wi{W*) where W is the set of parameters from the previous epoch *. When the maximum
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likelihood (ML) solution for parameters W*! is computed, the likelihood changes to Q(W+2|Wi+l),
This is then repeated until algorithm reaches convergence, which it is guaranteed to do.

Typical SOM the estimation procedures are loosely based on this idea. The follwing two steps are
repeated until the change between Wi*t! and W is small enough.

1. Distribute the samples between the nodes as defined by the equation (6). This differs from the
standard EM-algorithm by selecting only one node, the maximum probability one, for each
sample. In a special case where the variances of the components are close to zero, there is no
difference between the two.

2. Update nodes using equations (5) and (4). This is a normal maximum likelihood optimization
step which differs from normal mixture model update only by the introduction of the kernel
smoother h;; as an additional weighting.

The actual training algorithm is summarized in Algorithm 1. It should be noted, however, that in
practice some details, for example the initialization of the node positions, are done differently.

Algorithm 1: Batch algorithm for the self-organizing map.

1. Initialize (e.g. with random positions):
epoch t =0
V;:wi(t) = X(j) j=rand(1,2,...N)

2. Divide data into Voronoi regions ;(¢)
such that

FORj=1,2,...,N:
JEQ) if i= argming||X(j) — wyll

3. Compute centroid means:
X; = N% >_; X(j), where j € Q(t)

4. TUpdate centroids (use smoother along SOM lattice):

FORi=1,2,...,P:

1 —
wi(t +1) = o= [0 Pk () NeXa],
Z h@k(t)Nk k
k
5. Test if converged: Vit wi(t+1) —wi(t)] <6

else do next epoch t:=t+1; GOTO 2.

In the SOM literature the kernel smoother h;j(t) is known as the neighborhood function. On the
SOM lattice it defines a set of nodes, a complex, that cosists of the node and its closest neighbors, as
depicted in Fig. 4. Small number of nodes corresponds to small width of the smoother, while large
width averages over many nodes. In most SOM implementations the smoother width is changing as
the training proceeds. It is recommended that large smoothing is used in the beginning, to initialize
the network, and small width in the final phases to fine tune the net. Unfortunately there is no
objective criteria this.

In this presentation many practical issues about the actual SOM implementation are omitted. In
practice the most difficult task is to select the proper number of nodes, and to adjust the smoother
width of smoothing during the training.
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Chart 4: Complex of node i: neighborhood plus the node itself.

Initially the neighborhood is large

Finally small

—
O mO OO0 0202000, 200 000, 20)

Complex of node iis
{i} U {neighborhood of i }

3 The tree-structured self-organizing map

The tree-structured self-organizing map (Koikkalainen 1990, Koikkalainen 1994) (T'S-SOM) is, among
other things, a computationally fast variation of the SOM. Methodologically it is a combination of
the self-organizing map, tree-structured clustering and computational speedup techniques.

Another, sometimes even more important benefit of the TS-SOM is that unlike the basic SOM, it
does not require any “ad hoc” parameter settings to get well organized. The difficult choices about
the number of nodes and width of the smooter (size of neighborhood) are automized. Therefore the
method suits well to data cleaning tasks, where it might be difficut or impossible to play with the
parameters of the algorithm, while the data itself is a major problem.

The computational benefit of the TS-SOM over basic SOM is most notable when the number of
data samples is large and the complexity of data requires many updates before convergence. If P
is the number of SOM lattice nodes, then full search SOM makes P computations of the distance
d(x,wy) = ||x — wg]| to find the best node b(X(j)). This is per each presentation of a sample X(5).
The speedup becomes significant after one thousand samples, after which the computation of distances
d(x,wy) clearly dominates the computing time of the algorithm.

Chart 5: Data structures of the TS-SOM. Several SOMs (layers) are connected to form a
tree like structure.

T — Level 0 Level O
[ ———— | (root) (root)
I~ — — 7 Level 1l Level 1
— __! 2—-node SOM 4-node SOM
'i Level 2 Level 2
_ 4—-node SOM 16—node SOM

1-D SOM

When organizing TS-SOM, several SOMs (layers) with different resolutions are trained, strating from
simple ones and increasing the number of nodes by 2° times when a new layer is introduced. Layers
are connected such that each node is parent of exactly 2° child nodes on the next layer, as depicted
in Fig. 5. The number of nodes P; on layer [ is therefore 2!5.

The tree-like structure of the TS-SOM is useful in two ways: i) it can be used as a search tree to speed

10
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up the search of the best matching node b(X(%)), and ii) it can be used as a constructive estimator of
the data, from highly smoothed solutions (less nodes) to more complex ones.

3.1 The TS-SOM training algorithm

The actual training algorithm for the TS-SOM includes several computational tricks and algorithmic
details. Normal user of the TS-SOM based software can omit these details, but anyone who needs to
implement the method can not.

Most of the specific issues related to TS-SOM training are due the unique combination of kernel
smoothed SOM updates and tree search. To understand this, we compare the difference of the TS-
SOM to the tree-structures vector quantization algorithm TS-VQ (Buzo et al. 1982).

Chart 6: Search in the tree stuctured vector quantizer (TS-VQ) and the decision regions
caused by the search.

[ X()

search
operations

log ,P N
9o /
/

P nodes

The TS-VQ is a splitting algorithm that divides data between the nodes of the same parent using
nearest neighbor rule, and updates the nodes to the centroids of their data sets. In this type of
algorithms, as depicted in Fig 6, each node i of the tree holds one portion of data, €2;, which is not
optimal Voronoid shape because of the tree search. The data sets on the same tree level | are disjoint
aln Qi = 0 and convex. On the next level [ + 1, the sons of the parent node i split the set Q% such
that Ukﬁéﬁk(i) = O, and ﬁkﬂéj;k(i) = 0. The update of son positions to centroids Xson, (i) and the
splitting of data sets can can be done independently on the same tree level. The benefit of the tree
search is quite clear, To find the est matching node, only log, P search operations are needed. The
method is also more realiable than, for example, the K-means algorithm, because of the constructive
manner of tree building.

The main difference between TS-VQ and TS-SOM is that the nodes of the TS-SOM layer are not
independent. This is because of kernel smoothing along the SOM lattice. As a consequence, the
computation of centroids and the search of the best matching node cannot be done independently for
different parent nodes. In theory this could prevent us using tree-search technigues. Fortunately, in
practice all computations are localized to small neighborhood around the parent node. To understand
why, we need to see figure 7 and recall that SOM nodes can be intepred as density components of a
mixture model. Now, if each SOM node represents local density of data, then a significant part of
data points of parent is distributed between the sons of the parent and its neighbors. The width of
this disrtibution can be selected by adjusting the width of the kernel smoother.

It is essential for the understanding of the TS-SOM algorithm that in TS-SOM the smoothing
kernel width is fixed such that the neighborhood function h;j is is nonzero only for the nearest
neighbors of the node (but not the node itself), as depicted in 8. In fact we may write

11
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Chart 7: The relation between parent nodes and son nodes in a 1-D TS-SOM structure.
The influence of parent node is distributed to the sons of parent and its neighbors.

area where i+1=b(x)

Generator i

Level n

AN
\Level n+1
\G) i

Search set from level n node i to level n+1

1 ifk=14
hip =< v if ldist(k,i) =1, Idist(k,7) is the SOM lattice distance (number of nodes) , (7)
0 otherwise

where 0 < v < 1 is the neighbor weighting parameter that is related to kernel smoother width. It is
typically constant 0.25.

Chart 8: Neighborhood Ne(i) of a node in TS-SOM. It is always fixed to distance of one
node around node ¢. Note that ¢ is not a neighbor of itself.

—

Neighborhood in 1-D TS-SOM ) Neighborhood in

2-D TS-SOM

The fixed neighborhood on each TS-SOM level (SOM layer) separates the TS-SOM training algorithm
from both basic SOM, where the neighborhood shrinks as a function of time, and from TS-VQ, where
no neighborhood exists and nodes are independent. Because of the fixed neighborhood

i) The search of the best matching node from node i on layer [ to next layer nodes can be localized
to a constant size search set of (2° + 1) x 25 nodes. (sons of parent and its neighbors).

ii) Update of node position w; is almost surely bounded inside the search set.

iii) Layers with smaller number of nodes correspond to strongly smoothed SOMs because the width
of the smoother covers large area in the data space. This is discussed in section 3.8.

3.2 Search of the best matching unit

In the TS-SOM algorithm the search of the best matching node b(X(j)) for a given sample X(t)
is quite special. To understand howto implement the incomplete data version of the TS-SOM, one

cannot avoid this subject, which is the main reason, why this presentation is so much involved with
all kind of TS-SOM technicalities.

12
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In TS-SOM terminology the search of b can be conditionalized to any node i on layer [. The search
will then continue to next layer [ + 1 nodes. Since the search is always localized, we can define a the
search set Sset(i). Let Ne(7) be the set of nearest neighbors of node i, and Sons(k) the set of sons
of node k. The search set is now

Sset(i) = { sons of i} U {sons of neighbors ofi) = Sons(i) U NS, NS = Uyene(i)Sons(k)

By definition, the search sets of the neighboring neurons are overlapping as shown in Fig. 9. Therefore
search is not bounded to direct decendents of a node like it is in the TS-VQ algorithm. If the
search set were not overlapping, then lateral smoothing on the SOM lattice could move nodes out of
the search regions, defined by their parents. The error between tree-search and full search would then
become intolerable, and the SOM would not organize well into data. Note that because the size of
the search set is constant, also the time complexity per node is constant O(1).

Chart 9: Overlapping search sets to find the next layer best matching node from neighboring
nodes i — 1, 7 and 7 + 1.

. 7T~
N ~ 1?eérc_h set of > ~ //
N ,fodeii ~ ,
~
Search set of

Search set of

node i-1 node i+1

The tree search, based on search sets, starts from the root node and goes layer by layer down to the
currently adaptive layer. Because the layers are trained in order, [ = 0,1,2,..., from root to more
complex levels, and fozen after training, the role of the upper layers is only to be a search structure
for the currently adaptive layer.

3.3 The lookup search technique

The TS-SOM training, like any iterative algorithm, presents the same sample several times for the
network. Since the upper layers of the TS-SOM are frozen, the search will go exactly via same nodes.
This is clearly a computational bias that can be eliminated.

This simple technique is based on a table lookup. The idea is to add one new variable for each data
vector, a pointer to the parent node of the currently adaptive neurons. This node defines without any
loss the same search set as what the tree search does (see Fig. 10).

After a layer is trained (it is frozen) the indexes of the best matching nodes are stored in the lookup
variables

L'(j) = (X (j))-
When training a new layer, [ + 1, the search of the best matching node is for sample X(5) is then

13
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Chart 10: In the lookup search, the search through first TS-SOM layers is replaced with a
lookup table.
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Since the size of Sset is always constant (25 + 1) x 29, significant time saving is achieved. If the
samples are repeated many times, the complexity of the search with respect to the number of neurons
is now close to constant O(1) instead of O(logys) of the tree-search. At first this might seem magical,
but if one thinks that the complexity of the problem is defined by the data, not bye the number of
neurons, then additional neurons, after the data set is sufficiently well represented, should not increase
the complexity of the training.

3.4 Node updating
After the best matching nodes for all samples are found, then all nodes are updated. Let, as usual
% = — > X(3))
k= N - J
JEQ;

be the conditional sample mean of node i. Because of the assumption that nodes are gaussian gener-
ators, as well as due the smoothing, the sample is distributed over all nodes in the complex (neigh-
borhood plus the node itself). This can be intepred as a mixing probability, which is defined by the
smoothing parmeter v (see equation 7.)

The updating is therefore based on equation ??, as usual.

1
a ZkeCNe(i) hi 1 N

Ww;

> hixNiXpeone(i), where CNe(i) = {i} U Ne(i).
k

The neighborhood size and weighting constant are fixed. Therefore on each TS-SOM layer the amount
of regularization (smoothing width) is fixed during the training. This is notably difference to tradi-
tional “ad hoc” training of the SOM, where the objective of the optimization of weights is chancing
during the learning becase of decreasing neighborhood.

3.5 Initialization of nodes for new layer

In most iterative algorithms the computing time can be decreased significantly by good initialization
of parameters. While random selection of weight walues might work with basic SOM, more efficient
methods can be derived for the TS-SOM. This is because of the previously adaptde layers have already
captured come characteristics of data.

14



EureDIT REPORT No D5.5.1: JYU/SOM IMPUTATION (DRAFT 28. MAR.2002)

In most implementations we use a simple approach that initializes the weight vectors wy of son nodes
from their parents after the parent layer [ is frozen.

o I+1
Initially Viesons(i) Wy  (0) = w!

Another, but computationally more costly initialization is to interpolate the new layer nodes from the
parents. We have tested FFT interpolation for this, which gives good results, but looses in practical
applications because of increased computing time.

3.6 Summary of the algorithm

The TS-SOM training can now be summarized as given in Algorithm 2. Training starts from the layer
0, which has only one node. Then layers are trained in order.

After training all layer the nodes are frozen, and the lookup pointers from samples to their best
mathing nodes are updated. The weights of the new layer nodes are initialized from the parent nodes
of the previouly fozen layer layer.

The training rule itself is similar to previously introduced SOM batch training, execpt that the neigh-
borhood size is fixed only to the nearest neighbors of the node.

Algorithm 2: TS-SOM training.

0. Initially : | =0 (layer is root);
Wiroot = X = eroot Zj X(])

1. Initialize new layer :

Stepl.1 Initialize weights from parent nodes i :

vkESOHS(‘i)Wij_l (0) = Wé;

Stepl.2 Initialize lookups for all samples j,
L(5) = b'(X(5))

Stepl.3 (update layer index)
l:=1+1;

2. Train layer : 1
Step 2.1 (Use lookup search)
Q= {j [P (X()) =i}

Step 2.2 (Compute node means)

+ 32, X(j), where j € Q; 5

X; =

Step 2.3 (Compute node positions)

1 —
W=~ E hik NkXpeoNe(i) s
ZkGCNe(i) hi i N, " ’

where CNe(i) = {i} U Ne(s).
4. Repeat until converged :
If |[Wnewr — Weld|| > § GOTO 2;

5. Next layer. If more layers GOTO 1;

15
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3.7 Time complexity of the TS-SOM

When using TS-SOM, the time complexity of the search of b(X (%)) is reduced from O(P) to range
between O(1) and O(log,g P). Especially for complex problems the computing time is close constant,
O(1), with respect to the number of neurons P. This is due a special lookup search technique that
requires only a fixed subset of nodes to be searched per sample, when the same sample is presented
several times, as it is done in all iterative algorithms.

Chart 11: Comparison of computing times when using full search, tree search and lookup
search to train self-organizing maps.

Computing
| time (linear-scale)

Full search SOM

Tree search SOM

0 4 8 16 32 64 128 512 2048 8192
Number of SOM nodes (log-scale)

This is proven by example runs, as shown in Fig. 11, where several 1-D SOM’s with different number
of nodes are trained using (i) normal full search, (ii) tree search and (iii) lookup search techniques.
The data dimension or the number of samples does not significantly change the relative behavior of
the curves.

3.8 Algorithmic complexity of data and the TS-SOM layer

Empirical results of the TS-SOM algorithm are visualized in Fig. 12. The bottom and top images are
same 1-D SOM:s for given 2-D data, with an increasing number of nodes. On the top the smoothness of
the curve is visualized by adding more nodes by Fourier interpolation (zeros added to spectrum). This
operation does not add any information because the Fourier spectrums of top and bottom images are
exactly same. Therefore one can conclude that TS-SOM layers with small number of nodes correspond
to large width of the kernel smoother when compared to basic SOM algorithm. This means also, that
by selecting the appropriate TS-SOM layer, we can select the complexity of SOM.

Chart 12: Bottom: several TS-SOM layers (SOMs with an incresing number of nodes).
Top: Same as bottom, but missing nodes are added using FFT interpolation.

e e I I A

To find the best representation of data, the discription lenghts of SOM layers L(x!(v)) and residuals
L(e|x!(v)), where € = x(v/(X)) — X, are computed. The result are shown in Fig. 13 that suggests
that the best model of the given data is SOM layer 3, with eight gaussian generators.

layer 1
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Chart 13: Description lenghts of SOM layers and residuals.
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4 Training TS-SOM with incomplete data

The TS-SOM algorithm, as introduced in the previous section, is designed for complete data vectors
without any missingness on variables or data records. In this section we extend the algorithm such
that it is able to use all information of incomplete data sets.

When there are missing samples we need external information, sampling weights, sw(j), that as-
sociate to each sample j information about its sampling bias. If we know that the iid assumption
is violated, then sw(j) is a measure of how many iid samples corresponds to each of our observed
sample j. This can take be any positive real value. During the TS-SOM training sampling weights
are added to the computation of node priors.

When there are missing variables, then incomplete likelihood model for SOM can be used. This
itself requires very little computational effort since the SOM algorithm is already based on a variation
of the EM-algorithm. Only difference to previous training is that missing values are ignored when
computing sample means. Mathematically this is same as mean value imputation of missingness
during the training, but no imputations are needed in practice.

Unfortunately, missingness prevents us from computing the best matching node b, which should be the
most probable node for a given completely observed input X(j). Yet the SOM algorithm is using the
best matching node only because of its computational efficiency. It is simpler to classify data between
the nodes than compute actual posterior probabilities Pr(i | X(j) ) of nodes for given samples. If some
variable values are missing, this approach cannot be used.

The computation of posteriors for all nodes would be very costly, especially when compared to lookup
search of the TS-SOM algorithm. Therefore we decided to compute Nb best matching (most probable)
nodes instead. From the computer implementation point of view this requires some effort, but the
computational cost is only about Nb times more than that of normal TS-SOM algorithm. Another
good news is that when Nb is “sufficiently” large, the difference between true mixture model SOM and
the usual (most probable node) SOM vanishes.

The computer implementation of our new TS-SOM is a variant of dynamic multi path programming,
which are also know as fast marching methods. The lookup search can be used as before, but now
Nb new pointer variables need to be introduced per each sample. For very large data sets this might
cause problems with memory consumption. However, the algorithm seems to perform well with only
a couple of “best” nodes.

4.1 Notations about missingess.

To explain the incomplete data version of the TS-SOM we indicate the missingness as shown in Fig.
14. This is quite trivial for anyone who has been working with incomplete data, but for a computer
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programmer, the data model must be specifed carefully to avoid unnesessary memory consumption.

Chart 14: Notations, used to indicate missing values.

observed incomplete sampling
X X P weights
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Elements of data matrix are either observed d°”®(j) or missing d™*(j). The matrix D can therefore
be factorized between two sets of elements such that

D= Dobs U 1)mis7
where values of D°P are normal variables and D™ consists of special markers mval, values that are
only used to indicate missingness.
Data records (samples j) are divided between complete and incomplete data vectors such that

' pincomplete  if arjqfnis(j) = true
X(j) € { Jpcomplete if V,.I™8(5) = false

where I™i$(j) is an indicator function for missingess of variable r in sample j. Formally

™is(j) = true if X,.(j) = mval
v VT false if X, (j) # mval.

In computer only data matrix D with indicators mval in place of missing variables need to be allo-
cated. Variable indicators I™(j) can be computed when needed. In the qualitative and quantative
evaluation of the results we use sample indicators X (j)i™mP € Dincomplete anq X (j)°bs ¢ peomplete tq
note differences between observed and imputed samples.

4.2 Using sampling weights in TS-SOM training
The role of sampling weights is to easily noted by changing the computation of sample means. We
use weighted cardinalities V}" instead of normal cardinalities Ny.

This technique is also in essential role when the multipath version of incomplete data TS-SOM training
is used, regardless wether actual sampling weights are used or not. Therefore, instead of using normal
sampling weights sw(j), corrected sampling weights s are used in the following equations. When
there is no variable level missingness sw = sw.

The definition of weighted cardinalities is

Ny =3 sin(). (8)

JEQ
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Clearly N3V = Ny, if sw(j) =1 for all samples j. Now the node update can be written as

1 -
M ST o ®

and the weighted sample mean for node k is

% = N 3 X0 (10)

4.3 Incomplete data likelihood for TS-SOM

The formulation of incomplete data version of the TS-SOM is a simple application of the EM-
algorithm, which is already used in the complete data version of the TS-SOM. We can always factorize
the expected log-likelihood, the @ function, to observed and missing parts

In QW' |W?) = IE[In L(W'HL; D™%)| D°P W] + E[In £(W; D°P%)|[W?)].

where  maximixation of  IE[ln£L(W;D°%)W!] is  computed as  before  and
E[ln L(WHHL; Dmis)| Do ‘W] is maximized using the SOM (principal surface). This means
that missing values are taken from the mariginalized distribution fxumis xobs we (X™5|XP5, W) as
depicted in Fig. 15.

Chart 15: Marginal distribution of missing values for a given observation and principal
curve.
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The marginal distribution is our best knowlegde about the distribution of missing values, given what
is observed. We shall see that is leads to simple and computationally implementation, when TS-SOM
is used as a model.
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4.4 Selection of the best matching units

The procedure requires, potentially, several best SOM nodes for each partial observation X°b(5). For
computational reasons the number of best nodes Nb is decided in advance, allowing the selection of
Nb best nodes to be defined as a search

b (X)) = {k1, k2, .- o | diy (X)) < g, (XO%) < ..o < g (X% )},

where djr = || X — x°P (v )||, and X°P is the observed part of the sample vector.

At first it seems that this cannot be implemented easily using TS-SOM speedup techniques. In
practice, however, the only difference to basic TS-SOM is that instead on one lookup variable, a
vector of Nb lookup pointers is used (see 16). Now, after a layer is trained, (and frozen), the lookups
for all samples j are updated to

Liv(j) = {LL (), L5 (), - - -, Lin (4) } = by (X(5)"*)

Then, when training a new layer [ + 1, the best matching units are computed such that search is
limited to a combined search set of nodes

kl € Uk” Sset(Li:ll (j))

Chart 16: Tree search and lookup search visualized when multiple search pathts are used.
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The combined search set size is bounded by constant (2% +1) x 2% x Nb. Because of this, the computing
time of the search is maximally Nb longer than that of the basic TS-SOM algorithm. In reality the
time is shorter because the search sets of different paths are often overlapping.

It should be noted that multipath search is needed only for samples j € Dincomplete. For complete
data vectors normal, one path, search is used. Thus, the computational cost of multipath search is in

55 s .
average 2 +Jif)><2 x (Ncomplete + Vincomplete y Nb).

4.5 Updating with incomplete observations.

When multipath serach is used with imcomplete sample vectors, several “best” nodes are obtained.
This multiplies the weight of incomplete samples, which must be corrected with sampling weights
sw(j) such that

1 .
Siu(]) = —sw(j)7 if j € pincomplete
Nb
where sw(j) = 1, if there are no sampling weights.
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The idea could be futher generalized by computing posterior probabilities Pr(k|X°P®) for each node k
in the set by (X°P%). The the sampling weights would be specific to both nodes and samples

sy (j) = Pr(k|X°™)sw(j) if j € Domplete,

The threatment of missingness is easiest to understant on variable level. For a moment, we assume
that the value of variable r is either know or imputed from the marginal distribution

X,(j) = X0bs(5) if IMS = false
"I)IZ X (5) if IS = true, where XI™P(j) ~ fymio xobs we (X755 X0, W)

The imputation is made by first selecting the SOM node i from set by (X°%), as discussed earlier, and
then using the SOM model and randomness around it to get the actual value

X" =w! +e€ where i€by(X)

We first note that the number of samples per node is divided between observed and missing parts
N7 = NJw™ 4 N7 where sw denotes that the corrected sampling weights are used

The SOM updating rule for variable r and node i can be written as

1 . N . .
t+1 . obs\] _ . sw,0bs—obs sw,mis—mis
uf ' = T haa Xk € b (X7 = s D b (VRPN )

k kYR g k,r k
where
—=obs  _ 1 Sl 4 obs (s
Thor = Nrwebs Ejer,I:ﬂS(j):false sw(7) X7 (4)
~mis  _ 1 . Aol A imp( ) — 1 . Al a t
Lir — N;%:ﬂ,mis Zjer,I;’“s(j)ztrue S’LU(_])XT (.7) = N:"\L:‘,mis EjEQk,I,E‘"S(j)ztrue Sw(J)(wi,r + €)
_ Zjenk,l;“is(j)=crue sw(j) t ot
- N}:ﬁ:,mis Wiy = Wy ps
where Z}"® = w}, because is the average over zero mean noise € is zero. Therefore no actual

imputations are needed, we simply use old weight value wf,r as a mean of all missing values.

4.6 Summary of the incomplete TS-SOM training algorithm

The TS-SOM training with incomplete data vectors is summarized in Algorithm 3. The main differ-
ences to basic TS-SOM are the use of multiple paths and the incomplete data update rule for node
centroids.
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Algorithm 3: TS-SOM training for incomplete data and sampling weights.

0. Initially : | = 0 (layer is root);
Step 0.1 (corrct sampling weights )

N sw(j) if jEDcomplete
v] . Sw(]) - { %sw(]) if jEDincomplete

Step 0.2 (compute root node position)

Wigot = X = Nflo"c’,t Z]’ Sw(J)X(])

1. Initialize new layer :

Step 1.1 Initialize weights from parent nodes i :

vkeSons(i)VVgg_‘_1 0) = Wé;

Step 1.2 Initialize lookup vectors for all samples j,

Ly (j) = by (X()

Step 1.3 (update layer index)
l:=1+4+1;

2. Train layer : 1
Step 2.1 Use lookup search for every node i
Q= {j |iebly( X)) k
Step 2.2 For every node i
Step 2.2.1 (Compute node priors for every variable r)

N = 3 crows 5W(J), where Robs = {j |I*(j) = false, j € 2;}

i,
Ni:f”mis =3 jcmnis SW(j), where Rmis = {j |I™i5(5) = true,j € ;}
Step 2.2.2 (Compute node means for every variable r)

E%l’): = N’:i%@bs ZjEQk ,I,{“is(j)Zfalse Siu(j)X;)bs (])
T

T =uf,,

Step 2.3 Compute node positions for every variable r

t+1

sw,0bs—obs sw,miS—mis
Z h‘t k(Nswobs_'_Nswmls Zk lk(N mkr +N xk,r.)

4. Repeat layer training until converged :
If |[Wrewr — Wol|| > § GOTO 2;

5. Next layer. If more layers GOTO 1;
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Algorithm 3 is an direct implementation of the EM-algorithm for tree structured self-organizing maps.
The construction of expected likelihood, E-step, consists steps 2.1, 2.2 and partially step 2.2.2. The
M-step is then implemented by the observed part of 2.2.2 and step 2.3.

From the updating rule, step 2.3, it is possible to conclude that if there are no missing variables, then
the algorithm is same as the basic TS-SOM training. Also, when the number of missing values is
small, observed variables dominate the computing of node positions, and there is no notable difference
to basic TS-SOM. Therefor one could just ignore all incomplete samples and use normal TS-SOM for
model building.

In some practical cases, however, the number of completetely observed samples is small. Especially,
when working with large dimensional incomplete data sets where missingness can occur anywhere,
it is less probable to find a lot of fully complete observations. In the extreme case, no completely
observed sample vectors exist, and the only possibility for model building is to use incomplete data
trainig alforithms.

For Euredit project, incomplete trainig has also another role, it is used as a supporting technology
for error detection. The idea is to add robustness to training by ignoring all variable values that are
potential errors. This is done by marking as missing those variable values that are out of our (small)
confidence value. Then, after training, we can investigate the samples with respect to our model and
mark as errors the values that are explained by the model by only a very low probability. In this
procedure we are usually quite conservative during the training, and a lot of samples will be moved
to incomplete category. Therefore, incomplete training must be used.

4.7 Toy example with incomplete data
We demonstrate the training algorithm with a simple toy example, as shown in Fig. 17. There are a

total of 2000 completely observed samples, and the same number of incomplete ones. Therefore we
may expect that incomplete training differs clearly from the normal training rule.

Chart 17: An example of incomplete training algorithm.

The setup of the experiment is visualized in the left part of figure. Complete observations are sampled
unifromly from three, 2-D areas, A, B, and C, where the sample set sizes in are N4 = 1600, Ng = 100
and N¢ = 300. For incomplete data, Np = 2000 uniform 1-D samples from range D on x; axis are
observed.

In the middle figure a 1-D SOM (layer 6) is shown after normal TS-SOM training, where the incomplete
samples are ignored, while the figure on right is trained using incomplete data TS-SOM algorithm.

The key observation is that more nodes are associated to area where the missing nodes are observed.
Since the distribution of fully observed samples suggests that area A is more dense than area B, also
SOM nodes are mainly in this area. Second note is that the SOM curve is folding less in the imputed
area. This is due the smaller variance as well as the small number of nodes in the networks.
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5 Using TS-SOM for the imputation of incomplete data

In principle, the TS-SOM model for imputation can be build without incomplete training, assum-
ing that enough of completely observed samples are observed. Yet, the incomplete data TS-SOM
methodology, or an understanding about it, is essential for the imputation of incomplete data.

5.1 Bayesian intepretation

Recall our definition of the SOM as a regression surface. We can use the following Baysian intepretation
for it

X =x(v) +e~ fxv(x [v).

What is important, is that in the Bayesian formulation the noise term e is always a part of the model.
For example, we could assume a symmetric Gaussian noise with variance 8

1 1 ,
vl 1) = g exp { = 5llx() = x?}.

Continuing our Bayesian argumentation, a partially observed sample x°P® = X°P%(j) conditinalizes a
probability distribution of its projection onto the principal surface as

Fu(vix™).

Now, when using SOM, the distribution of complete observation given partially observed variables is

Pelebe™) = [y (x [0y s (Vi) gy

This model contains all information about the true values, under the assumption that the model and
noise formulation are realistic. In the absense of true knowledge about the two, we must use other
ciriteria, like the simplest (“best”) model that data allows. This leads us to model complexity selection
as discussed in section 1.

In practice equation (11) can be used in several ways to get actual values for missing variables. Some
of the most obvious possibilities are

i) Monte Carlo simultation, where we draw random samples from (11).
ii) Compute the expected value from (11)
iii) Compute the most probable value (mode) from (11)

iv) Use (11) to associate probabilities for existing samples, and then use these probabilities to select
a donator sample.

The implementation of the Bayesian principal surface and the related imputation techniques are done
using a generative self-organizing map, as explained in the following section.

5.2 Generative SOM model for imputation

In section 2 the SOM was explained as a mixture model, although that information was not really
needed in the derivation of algorithms. Where SOM is an implementation of principal curves, the
generative SOM is an implementation of our previous Bayesian formulation. It allows us to do impu-
tation as shown in Fig 18. The methodology is partially same as in the incomplete TS-SOM training,
execpt that instead of model updating we need to impute the actual missing values.
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Chart 18: Using generative SOM as an imputation model
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In our current model the nodes are assumed to be multivariate Gaussian densities, where for simplicity
the covariance matrix is diagonal (variables are linearly independent). During the model building the
variances 3;, for all nodes and variables are estimated from the training data. Then, for each node
and variable we have approximation of (11) as

(wi,r — )}

fx, (@ri) =

1 o { 1
xpd — —
27 f3; P Br

and a prior probability Pr(i) = %

First part of the imputation procedure is same as before, as set bx(X°P%(5)) of Nb best matching (most
probable) SOM nodes are searched, as explained in section 4.4. This corresponds to computation of
fv(v|x°Ps) in our Bayesian formulation.

Then a node k is selected according the prior probabilities Pr(i) from set k € by (X°P5(j)). Finally
the values for all missing variables X™ are selected from the component density

X3P ~ fx, (2 |K).

Since the Gaussian approximation extends to infinity, which is unrealistic, the values larger than a x o
are rejected, where a is a user given parameter and o = /B, k- 18 the standard deviation.

5.3 Toy example revisited

We continue the previous toy example, that was first discussed in section 4.7. As before incomplete
data training with TS-SOM is used. As shown in Fig. 19 three example sets were select using
uniformly sampling (bottom figues) with different priors from regions A, B and C.

The experiment was repeated three times with different distributions. The original sample set sizes
and the distribution of imputed samples on regions A,B and C are shown in the following table. As
before, data set D is observed on axis x; only.
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The distributions of imputed data sets D for cases a), b) and ¢) (from left to right) are shown in the
upper figures. Visual inspection of results shows that data are roughly distributed as in the training
data. In the leftmost image, data a), the imputed samples seem to have smaller variance than in
fully observed data. The reason is that variances were computed during training, where the missing
values were imputed to node mean. Also the idea of using different and independent variances in all
nodes need rethinking. Some kind of smoothed version, or true mixture model version would be more
reliable.

Table 1: Data set sizes for the toy example and imputation results (for classes A,B and C).

| Originaldata | A | B | C | D (incomplete) || Imputed data | A | B | C |

example a) 1500 | 100 | 400 300 || a) 223 | 0| 77
example b) 1000 | 100 | 1000 300 || b) 159 | 0| 131
example c) 50 | 10 | 150 50 || ¢) 39| 0] 11

Chart 19: Imputation examples with incomplete data version of the TS-SOM

5.4 Variations of TS-SOM based imputation models

The role of the incomplete TS-SOM training algorithm is to build a model of the joint distribution of
missing and observed observations.

fximp ,Xobs (Ximp 5 XObS)

The actual imputation of incomplete data can be done in several ways
1. pick a random sample (as before)
XU~ fximp|xobs (xImP |xPs)

2. use mean values
Ximp — E[ximplxobs]
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3. use random doner [X™P, X°bs] ¢ Qeomp
4. etc. ...

In the following appendices variations of methods 2. and 3. are tested for DLFS and SARS data sets.
NOTE Several things are still missing from this report:

i) Better description of imputation strategies (SOM+donator samples)
ii) Practicalities with real world data (imputation strategy etc.).

iii) More real world data sets.

iv) Conclusions
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1. Introduction

This appendix includes the first Statistics Finland test results based on the Danish Labour Survey
Data. We present these results using the so-called development data set, that is, we know the real
values for each missing one afterwards. Basically, the best specifications of these results will be applied
when using the so-called evaluation data set. This kind of work has already been preliminarily done
but any results of these are not included in this report.

We decided not to present our test results for each method, separately, but instead for each data set,
separately. This gives easier opportunity to compare the results based on various new and traditional
methods and techniques. Statistics Finland is involved especially in Workpackages (WP) 4.5 and 5.5
which are concerned Self-Organizing Maps (SOM) techniques. We also are working with traditional
methods, thus for WP’s 4.1 and 5.1. Since the Danish Labour Force Survey only is concerned on
imputation problems, this report is covering WP’s 5.1 and 5.5, consequently. It is not fully clear what
methods belong to WP 5.1, but we here present our results based on standard Solas procedures, on
one hand, and on Regression-based Nearest Neighbour (RBNN) methods (see Laaksonen 2000), on
the other. Pasi Piela (2002) has written a special report on SOM imputations, that includes similar
points as this one.

In this report, we next in Section 2 present the short introduction to SOM methods and tests results
using this methodology. Some comparisons using Solas are included in this section. RBNN methods
and results, respectively, are included in Section 3.

2. Data set and TS-SOM Based Imputation

The research group on Software Engineering and Computational Intelligence (SECI) of the University
of Jyvaskyla (JyU) has developed a software called the Neural Data Analysis environment (NDA).
The software provides a generic application platform for computational intelligence with many proven
examples of real world applications. The main emphasis of the software is to aid methodological
development of knowledge discovery, data analysis, and modelling in general (see Hakkinen 2001).
Techniques are mainly based on neural networks, but the system also includes a large data

The Danish Labour Force Survey (1996) consists of Danish population register records for individuals
selected for interview. The synthetic version of this data set was given as training and development
data for imputation methods. The data consist of only 14 variables with little information, four relating
to type of response. Annual income (DKK) is the only variable needed to impute, the missingness rate
being 26.8 %. The data are at person level having 200,000 observations, information about households
is not available here. These 13 auxiliary variables are categorical, except person’s age. They have 2-4
classes, except AREA (area of living), BUSINESS (last employment) and EDUCATION, for example,
have 4 classes:

1 = Private Industry

1 = Primary school only

2 = Other private business

2 = Craftsman, Skilled labour, High school only

3 = Government employed

3 = Long education, school teacher, university, etc.
9 = Not applicable
9 = No information
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The complete data vectors are used here as training data. That is, we select all 146,323 observations
with known value of income. Another alternative would be selecting all the observations and training
TS-SOM for these without the variable INCOME, but this is not necessarily appropriate in this simple
case due to losing information of the relationship between INCOME and explanatory variables.

First we make data analysis by building TS-SOM for our training data set by NDA software and
viewing its different layers. For example, it is easy to observe graphically the basic statistics of
INCOME for different clusters and comparing them to the statistics of background variables.

Variables are scaled for nearest neighbour imputation (this thus assumes that each variable has the
same weight), where for the missing component x;(j) that belongs to a cluster b

x;(j) = xa(J) 1 = arg min [Ix: — %kl (12)
b

so that all categorical variables are binarized. Thus, for variable 1 of m classes we have corresponding
m (0/1)-variables. The continuous background variable, AGE, is scaled to [0, 1] based on min/max
ranges:

< = X~ min'x

maxx — minx

However, in the case of several skewed distributed continuous variables there are naturally other ap-
propriate methods for equalization. Also, when missingness of several components occurs the distances
in (12) can be weighted by simply comparing the number of missing components and the number of
variables for every data vector.

An obvious problem in this kind of hot-deck type of imputation is its computational complexity
(related to computation time) that is O(N?) due to the full search among N data vectors. By using
the above method and TS-SOM the complexity can be reduced to O(N log, M + N?/M) where the
complexity of the TS-SOM algorithm is O(N log, M), p being the number of sons of each node (in
two dimensional case: p = 4), and for the imputation within M clusters it is O(N?/M). In practice,
this was clearly observed for the example in question as follows:

Table 2: Computation time of the nearest neighbour imputation. Synthetic Danish Labour
Force Data set, N = 200,000.

Nearest Neighbour Imputation Computation Time
Pentium(r) II Processor (500)

without TS-SOM mapping (layer = 0) more than 12 hours

layer 2 as imputation layer (16 neurons) 59 minutes

layer 3 as imputation layer (64 neurons) 20 minutes

As shown in Figure 20, the imputation does not give good results at the unit level, which is expected
because of lack of good background information. But for this case the method really seems to work at
the aggregate (or data) levels. Specifically, the line for observations with ¥ = 0 and Y'* > 0 is quite
similar to the line for observations with Y > 0 and Y* = 0, but the lines are long including several
wrong imputed values. Furthermore, the linear regression model (y = true income, x = imputed in-
come) has surprisingly high estimate of the intercept parameter (102034) but when modelling without
intercept quite a good model with high R-square is observed.

As Hakkinen (2001) points out, there are some obvious problems in this kind of traditional method
together with TS-SOM. There might be clusters having only missing values and there is a risk to lose
the nearest data vector to another cluster, which might be a problem here too.

Cluster centroid imputation, which replaces the missing values with corresponding values of the cen-
troid of the same cluster, is not appropriate in this case. Totals are clearly over-estimated and variances
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Chart 20: Scatterplot of imputed INCOME (Y) and corresponding true values (Y*) from
nearest neighbour imputation on the 3rd TS-SOM layer.
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under-estimated. On the other hand, the structure of TS-SOM gives possibilities to solve problematic
situations: the centroid can be interpolated from a parent neuron of the upper TS-SOM layer or it is
possible to use neighbour clusters and neurons as well in finding the appropriate donor or the centroid
needed.

There are, naturally, a number of ways to impute by MLP models. Table 3 presents results for
two structurally different groups of local backpropagation MLP imputation models for modelling
dependencies between background and INCOME variables. In method I, for example, we first build
TS-SOM and on its first level we use the backpropagation algorithm to create four local MLP models
with two hidden layers of four and six neurons connected sequentially by logistic sigmoid units, one
for each neuron (see Table 3). But these kinds of MLP models are clearly problematic for the case in
question; they do not give any Os as estimates of INCOME, and variances are under-estimated.

3. Regression-based Nearest Neighbour (RBNN) Method for Imputation

This methodology first exploits a best possible regression and statistical modelling technique as impu-
tation model, and in the second step, it takes advantage of the predicted values of this model and uses
this metrics for searching the nearest or a near value of each missing value. In some sense, it is an old
technique, but not much used. It is not well known, in which cases the methodology is advantageous,
and in which cases it is not. Laaksonen (2000) has tested this method quite successfully in the case
where the missingness rate is rather high, the distribution of a target variable is skew and the model
fitting is not good. This technique was superior in that case to standard regression technique, for
example. The DLFS data resemble in some sense the situation of the example of Laaksonen. Hence
we made attempts to apply RBNN.

The DLFS data are explained already in Section 2. For constructing a regression model for INCOME
we tried the two types of specifications for the dependent variable, linear and log-transformations. The
latter one is often used in econometrics. The model fitting based on R-square is much smaller for log-
transformations, but this is not the most important point, necessarily, for the goodness of imputation.
The predictability of the model is more important, and this depends much on the auxiliary variables
available. As in Section 2 noted, there are not any very good such variables in the data set. But:
we tried to do our best and exploit all variables with somewhat different specifications: SEX, MAR-
RIAGE, COHABITE, EDUCATIO, BUSINESS, UNEMPLOY, CHILDREN, AREA, AGE, LETTER
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Table 3: Example results using linear regression (Solas 3.0™ implementation) and various
SOM (NDA Implementation) based methods of INCOME variable.

| [ True val. | Cen. | Lreg | NN,LO | NN,L1 [ NN,L2 [ NN,L3 [ MLPI | MLP II |

Mean 158108 | 169177 | 170287 | 158068 | 158094 | 159799 | 159408 | 167354 | 166806
Stddv 107193 56806 | 61498 | 107856 | 107855 | 108380 | 108253 | 69143 68920

95% 362639 | 259743 | 272202 | 363148 | 362674 | 363374 | 363712 | 280030 | 277061
Q3 221423 | 204815 | 215989 | 220904 | 221534 | 224541 | 223804 | 225255 | 219764
Md 140971 173937 | 168978 | 140105 | 139715 | 141657 | 141616 | 173607 | 162920
Q1 76691 122951 | 122344 | 77004 | 76869 | 77914 | 77779 | 107494 | 109096
Q3-Q1 144732 81864 | 93645 | 143900 | 144666 | 146627 | 146025 | 117762 | 110668
DL1 0 73079 | 73678 | 90865 | 91072 | 91593 | 91639 | 67109 67279

DLmax 0 564345 | 520718 | 664950 | 664950 | 671202 | 664950 | 508255 | 518621

Notes:

i) The following shorthand notations are used: Cen. (Centroid, 4th SOM layer) Lreg (Lin. Regres-
sion) NN,LO (Nearest Neighbour, 0th SOM layer) NN,L1 (Nearest Neighbour, 1st SOM layer)
NN,L2 (Nearest Neighbour, 2nd SOM layer) NN,L3 (Nearest Neighbour, 3rd SOM layer)
MLP I (TS-SOM Imp. layer 1 (4 clus.), 4 neurons on 1st Hidden Layer , 10 neurons 2nd
Hidden Layer) MLP II (TS-SOM Imp. layer 3 (64 clus.), 6 neurons on 1st Hidden Layer, 10
neurons 2nd Hidden Layer)

ii) true mean / standard deviation of the missing incomes is 158,108/107,193 and true mean / standard
deviation of the whole data set is 181,724/116,064.

i) di(Y,Y*) = (XCr, wilVi - Y*)/ 0, wi;, where w; =1if i€ N

AND PHONE. Some interactions between variables were attempted as well.

Table 4 gives some results. In all cases of Table 4, we made the final imputation at full data level,
although this could be done at sub-data levels, the number of such levels could be in this case numerous.

We tested some sub-data levels such as AREA, SEX * AGE and BUSINESS, but the results of these
were not essentially better or worse, and hence we used this simpler formulation.

We cannot definitely say what method and specification is best. The better the model is, the better
the imputation result is, however, when using the same transformation. Log-transformation does not
help in general, but it gives the best result for standard deviation. Best nearest neighbour imputation
models are a little bit preferable to RBNN as far as the mean and some distribution figures are
concerned. On the other hand, the DL1 values for RBNN are lower, but still rather high.

All results may be compared with the last column of Table 4 which gives results from one single random
hot decking (if other random numbers are used, the results are little varying). The distributional
figures of that method are close to those of the respondents’ data set, and show how biased are the
estimates if any imputations have not been done. All imputation methods seem to give essentially
better results than obtained from random hot decking. This is concerned the DL1 values too.
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Table 4: Example results using RBNN

True value | RBNN 1 | RBNN 2 | RBNN 3 | RBNN 4 | RBNN 4 | Hot Deck
Mean 158108 164471 164486 159441 159448 160465 176056
Stddv 107193 109609 109686 107654 108347 107605 116310
95% 362639 369574 368487 360779 363389 362812 390072
Q3 221423 230046 230916 223921 224346 224090 248847
Md 140971 147920 147544 142718 142043 143236 160464
Q1 76691 81388 81176 77601 76785 79232 86722
Q3-Q1 144732 149658 149740 146320 147561 144858 162125
DL1 0 89853 89921 87592 88208 89334 124964
DLmax 0 701298 652273 672713 793438 645755 731064
Notes:

RBNN 1 Linear INCOME, no inter-actions, No random term in model, No PHONE
RBNN 2 Linear INCOME, some inter-actions, No random term in model, No PHONE
RBNN 3 Linear INCOME, some inter-actions, No random term in model, Yes PHONE
RBNN 4 Linear INCOME, some inter-actions, random term in model, Yes PHONE
RBNN 5 Log-linear INCOME, some inter-actions, No random term in model, Yes PHONE
Hot Deck Single Random Hot Decking Method for Bench-marking
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1. Introduction

This report includes the first Statistics Finland test results based on the UK SARS Data. We present
these results using the so-called development data set, that is, we know the real values for each missing
one afterwards. Specifically, SARS data set needs some pre-processing to get imputation data set out
without errors. Basically, the best specifications of these results will be applied when using the so-
called evaluation data set. This kind of work has already been preliminarily done but any results of
these are not included in this report.

We decided not to present our test results for each method, separately, but instead for each data set,
separately. This gives easier opportunity to compare the results based on various new and traditional
methods and techniques. Statistics Finland is involved especially in Workpackages (WP) 4.5 and 5.5
which are concerned Self-Organizing Maps (SOM) techniques. We also are working with traditional
methods, thus for WP’s 4.1 and 5.1. Since the Danish Labour Force Survey only is concerned on
imputation problems, this report is covering WP’s 5.1 and 5.5, consequently. Pasi Piela and Seppo
Laaksonen (2001) have written a special report on WAID imputations, that includes SARS results
from regression and classification trees. It will be modificated strongly in the near future. In this
report every method is Tree-Structured Self-Organizing Map (TS-SOM) methodology based, but in
the future we will also include results from purely classical methods. This methodology has been
previously presented in the EUREDIT papers and will not be discussed here. See Koikkalainen
(2002).

The software used is the current version of NDA developed by the research group on Software Engi-
neering and Computational Intelligence (SECI) of the University of Jyvskyl, JyU. This version includes
new user-interface with some specialities developed by Ismo Horppu with the EUREDIT JyU group
leader Pasi Koikkalainen.

We next present the short introduction to data with notations from our point of view. Preliminary
test results are presented in Section 4 and following tables.

2. Data set and variables

The EUREDIT development data set of the Household SARS (UK Census sample of anonymised
records for individual households) includes 44703 observations, living in 19136 households. We selected
four imputation variables from the UK Household data set to be presented here: TENURE (Tenure
of household space), ROOMSNUM (Number of rooms), AGE and HOURS (Hours worked weekly).
TENURE and ROOMSNUM are household level variables while AGE and HOURS have unit level
values (see Table 5).

3. Practical notations

1) The so called Y2 SARS data set with missingness have been created by merging erroneous and the
clean data together and replacing true values by missing ones if a corresponding value in the erroneous
data is missing. We have not used any kind of editing rules to create more missingness. However, it
has been noticed that there is also lot of editing failures in the clean data, which could implicate more
missingness if taking into account.

2) The order of the observations inside the data is anything but random and can easily been used to
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Table 5: Missingness in selected imputation variables. HOURS excl. -9 corresponds a data
set without -9 values of HOURS.

Unit level Household level

Available Missing Available Missing
Variable values values values values
AGE 44077 3626 (7.6%) - -
HOURS 46147 1556 (3.3%) - -
HOURS excl. -9 24795 1556 (3.3%) - -
ROOMSNUM 44658 3045 17922 1214 (6.3%)
TENURE 45550 2153 18245 891 (4.7%)

get very good results for couple of variables at least. PNUM (Person number in household) makes
imputation of variable RELAT (Relationship to household head) too easy. If PNUM = 1, it is very
probable that RELAT = 0 etc. Furthermore, NUMBER, (Person number) is a very good hot deck
sorting variable for AGE. But we have tried not to take any advantage from any of these surrealistic
connections between target variables and index variables.

3) There is naturally number of solutions to create practical data for household level variable im-
putation. We have always solved this simply by selecting only one observation from each household,
namely household head. It is a natural choice, but we have not studied other solutions for this problem
so far.

4) Value -9 means not applicable value. Especially in the SARS data, these values clearly have meaning
and should be used with the other values of the selected explanatory variables.

5) The missing data and clean data include equal number of -9 observations for HOURS, and that
why the data for imputation of HOURS have been reduced, see Table 5.

6) The data include four continuous variables: HOURS, AGE, PERSINHH (Person number within
household) and ROOMSNUM. When used as an explanatory variable, HOURS and AGE have been
classified into 6-10 classes, hence only ROOMSNUM and PERSINHH have been regarded as continuous
ones.

7) Handling both continuous and categorical variables has been problematic from a scaling point of
view; this is a real life problem. Binarization might give too much weight for categorical variables
compared to scaling from 0 to 1 of continuous ones. This problem needs further studying, although
handling continuous variables is not seen as a bad problem in the data set in question, because of
their partly categorical nature (can be used as categorical ones) and connections to other variables.

8) Missing values of categorical variables have been considered as their own class and then corre-
sponding binary sub variables have been simply deleted, because we have not found much practical
meaning behind missingness in this experimental data set. Our tests have shown this to be quite a
good solution.

9) The results in this paper are calculated only by using imputed values and their corresponding true
values; there have not been any unimputed observations from any method mentioned. Unit level
goodness measures of the imputation are the following simple ones, abbreviated as DL1 and DL2:

dpi(Y,Y*) = (szﬂ?} - Y;*|)/Zw,, where w; =1if i € N

i=1 i=1

n n
dpa(Y,Y*) = | O_wi(Vi = ¥7)?)/ D wi, where w; =1ifie N
i=1

i=1
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4.1 Imputation of AGE

Lot of tests has been made in trying to get as good results as possible both at aggregate level and at
unit level. Specifically number of imputed 0s seems to be one satisfactory indicator to the goodness
of imputation. We have not yet been able to totally explain, why nearest neighbor imputation fails
when compared to other methods; there are too much imputed 0s (see Table 6). 0- observations seem
to be quite special, and because there are errors in the clean data it implicates existence of wrong
nearest neighbors.

First, the best results came from the random imputation within the TS-SOM clusters at 4th level,
which means SOM mapping of 256 clusters; there might exist few empty clusters. Picture presents
nice visualization of the 4th level SOM map. Naturally, this is a very trivial example, but it shows
that SOM algorithm has made a good discretization for the data.

However, in the method above we have not taken into account households except using household
level variables. That why, we chose a special nearest neighbor method within the household - when
possible - by using RELAT as a sorting variable. In this special method, first data are divided into two
parts (partl: if RELAT in (3-6, 12)) and then if the nearest neighbor imputation within household
is possible, in other words, if there are at least one known value of AGE for the missing one from
the same household, we impute. This leaves 1261 observation unimputed. Those will be imputed by
TS-SOM 4th level random imputation separately from these NN imputed values. This method gives
the best results we have got so far, see last row * of Table 6.

Table 6 and other tables as well include also one trivial benchmarking method, namely, random
overall imputation which measures the effect of randomness and degree of difficulty in one easy way.
Surprisingly the estimates of mean and standard deviation are very close to the true one. But luckily
values for DL1 and DL2 are far away. We know also non-trivial benchmarking methods are needed
for the future reports.

4.2 Tmputation of HOURS

Any special problems of replacing missing values of working hours have not been noticed. Imputation
results are rather good as seen in Table 7 and mean deviations quite small. It should be noted that
the true deviation of the HOURs is high which makes imputation more challenging - besides it clearly
separates average based methods from the others.

Prediction from the normal distribution that is estimated for all the SOM clusters by calculated using
variance and mean gives good results except that it fails to estimate deviations or percentiles. Random
imputation within the clusters seems to be reasonable as well. But full random imputation without
any other helping method give nice estimates too.

4.3 Imputation of ROOMSNUM

Household level variable, Number of rooms, have been tried to impute many times in all versions
of the SARS data. TS-SOM based nearest neighbor imputation gives very good results when using
five explanatory variables (in finding the correct donor!) mentioned in Table 8. Mean deviations are
relatively small and distribution of the imputation data remains very well.

4.4 Tmputation of TENURE

Because of the methodological and technical problems the imputation of the tenure of household space
has been problematic. Only way to impute TENURE with the current version of NDA was to use it as
a continuous variable. It is not actually totally unsuitable way to handle this variable, but imputation
fails. These problems will be repaired to the next version. Note that SOM mapping has been made
using most of the variables of the data. We expect good results from the future testing.
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Table 6: NDA test results for AGE.

Contributed Paper for Federal Committee on Statistical

Method Mean | Std. | 25% | Med. | 75% | 95 % | DL1 | DL2 | zeros (%)
True values (N=3626) || 37.26 | 23.05 | 19 35 55 76 0 0 0.012
Random overall 37.27 | 22.90 | 19 35 55 77 | 13.90 | 14.49 0.015
SOM 1=2, NN 39.96 | 27.37 | 15 41 61 87 | 13.16 | 18.89 0.084
SOM L=2, R 3742 | 22.89 | 19 35 55 7 5.14 | 941 0.018
SOM 1=3, R 37.57 | 22.84 | 19 36 55 7 4.80 | 9.48 0.013
SOM 1=4, R 37.26 | 22.91 | 20 35 55 76 4.72 | 8.79 0.016
SOM 1=5, R 37.71 | 23.04 | 19 36 56 7 498 | 8.84 0.014
NN: Re+SOM 1=5, R || 37.00 | 23.16 | 19 35 55 76 433 | 7.33 0.018
Notes: NN = nearest neighbor imputation, R = random imputation, TSSOM L = TSSOM

clustering, at level L. L = k means that the data have been divided into 4% clusters/subclasses. R =
ROOMSNUM, E = ECONPRIM, M = MSTATUS, Re = RELAT, H = HHSPTYPE. DL1 and DL2:

see notation 9 in 3.

Table 7: NDA test results for HOURS.

Method Mean | Std. | 256 % | Med. | 75% | 95 % | DL1 | DL2
True values (N=1556) 35.44 | 12.46 32 39 40 50 0 0

Random overall 35.61 | 12.09 32 39 40 54 12.07 | 17.08
TSSOM 1=3 NN:LE 32.72 | 14.15 | 24.5 38 40 50 9.21 | 15.05
TSSOM 1=3,NN:LLE,A,S,Re 33.43 | 14.73 | 26.5 38 40 52 8.96 | 14.48
TSSOM 1=4, Normal prediction || 34.78 | 8.23 31 37 40 45 7.10 | 10.56
TSSOM 1=5, Normal prediction || 34.78 8.8 31 37 41 45 6.92 | 10.35
TSSOM 1= 4, Random 35.11 | 11.62 32 38 40 50 8.59 | 13.18
TSSOM 1=5, Random 34.94 | 12.50 32 38 40 50 8.75 | 13.76

Notes: NN = nearest neighbor imputation, Random = random imputation,
= Normal curve prediction imputation, TSSOM L = TSSOM clustering, at level L. L = k means
that the data have been divided into 4% clusters/subclasses. I = ISCO1, R = ROOMSNUM, E =
ECONPRIM, M = MSTATUS, Re = RELAT, H = HHSPTYPE, S = SEX, A =AGE. DL1 and DL2:

see notation 9 in 3.
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Table 8: Imputation Results for ROOMSNUM (number of rooms).

Method DL1 | DL2 Number of Rooms (%)

1-2 3 4 5 6 7+
True values (N=1214) 0 0 | 395|857 2339 | 31.55 | 2043 | 12.1
Random overall 1.55 | 2.13 | 4.78 | 8.24 | 22.89 | 32.37 | 18.78 | 12.85
TSSOM L = 2,NN:H,P 1.27 | 1.72 | 5.44 | 6.84 | 22.41 | 28.25 | 20.68 | 16.39

TSSOM L = 1, NN:E,H,P, T M 1.25 | 1.73 | 4.86 | 9.14 | 21.33 | 27.35 | 21.33 | 15.98
TSSOML=2,NN:EHPTM || 1.23 | 1.70 | 4.86 | 7.74 | 21.00 | 30.07 | 22.90 | 13.42
TSSOML=3,NN:EHPTM || 1.21 | 1.68 | 3.79 | 865 | 19.85 | 31.71 | 21.91 | 14.07
TSSOM L = 5, Centroid 099 | 142 | 1.31 | 7.74 | 36.99 | 43.82 | 7.08 | 3.05
Notes: NN = nearest neighbor imputation, Random = random imputation, Centroid = cluster
centroid imputation, TSSOM L = TSSOM clustering, at level L. L. = k means that the data have
been divided into 4* clusters/subclasses. P = PERSINHH, E = ECONPRIM, M = MSTATUS, H =
HHSPTYPE, T = TENURE. DL1 and DL2: see notation 9 in 3.

Table 9: Imputation Results for TENURE (Tenure of household space).

Method DL1 | D12 Tenure of household space (%)

1 2 3 4 5-6 7
True values, N = 891 0 0 23.91 | 40.63 | 3.93 | 4.38 3.7 | 23.46
TSSOM L = 3, Centroid 1.49 | 2.16 | 831 | 48.37 | 21.77 | 11.45 | 10.37 0

TSSOML=2,NN:EHPRM || 1.79 | 2.84 | 33.33 | 29.74 | 3.03 | 4.26 | 4.94 | 24.69
TSSOML=3,NN:EHPRM || 1.72 | 2.77 | 31.76 | 31.31 | 3.25 5.27 4.72 | 23.68
TSSOM L = 2, Random 1.98 | 3.08 | 23.57 | 41.75 | 3.03 | 3.59 | 4.04 | 24.02
Notes: NN = nearest neighbor imputation, Random = random imputation, Centroid = cluster
centroid imputation, TSSOM L = TSSOM clustering, at level L. L. = k means that the data have
been divided into 4* clusters/subclasses. P = PERSINHH, E = ECONPRIM, M = MSTATUS, H =
HHSPTYPE, R = ROOMSNUM. DL1 and DL2: see notation 9 in 3.
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