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1 Introduction

Safety-Critical Java (SCJ) [1] is a Java-based language for applications that must be certified. To
aid certification efforts, SCJ is organised into three compliance levels. Level 0 applications are simple
single-processor programs executed by a cyclic executive. By contrast, Level 2 applications are highly
concurrent, potentially multi-processor, and make use of suspension and a variety of release patterns.

We model SCJ Level 2 applications using the state-rich process algebra Circus [2]. We approach
this by splitting our models into a reusable Framework model, which captures the API behaviour of
SCJ, and a specific Application model, which captures the application’s behaviour.

Here we present our SCJ Level 2 Framework model, which captures the unchanging behaviour of
the API. It is intended that the Framework model be combined with a Application model to produce
a model of that specific application.

2 GlobalTypes

section GlobalTypes parents scj_prelude, Schedulableld
[ThreadID)

‘ SafeletThreadld : ThreadlD
‘ nullThreadld : ThreadlID

[ObjectID]

[totalThreads]
ThreadMap == ThreadID -+ N

ExceptionType ::= interruptedException | illegalMonitorState Ezception | illegal ArgumentEzception |
illegal ThreadState Exception | illegalState Exception | ceiling ViolationException

mazrNanos == 999999

Aperiodic Type ::= aperiodic | aperiodicLong



3 Priority
section Priority parents scj_prelude
MinPriority : Ny

‘ MazxPriority : Ny
‘ MazPriority — MinPriority > 2

PriorityLevel == MinPriority .. MaxPriority



4 Priority Queue

section PriorityQueue parents scj_prelude, GlobalTypes, Priority

PriorityQueuve == PriorityLevel — (iseq ThreadID)
Y pq : PriorityQueue ® nullThreadld ¢ ran(|J(ran pq))

IsEmpty : PriorityQueue — B

Y pq : PriorityQueue | (U(pq ( PriorityLevel)))) = & o
IsEmpty(pq) = True

AddToPriorityQueue : PriorityQueue X ThreadID x PriorityLevel — PriorityQueue
Y pq : PriorityQueue; t : ThreadID; p : PriorityLevel |
t # nullThreadld N
t & ran({J(ran(pq))) o

AddToPriorityQueue(pq, t,p) = (pq ® {p — pa(p) ~ (£)})

RemoveFromPriorityQueue : PriorityQueue - PriorityQueue X ThreadlD
(¥ pq : PriorityQueue o
(3t : ThreadID; p : PriorityLevel |

p = maz {pl : PriorityLevel | pg(pl) # ()} A
t = head pq(p)
e RemoveFromPriorityQueue(pq) = (pq @ {p — tail pg(p)}, 1))

RemoveThreadFromPriorityQueue : PriorityQueue X ThreadID x PriorityLevel — PriorityQueue

V pq : PriorityQueue; t : ThreadID; p : PriorityLevel |

pa(p) [ {t} # () o
RemoveThreadFromPriorityQueue(pg, t, p) = pqg ® {p — squash (pq(p) & {t})}

ElementsOf : PriorityQueue — P ThreadlD
Y pq : PriorityQueuve | pg # & o
(J elems : P ThreadID |

elems = | J(ran (ran pq))
o ElementsOf (pq) = elems)




5 Ids
5.1 Missionld

section Missionld

[MissionID)]

\ nullMissionld : MissionlD

5.2 Schedulableld

section Schedulableld
[SchedulablelD)

‘ TopLevelSequencerld : SchedulableID
‘ nullSequencerld : SchedulableID
‘ nullSchedulableld : SchedulableID



5.3 Schedulablelds

section Schedulablelds parents scj_prelude, Schedulableld

InputHandlerld : SchedulableID
OutputHandlerld : SchedulableID
MainMissionSequencerld : SchedulablelD
EchoMissionSequencerld : SchedulableID
InputMissionSequencerld : SchedulableID
OutputMissionSequencerld : SchedulablelD

distinct{ TopLevelSequencerld, InputHandlerId, OutputHandlerld,
MainMissionSequencerld, EchoMissionSequencerld,
InputMissionSequencerld, OutputMissionSequencerld, nullSequencerld, nullSchedulableld)




6 Channels
6.1 FrameworkChan

section FrameworkChan parents GlobalTypes

channel throw : ExceptionType
channel done_toplevel_sequencer

6.2 SafeletChan

section SafeletChan parents SafeletF'WChan, SafeletMethChan

6.3 SafeletFWChan

section SafeletFWChan parents scj_prelude

channel end_safelet_app
channel done_safeletF W

6.4 SafeletMethChan

section SafeletMethChan parents scj_prelude, Schedulableld, Missionld

channel initializeApplicationCall
channel initialize ApplicationRet

channel getSequencerCall
channel getSequencerRet : SchedulablelD

channel checkSchedulable : MissionID x B

channel deregister : F SchedulableID

6.5 MissionSequencerMethChan

section MissionSequencerMethChan parents scj_prelude, Missionld, Schedulableld

channel getNextMissionCall : SchedulableID
channel getNextMissionRet : (SchedulableID x MissionID)

channel requestSequence Termination : (SchedulableID x B)

channel sequenceTerminationPendingCall : SchedulablelD
channel sequence TerminationPendingRet : (SchedulableID x B)



6.6 TopLevelMissionSequencerChan
section TopLevelMissionSequencerChan parents TopLevelMissionSequencerE W Chan, MissionSequencerChan

6.7 TopLevelMissionSequencerFWChan

section TopLevelMissionSequencerFWChan parents scj_prelude, MissionSequencerF'WChan,
Schedulableld, Schedulablelds

channel start_toplevel_sequencer : SchedulablelD
channel set_continue : SchedulableID x B

channelset CCSync == { get_continue, set_continue [}
channelset TopLevelMissionSequencerFWChan ==
{ start_toplevel _sequencer, end_sequencer—_app, end_methods,
get_continue, set_continue [}

6.8 MissionChan

section MissionChan parents MissionF'WChan, MissionMethChan, SchedulableMethChan

channelset MissionAppSync ==
{ initialize Call, initializeRet, register, cleanupMissionCall, cleanupMissionRet,
end_mission_app [}

6.9 MissionFWChan
section MissionChan parents MissionF W Chan, MissionMethChan, SchedulableMethChan

channelset MissionAppSync ==
{ initialize Call, initialize Ret, register, cleanupMissionCall, cleanupMissionRet,
end_mission_app [}

6.10 MissionMethChan
section MissionChan parents MissionF'WChan, MissionMethChan, SchedulableMethChan

channelset MissionAppSync ==
{ initializeCall, initialize Ret, register, cleanupMissionCall, cleanupMissionRet,
end_mission_app [}



6.11 SchedulableChan

section SchedulableChan parents Missionld, Schedulableld, SchedulableF W Chan, Schedulable MethChan

6.12 SchedulableMissionSequencerChan

section SchedulableMissionSequencerChan parents Schedulable MissionSequencerFWChan, MissionSequencer Chan

6.13 SchedulableMissionSequencerFWChan
section SchedulableMissionSequencerF W Chan parents scj_prelude, MissionSequencerF W Chan, Schedulableld, Sched

channel set_continueBelow : SchedulableID x B
channel set_continueAbove : SchedulableID x B

channelset CCSync == { get_continue, set_continueBelow, set_continueAbove [}

channelset SchedulableMissionSequencerFWChan ==
{ end_sequencer_app, end_methods, end_terminations, get_continue [}

6.14 ManagedThreadChan

section Managed ThreadChan parents Managed ThreadF'WChan, Managed ThreadMethChan, Schedulable Chan

channelset MtAppSync == { runCall, runRet, end_managed Thread_app }

6.15 ManagedThreadFWChan

section ManagedThreadFWChan parents Schedulableld

channel end_managed Thread_app : SchedulableID

6.16 ManagedThreadMethChan

section ManagedThreadMethChan parents Schedulableld

channel runCall : SchedulableID
channel runRet : SchedulableID
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7 ObjectFW

section Object parents scj_prelude, GlobalTypes, ObjectChan, MissionChan, Schedulable Chan,
Schedulableld, Missionld, Missionlds, TopLevelMissionSequencerChan,
HandlerChan, SafeletMethChan, FrameworkChan, PriorityQueue, Priority, ThreadChan

process ObjectFW = object : ObjectID o begin

__state State
waitQueue : PriorityQueue
lockedBy : ThreadlD
locks : N
previousLocks : ThreadMap
queueForLock : PriorityQueue
ceilingPriority : PriorityLevel
waitForObject Threads : P ThreadID

locks > 0 < lockedBy # nullSchedulableID
lockedBy ¢ dom previousLocks
lockedBy ¢ ElementsOf (waitQueue)
lockedBy ¢ ElementsOf (queueForLock)
waitForObject Threads C ElementsOf (waitQueue)

__Init
State’

IsEmpty(queueForLock’) = True
IsEmpty(waitQueue’) = True
locks’ =0
previousLocks' = &
ceilingPriority’ = MazPriority
waitForObject Threads' = &

— FullyUnlock
AState
lockedBy? : ThreadlD
locks? : Ny

previousLocks’ = previousLocks & {lockedBy? — locks?}
lockedBy' = nullSchedulableID

locks’ =0

waitQueue’ = waitQueue

queueForLock’ = queueForLock

ceilingPriority’ = ceilingPriority

waitForObject Threads’ = waitForObject Threads

11



__AddToQueueForLock
AState
someThread? : ThreadID
priorityLevel? : PriorityLevel

someThread? # nullSchedulableID

someThread? ¢ ElementsOf (queueForLock)

queueForLock’ = AddToPriorityQueue(queweForLock, someThread?, priorityLevel?)
lockedBy' = lockedBy

locks’ = locks

previousLocks’ = previousLocks

waitQueue’ = waitQueue

ceilingPriority’ = ceilingPriority

waitForObject Threads’ = waitForObject Threads

_ AssignEligible
AState

(queueForLock’, lockedBy') = RemoveFromPriorityQueue(queueForLock)
lockedBy' € dom previousLocks = locks’ = previousLocks(lockedBy')
lockedBy' & dom previousLocks = locks’ = 1

previousLocks’ = {lockedBy} <4 previousLocks

waitQueue’ = waitQueue

ceilingPriority’ = ceilingPriority

waitForObject Threads’ = waitForObject Threads

— AddToWuaitQueue
AState
someThread? : ThreadlD
priorityLevel? : PriorityLevel
wait Type? : Wait Type

someThread? # nullSchedulableID

someThread? & ElementsOf (waitQueue)

waitQueue’ = AddToPriorityQueve(waitQueue, someThread?, priorityLevel?)

lockedBy' = lockedBy

locks’ = locks

previousLocks’ = previousLocks

queueForLock! = queueForLock

ceilingPriority’ = ceilingPriority

waitType? = waitForObject = waitForObject Threads’ = waitForObject Threads U {someThread?}
waitType? = wait = waitForObject Threads’ = waitForObject Threads

12



— RemoveThreadFromWaitQueue
AState
waiting Thread? : ThreadlD
priorityLevel? : PriorityLevel

waiting Thread? € ran(waitQueve(priorityLevel?))

waitQueue’ = Remove ThreadFromPriorityQueue(waitQueue, waiting Thread?, priorityLevel?)
lockedBy' = lockedBy

locks’ = locks

previousLocks’ = previousLocks

ceilingPriority’ = ceilingPriority

waitForObject Threads’ = waitForObject Threads \ {waiting Thread?}

— RemoveMostEligigble From Wait Queue
AState
notified! : ThreadlD
wait Type! : Wait Type

(waitQueue’, notified!) = RemoveFromPriorityQueue(waitQueue)
lockedBy' = lockedBy

locks’ = locks

previousLocks’ = previousLocks

queueForLock’ = queueForLock

ceilingPriority’ = ceilingPriority

notified! € waitForObject Threads = wait Type! = waitForObject
notified! & waitForObject Threads = waitType! = wait
waitForObject Threads’ = waitForObjectThreads \ {notified!}

Ezxecute =
var interrupted Threads : P ThreadID e
Monitor
(2|
MonitorSync |
{waitQueue, waitForObject Threads}]
Synchronisation
[{waitQueue, waitForObject Threads} |
MLCSync |
{queuweForLock, previousLocks, locks, locked By }]
MonitorLockController ( interrupted Threads )
[{ waitQueuve, waitForObject Threads, queueForLock, previousLocks, locks, lockedBy} |
CPCSync |
{ceilingPriority}]
CeilingPriorityController

Monitor =
MonitorUnlocked
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Monitor Unlocked =

O

startSynchMeth . object 7 someThread—
lock_request . object ! someThread—
MonitorUnlocked

lockAcquired . object ? locking Thread —

get_ceilingPriority . object ? ceilingPriority—
get_priorityLevel . lockingThread . object ? priority : (priority < ceilingPriority)—
raise_thread_priority . locking Thread ! ceilingPriority—
MonitorLocked (locking Thread)

O

get_priorityLevel . lockingThread . object ? priority : (priority > ceilingPriority)—
throw.ceiling Violation Exception—

Chaos

MonitorLocked = val lockedBy : ThreadID ®

O

O

startSynchMeth . object . locked By—
increment_locks . object—
MonitorLocked (lockedBy)

startSynchMeth . object ? someThread : (someThread # lockedBy)—
lock_request . object ! someThread—
MonitorLocked(locked By)

endSyncMeth . object . locked By—
decrement_locks . object . 0—
lower_thread_priority . locked By—
MonitorUnlocked
(]
decrement_locks . object 71 : (1 # 0)—
<M0nit0rLocked(lockedBy) )

unlock_Monitor . object 7 unlocking Thread—>

Sully_unlock . object—

lower_thread_priority . unlockingThread —
MonitorUnlocked

Synchronisation =

WaitActions
[ | WaitSync | 2]
NotifyActions
2]
WQSync |
{waitQueue, waitForObject Threads}]
WaitQueueController
[{ waitQueuve, waitForObject Threads} | InterruptSync | ]
Interrupt

14




WaitActions =
( Wait ||| TimedWait) || WaitForObject

NotifyActions =
Notify ||| NotifyAll

Wait =

waitCall . object 7 some Thread—
isInterruptedCall . someThread —
isInterruptedRet . someThread . False—>
get_lockedBy . object . someThread—>
get_priorityLevel . someThread . object ? priorityLevel—>
add_to_wait . object ! someThread ! priorityLevel ! wait—
unlock_Monitor . object ! someThread—
Wait
O
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—
throw . illegalMonitorState Exception—
Chaos

isInterruptedCall . someThread—
isInterruptedRet . someThread . True—>
throw.interrupted Exception—

Chaos

Timed Wait =
Timed WaitHandler
[2 | { start_timer [} | ]

(||| t: ThreadID ® TimedWaitTimer(t))

Timed WaitHandler =
timed WaitCall . object 7 someThread ? waitTime—s
get_lockedBy . object . someThread —
if (timeMillis(waitTime) < 0) V
(timeNanos(waitTime) < 0 A timeNanos(waitTime) > maxNanos))—>
throw . illegal ArgumentException—
Chaos )
[ (timeMillis(wait Time) > 0) A
(timeNanos(waitTime) > 0) A (timeNanos(waitTime) < mazNanos))—
get_priorityLevel . someThread . object ? priorityLevel —
add_to_wait . object ! someThread ! priorityLevel | wait—>
start_timer . object ! someThread ! priorityLevel ! wait Time—
unlock_Monitor . object ! some Thread—>
TimedWaitHandler
fi
]
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—
throw . illegalMonitorState Exception—
Chaos

15




Timed Wait Timer = val waiting Thread : ThreadID ®
start_timer . object . waiting Thread 7 priorityLevel ? wait Time—>
wait valueOf (wait Time);
remove_from_wait . object | waiting Thread ! priorityLevel —
waitRet . object ! waiting Thread —
Skip
O
cancel_wait_timer . object . waiting Thread—
(Skip )

?
relock_this . object | waiting Thread—
Timed Wait Timer(waiting Thread)

cancel_wait_timer . object . waiting Thread—
Timed Wait Timer (waiting Thread)

O

O

( (waitRet . object . waitingThread — Timed WaitTimer(waitz’ngThread))
O

waitForObjectRet . object . waitingThread 7T w — Timed WaitTimer(waitingThread))

WaitForObject =
WaitForObjectHandler
[@ | { start_waitForObject_timer [} | @]

(|H t : ThreadlD ® WaitForObjectTimer(t))

WaitForObjectHandler =
waitForObjectCall . object 7 someThread ? wait Time—

get_lockedBy . object . someThread—

if ((timeMillis(waitTime) < 0) V (timeNanos(wait Time) < 0))—>
throw . illegal ArgumentException—>
Chaos

I ((timeMillis(waitTime) > 0) A (timeNanos(waitTime) > 0)) —
get_priorityLevel . someThread . object ? priorityLevel —
add_to_wait . object ? someThread ? priorityLevel ! waitForObject —
start_waitForObject_timer . object | someThread ! priorityLevel ! wait Time—
unlock_Monitor . object | some Thread—>
WaitForObjectHandler

fi
O
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—

throw . illegalMonitorState Exception—
Chaos

16




WaitForObject Timer = val waitingThread : ThreadID e
start_waitForObject_timer . object 7 waiting Thread 7 priorityLevel 7 wait Time—
wait valueOf (wait Time);
remove_from_wait . object | waiting Thread ! priorityLevel —
waitForObjectRet . object ! waiting Thread ! False—
Skip ;
O
cancel_wait_timer . object . waiting Thread—
(Skip )
relock_this . object | waiting Thread—
WaitForObject Timer(waitingThread)

cancel_wait_timer . object . waiting Thread—
WaitForObject Timer(waiting Thread)

O

O

((waitRet . object ? n — WaitForObject Timer (waiting Thread))
O

waitForObjectRet . object 7 n 7w — WaitForObjectTimer(waitingThread))

Notify =
notify . object 7 some Thread—
get_lockedBy . object . some Thread—
if IsEmpty(waitQueue) = False—
ResumeThread;
(Notify >
| IsEmpty(waitQueue) = True—>
Notify
fi
O
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—
throw . illegalMonitorState Exception—>
Chaos

O
(waitRet . object 7 n —> Notify)
O
(

waitForObjectRet . object 7 n 7w — Notify)

ResumeThread =

removed_thread . object ? notified . wait—
cancel_wait_timer . object ! notified—>
relock_this . object ! notified—>

waitRet . object ! notified—

Skip

removed_thread . object ? notified . waitForObject—
cancel_wait_timer . object ! notified—>

relock_this . object ! notified—>

waitForObjectRet . object ! notified ! True—

Skip

17




NotifyAll =
notifyAll . object 7 someThread—
get_lockedBy . object . someThread—
NotifyAllHandler;
NotifyAll
]
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—
throw . illegalMonitorState Exception—>
Chaos
O
(waitRet . object 7n —» NotifyAll)
O
(waitForObjectRet .objectTn?Tw — Notz'fyAll)

NotifyAllHandler = var notified : ThreadlD ®
if IsEmpty(waitQueue) = False—
ResumeThread;
(NotifyAllHandler)
| IsEmpty(waitQueue) = True—>
Skip
fi

WaitQueueController =

add_to_wait . object ? someThread ? priorityLevel T wait Type—>
AddToWaitQueue;

WaitQueueController

remove_from_wait . object 7 waitingThread ? priorityLevel —>
RemoveThreadFrom WaitQueue;
WaitQueueController

IsEmpty(waitQueue) = False&

var notified : ThreadlID ®

var wait Type : WaitType ®
RemoveMostEligigble From Wait Queue;
removed_thread . object | notified ! wait Type—
WaitQueueController

O

get_waitQueue . object ! waitQueue—
WaitQueueController

O

get_waitForObject Threads . object ! waitForObject Threads—
WaitQueueController

18




Interrupt =
interrupt 7 waiting Thread —>
get_waitQueue . object ? retreived Wait : (waitingThread € ElementsOf (retreived Wait))—
cancel_wait_timer . object | waiting Thread —
get_priorityLevel . waiting Thread . object ? priorityLevel —
remove_from_wait . object ! waitingThread ! priorityLevel —
relock_this . object | waiting Thread —
get_waitForObject Threads . object ? wfot : (waiting Thread ¢ wfot)—
waitRet . object ! waiting Thread—
Skip
0 )
get_waitForObject Threads . object 7 wfot : (waitingThread € wfot)—
waitForObjectRet . object | waiting Thread ! True—
Skip
Interrupt

O
get_waitQueue . object ? retreived Wait : (waitingThread & ElementsOf (retreived Wait))—
Interrupt
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MonitorLockController = val interrupted Threads : P ThreadlD
lock_request . object ? someThread—

get_priorityLevel . someThread . object 7 priorityLevel —
AddToQueueForLock;

MonitorLockController (interrupted Threads)

O
relock_this . object 7 some Thread—>

get_priorityLevel . someThread . object 7 priorityLevel —
AddToQueueForLock;

isInterruptedCall . someThread —
isInterruptedRet . someThread . False—
MonitorLockController (interrupted Threads)

O
isInterruptedCall . some Thread—>

isInterruptedRet . someThread . True—>

interrupted Threads := interrupted Threads U { someThread};
MonitorLockController (interrupted Threads)

O
IsEmpty(queueForLock) = False A lockedBy = nullSchedulableID &

AssignEligible;

lockAcquired . object . locked By—

if lockedBy € interrupted Threads—>

throw.interrupted Exception—

<Chaos

[llockedBy ¢ interrupted Threads — (MonitorLockController( interruptedThreads))

fi

g
get_lockedBy . object ! locked By—
( MonitorLockController (interrupted Threads) )
O
increment_locks . object—
locks := locks + 1,
MonitorLockController (interrupted Threads)
O
decrement_locks . object! (locks — 1)—
locks := locks — 1;
if locks = 0—
lockedBy := nullSchedulablelD;
<M onitorLockController (interrupted Threads) )
locks # 0—
MonitorLockController (interrupted Threads)
fi

g
Sfully_unlock . object—

FullyUnlock;

MonitorLockController (interrupted Threads)

20




CeilingPriorityController =
setCeilingPriority 7 mission ! object ? priority—>
cetlingPriority = priority;
nXx e (get,ceilinng'ority . object ! ceilingPriority — X)

O

get_ceilingPriority . object ! ceilingPriority—
CeilingPriorityController

° (Im't ; Execute) A (done,toplevel,sequencer — Skip)

end

21



8 ThreadFW

section ThreadFW parents scj_prelude, Global Types,
ThreadChan, ObjectF'WChan, FrameworkChan, Priority

process ThreadF'W = thread : ThreadID; basePriority : PriorityLevel ® begin

__state State

priorityStack : seq, PriorityLevel
activePriority : PriorityLevel
interrupted : B

activePriority = last priorityStack

__Init

AState

priorityStack’ = (basePriority)
interrupted’ = False

Ezecute =

Priority
I[{ basePriority} | {interrupted}]|
Interrupts

If

GetPriorityLevel

done_toplevel_sequencer—
(Skip )

Priority =
if priorityStack = (basePriority) —
IncreasePriority
|priorityStack # (basePriority) —
IncreasePriority
(DDecreasePriom’ty)

IncreasePriority =
raise_thread_priority . thread ? ceilingPriority—>
actiwePriority := ceilingPriority;
IncreasePriority

DecreasePriority =
lower_thread_priority . thread—
activePriority := basePriority;
DecreasePriority

22



Interrupts =
Interrupt
i@ | 2]
IsInterrupted
2| 2l
Interrupted
[2 | { set—interrupted, get_interrupted [} | &]
InterruptedController

Interrupt =
interrupt . thread—
set_interrupted . thread ! True—>
Skip

IsInterrupted =
isInterruptedCall . thread—
get_interrupted . thread ? interrupted —
isInterruptedRet . thread ! interrupted —
Skip

Interrupted =
interruptedCall . thread—
get_interrupted . thread ? interrupted —
interruptedRet . thread ! interrupted —
set_interrupted . thread ! False—
Skip

InterruptedController =
get_interrupted . thread ! interrupted—>
(InterruptedController >
O
set_interrupted . thread ? newInterrupted—>
interrupted := newlnterrupted;
InterruptedController

GetPriorityLevel =
get_priorityLevel . thread ? object ! activePriority—>
GetPriorityLevel

° (Im't ; Execute) A (done,toplevel,sequencer — Skip)

end
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9 SafeletFW

section SafeletF'W parents scj_prelude, Schedulableld, Schedulablelds, SafeletChan,
TopLevelMissionSequencerChan, FrameworkChan, Schedulable Chan

process SafeletFW = begin

— State
globallyRegistered : F SchedulableID

topLevelSequencer : SchedulableID

__Init
State’

globallyRegistered’ = @
topLevelSequencer’ = nullSequencerld

Initialize Application =
initialize ApplicationCall—
initialize Application Ret—
Skip

Ezecute =
GetSequencerMeth;
if topLevelSequencer # nullSequencerld—
start_toplevel_sequencer . topLevelSequencer—
(Methods )
[[topLevelSequencer = nullSequencerld—
Skip
fi

GetSequencerMeth =
getSequencerCall—
getSequencerRet 7 sequencer —
topLevelSequencer := sequencer

Methods =
Register;
( Methods >
O
Deregister;
<M ethods )
O

done_toplevel_sequencer —>
Skip

24



Register =

register 7 schedulable : (schedulable & globallyRegistered) ? mission—
globallyRegistered := globallyRegistered U { schedulable};
checkSchedulable . mission ! True—
Skip

O

register 7 schedulable : (schedulable € globallyRegistered) ? mission—

checkSchedulable . mission | False—

Skip

Deregister =
deregister ? schedulables—
globallyRegistered := (globallyRegistered \ schedulables);
Skip

° (Im't; Initialize Application ; Ea:ecute)

end

25




10 TopLevelMissionSequencerFW

section TopLevelMissionSequencerF'W parents TopLevelMissionSequencerChan,
Missionld, MissionMethChan, Schedulableld, MissionF' W Chan, FrameworkChan

process TopLevelMissionSequencerFW = sequencer : SchedulableID ® begin

__State

currentMission : MissionlD
continue : B

__Init

State’

continue’ = True
currentMission’ = nullMissionld

Start =
start_toplevel_sequencer . sequencer—»
Skip

Ezecute =
RunMission;
end_methods . sequencer—
Skip
[{ currentMission} | { end_methods [} | @]
Methods
[@ | CCSync | {continue}]

ContinueController

RunMission =
GetNextMission,
StartMission;
Continue

GetNextMission =
getNextMissionCall . sequencer—
getNextMissionRet . sequencer 7 next—s;
currentMission = next

StartMission =

if currentMission # nullMissionld —
start_mission . currentMission . sequencer—>
done_mission . currentMission 7 returnedcontinue—s»
set_continue . sequencer ! returnedcontinue—»
Skip

| currentMission = nullMissionld—
set_continue . sequencer | False—»

(Skip )
fi

26



Continue =
get_continue . sequencer ? continue : (continue = True)—
(RunMission >
O
(getcontinue . sequencer ? continue : (continue = False)—))
Skip

Methods =
Sequence TerminationPending;
(M ethods )
O
end_methods . sequencer—
(Skip )

Sequence TerminationPending =
sequenceTerminationPendingCall . sequencer—
get_continue . sequencer 7 continue—
sequence TerminationPendingRet . sequencer ! continue—s»
Skip

ContinueController =

get_continue . sequencer ! continue—>

( ContinueController )

O
set_continue . sequencer ? newContinue—>
continue := newContinue;
ContinueController

O
end_methods . sequencer—

(Skip )

Finish =
done_toplevel_sequencer—>
end_sequencer_app . sequencer—>
Skip

® [nit; Start; Execute; Finish

end
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11 MissionFW

section MissionF'W parents SafeletMethChan, Missionld,
Schedulableld, MissionChan, Schedulable Chan, FrameworkChan, ServicesChan,
scj_prelude

process MissionFW = mission : MissionID e begin

‘ registeredSchedulables : F SchedulableID
‘ activeSchedulables : F SchedulableID

‘ mission Terminating : B

‘ application Terminating : B

‘ controllingSequencer : SchedulableID

__Init

State’

registeredSchedulables’ = &
activeSchedulables’ = &

mission Terminating = False
application Terminating = False
controllingSequencer = nullSequencerld

__AddSchedulable

AState
s? : SchedulableID

s? & registeredSchedulables
registeredSchedulables’ = registeredSchedulables U {s?}
activeSchedulables’ = activeSchedulables
missionTerminating’ = missionTerminating
applicationTerminating’ = application Terminating
controllingSequencer’ = controllingSequencer

Start =
start_mission . mission 7 mySequencer—»
(controllingSequencer = mySequencer )
g
done_toplevel_sequencer —>
(applicationTerminating = True)

InitializePhase =
initializeCall . mission —
Initialize
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Initialize =

Register,
<Initz’alize )
O

SetCeilingPriority;
(Initz’alize )
O

initializeRet . mission—
Skip

Register =
register 7 s | mission—>
checkSchedulable . mission ? check : (check = True)—
(AddSchedulable )
O
checkSchedulable . mission ? check : (check = False)—
throw.illegalState Exception—>
Chaos

RegisterException =
register 7 s ! mission—
throw.illegalState Exception—s
Chaos

SetCeilingPriority =
setCeilingPriority . mission? o7 p—
Skip

SetCeilingPriorityFEzception =
setCeilingPriority . mission? 07 p—
throw.illegalState Exception—>
Chaos

MissionPhase =
Ezecute
[{registeredSchedulables, activeSchedulables, mission Terminating,
application Terminating, controllingSequencer} | {| done_schedulables [} | @]
FExceptions
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Execute =
if registeredSchedulables = @—>
done_schedulables . mission—>
(Skip >
[ registeredSchedulables # &—
activate_schedulables . mission —
activeSchedulables = registeredSchedulables;
TerminateAndDone
[{ activeSchedulables} |
{ stop_schedulables, done_schedulables [}
| {missionTerminating}]

Methods

\{ done_schedulables |}

TerminateAndDone =
SignalTermination
[@ | TerminateSync | {activeSchedulables}] | ;
DoneSchedulables
done_schedulables . mission—
Skip

SignalTermination =
stop_schedulables . mission—
get_activeSchedulables . mission ? schedulables ToStop—
StopSchedulables(schedulablesToStop);
schedulables_stopped . mission—>
Skip
A(schedulables_stopped . mission — Skip)

StopSchedulables = val schedulablesToStop : F SchedulableID e

H’ s : schedulablesToStop ®
signalTerminationCall . s—

signalTerminationRet . s—
Skip
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DoneSchedulables =

[ schedulable : activeSchedulables ®
done_schedulable . schedulable—
activeSchedulables := activeSchedulables \ {schedulable};
Skip
if activeSchedulables = &—
schedulables_stopped . mission—>
Skip )
[lactiveSchedulables # &—
DoneSchedulables
fi

a

get_activeSchedulables . mission ! activeSchedulables—>
DoneSchedulables

Methods =

RequestTerminationMeth
[@ | { end_mission_terminations |} | &
TerminationPendingMeth

[@ | MTCSync | {missionTerminating}]

Mission TerminatingController

[{missionTerminating} | {| end_mission_terminations [} | @]

done_schedulables . mission—

end_mission_terminations . mission—->
Skip

RequestTerminationMeth =
end_mission_terminations . mission—>
(Skip )
]

U schedulable registeredSchedulables ® request Termination . mission . schedulable— | .
Skip ’
get_missionTerminating . mission?missionTerminating : (missionTerminating = False)—
set_missionTerminating . mission ! True—;
stop_schedulables . mission—»
Request TerminationMeth
O

(getmz’ssion Terminating . mission?missionTerminating : (missionTerminating = True) —))

RequestTerminationMeth

TerminationPendingMeth =

end_mission_terminations . mission—->

(Skip >

O
terminationPendingCall . mission—>
get_missionTerminating . mission T missionTerminating—>
terminationPendingRet . mission ! mission Terminating—
TerminationPendingMeth
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Mission TerminatingController =
get_missionTerminating . mission ! mission Terminating—>
Mission TerminatingController

O
set_missionTerminating . mission 7 newMission Terminating—>
missionTerminating := newMissionTerminating;

Mission TerminatingController

O

end_mission_terminations . mission—>>

CleanupPhase =
Cleanup
[{ registeredSchedulables, activeSchedulables, missionTerminating,
application Terminating, controllingSequencer} | {| done_schedulables [} | @]
FExceptions

Cleanup =
deregister!registeredSchedulables—
CleanupSchedulables;
cleanupMissionCall . mission—>
cleanupMissionRet . mission 7 continueSequencer—
Finish(continueSequencer)

CleanupSchedulables =

H’ s : registeredSchedulables ®
cleanupSchedulableCall . s—
cleanupSchedulableRet . s—
Skip

Finish = val continueSequencer : B @
end_mission_app . misston—-
done_mission . mission ! continueSequencer—
Skip

Exceptions =
RegisterException

SetCeilingPriorityFException

done_schedulables . mission—
Skip

O
[MX ® [nit; Start;

if applzcatzonTermmatmg = False—>
ImtzalzzePhase MissionPhase ; CleanupPhase ; X)
lapplication Termmatmg = True—)
end_mission_app . mission—>
Skip )
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end
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12 SchedulableMissionSequencerFW

section SchedulableMissionSequencerF'W parents Schedulable MissionSequencerChan,
Schedulable Chan, Missionlds, MissionChan,
Schedulableld, scj_prelude, SafeletMethChan, FrameworkChan

process SchedulableMissionSequencerFW = sequencer : SchedulableID ® begin

i currentMission : MissionID

‘ continueAbove : B

‘ continueBelow : B

‘ controllingMission : MissionID
‘ application Terminating : B

__Init

State’

continueAbove’ = True
continueBelow’ = True

application Terminating’ = False
currentMission’ = nullMissionld
controllingMission’ = nullMissionld

__ GetContinue

=State
continue! : B

continueAbove = True A continueBelow = True = continue! = True

Start =
Register;
(Activate )
a

done_toplevel_sequencer—
application Terminating := True
O
activate_schedulables 7 someMissionID —
Start

Register =
register . sequencer T miD—>
controllingMission := mID

Activate =
activate_schedulables.controllingMission—
Skip
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Execute =
RunMission;
end_methods . sequencer —
Skip
[{ currentMission} | { end_methods [} | @] ;
Methods
[@ | CCSync | { continueAbove, continueBelow}]
ContinueController
done_schedulable . sequencer — Skip

RunMission =
GetNextMission;
StartMission;
Continue

GetNextMission =
getNextMissionCall . sequencer—>
getNextMissionRet . sequencer 7 next—
currentMission = next

StartMission =
if currentMission # nullMissionld —
start_mission . currentMission . sequencer —»
initializeRet . currentMission—
Signal Termination
[@ | { end_terminations [} | @]
done_mission . currentMission 7 continueReturn—>
set_continueBelow . sequencer ! continue Return—
end_terminations . sequencer —»
Skip
[| currentMission = nullMissionld —
set_continueBelow . sequencer ! False—
(Skip )

fi

Continue =
get_continue . sequencer ? continue : (continue = True)—

(RunMission )
O

(getcontinue . sequencer ? continue : (continue = False)—>)
Skip

SignalTermination =
end_terminations . sequencer —>

(Skip )

O
signalTerminationCall . sequencer—
set_continueAbove . sequencer ! False—
request Termination . currentMission . sequencer— | ;
signalTerminationRet . sequencer—»
Skip

end_terminations . sequencer —»

Skip
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Methods =

Sequence TerminationPending;
(M ethods )

O

end_methods . sequencer—
(Skip )

Sequence TerminationPending =
sequenceTerminationPendingCall . sequencer—
get_continue . sequencer ? continue—
sequence TerminationPendingRet . sequencer | continue—»
Skip

ContinueController = var continue : B ®
GetContinue ; get_continue . sequencer | continue—s>»
( ContinueController >
O
set_continueBelow . sequencer 7 newContinueBelow—
continueBelow := newContinueBelow;
ContinueController
g
set_continueAbove . sequencer 7 newContinueAbove—s
continueAbove := newContinueAbove;
ContinueController
O
end_methods . sequencer—
(Skip >

Cleanup =
cleanupSchedulableCall . sequencer—
cleanupSchedulableRet . sequencer—»
Finish

Finish =
done_schedulable . sequencer—
Skip

pnX e Init ; Start;
if application Terminating = False—>
(Earecute ; Cleanup ; X )
° [l application Terminating = True—>
end_sequencer—_app . sequencer—>
(Skip )
fi

end
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13 Event Handlers
13.1 AperiodicEventHandlerFW

section AperiodicEventHandlerFW parents MissionChan, Schedulable Chan, Schedulableld,
Missionld, Missionlds, TopLevelMissionSequencerChan, SafeletMethChan, FrameworkChan,
AperiodicEventHandlerChan, AperiodicParameters

process AperiodicEventHandlerFW =
schedulable : SchedulableID; aperiodic Type : Aperiodic Type;
aperiodicParameters : AperiodicParameters ®
begin

__state State

controllingMission : MissionID
application Terminating : B

pending : B

data : 7

deadline : JTime
deadlineMissHandler : SchedulableID

_ Init

State’

controllingMission’ = nullMissionld
application Terminating’ = False
pending’ = False
deadline’ = deadline OfAperiodic(aperiodicParameters)
deadlineMissHandler'" = missHandler Of Aperiodic(aperiodicParameters)

Start =
Register;
<Activate >
d
activate_schedulables? someMissionlD —
(Start )
a

done_toplevel_sequencer —»
application Terminating := True

Register =
register . schedulable 7 missionlD—>
controllingMission := missionlD

Activate =

activate_schedulables . controllingMission—s
Skip
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Ezecute =
if deadlineMissHandler! = nullSchedulableld —

if aperiodic Type = aperiodic—

Ready
[laperiodic Type = aperiodicLong—
ReadyLong
fi
[{pending, data} | {| end_releases |} | @]
SignalTermination

[{pending, data} |
DeadlineClockSync U { release . schedulable, releaseLong.schedulable [} |
o]
release . schedulable — Skip
O
releaseLong . schedulable? data — Skip
; DeadlineClock
end_releases.schedulable—
Skip

[ deadlineMissHandler == nullSchedulableId —

if aperiodic Type = aperiodic—

Ready
[l aperiodic Type = aperiodicLong—
ReadyLong
fi
[{pending, data} | { end_releases [} | @]
Signal Termination

DeadlineClock =

wait valueOf (deadline);
release . deadlineMissHandler—
DeadlineClock
O
release_complete . schedulable—>
(Deadlme Clock )
end_releases . schedulable—
Skip >

Ready =

a

(

release.schedulable—>
handleAsyncEventCall . schedulable—>
Release

end_releases . schedulable—
Skip
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ReadyLong =

releaseLong . schedulable ? longData—
data := longData;
handleAsyncLongFventCall . schedulable . data—
ReleaseLong

O
end_releases . schedulable—

(Skip )

SignalTermination =
signal TerminationCall . schedulable—
end_releases . schedulable—
signalTerminationRet . schedulable—
done_schedulable . schedulable—
Skip

Release =
release.schedulable—
pending := True;
Release
O
handle AsyncEventRet.schedulable—
if pending = True—>
pending := False;
release_complete . schedulable—
handleAsyncEventCall.schedulable—
Release
lpending = False—
Ready

fi

d
end_releases.schedulable—>
Skip
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ReleaseLong =
releaseLong.schedulable ? longData—
data := longData;
pending := True,;
ReleaseLong
O
handleAsyncLongFEventRet.schedulable—
if pending = True—
pending := False;
release_complete . schedulable—
handle AsyncLongEventCall.schedulable.data—
ReleaseLong
|pending = False—
ReadyLong
fi

O
end_releases.schedulable—
Skip

Cleanup =
cleanupSchedulableCall . schedulable—
cleanupSchedulableRet . schedulable—
Skip

Init ; Start;
if application Terminating = False—>
(Execute ; Cleanup ; X)
o | uXe lapplication Terminating = True—>
end_aperiodic_app . schedulable—
(Skip >
fi

end
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13.2 PeriodicEventHandlerF'W

section PeriodicEventHandlerF'W parents MissionChan, SchedulableChan, Schedulableld,
Missionld, Missionlds, TopLevelMissionSequencerChan, PeriodicEventHandlerChan,
SafeletMeth Chan, FrameworkChan, PeriodicParameters

process PeriodicEventHandlerFW =
schedulable : SchedulableID; periodicParameters : PeriodicParameters ® begin

__ state State

controllingMission : MissionID
applicationTerminating : B

period : JTime

startTime : JTime

deadline : JTime
deadlineMissHandler : SchedulableID
missedReleases : N

periodic Terminating : B

valueOf (deadline) < valueOf (period)

__Init

State’

controllingMission’ = nullMissionld
application Terminating’ = False
periodic Terminating’ = False
period’ = periodOf (periodicParameters)
start TimeOf (periodicParameters) = NULL = startTime’ = time (0,0)
startTimeOf (periodicParameters) # NULL =

startTime' = startTimeOf (periodicParameters)
deadlineOfPeriodic(periodicParameters) = NULL =

deadline’ = period’
deadlineOfPeriodic(periodicParameters) # NULL =

deadline’ = deadlineOfPeriodic(periodicParameters)
missedReleases’ = 0
deadlineMissHandler’ = missHandlerOfPeriodic(periodicParameters)

Start =
Register;
<Activate )
d
activate_schedulables? someMissionlD —
(Start >
a

done_toplevel_sequencer—
application Terminating := True

Register =

register . schedulable 7 missionID—
controllingMission := missionlD

41



Activate =
activate_schedulables . controllingMission—
Skip

Ezxecute =
wait valueOf (startTime);
if deadlineMissHandler # nullSchedulableld —
Running WithDeadlineDetection
[ deadlineMissHandler = nullSchedulableld —
Running
fi
O
end_releases . schedulable—
Skip
[{startTime} | { stop_period |} | &
Signal Termination
[{startTime} | PTCSYnc | @]
Periodic TerminatingController

Running =
PeriodicClock
[@ | ReleaseSync | {missedReleases}]
Release(0)

Running WithDeadlineDetection =
Running
[{missedReleases} | ReleaseSync | &
DeadlineClock(0)

PeriodicClock =

release . schedulable—

wait valueOf (period);

release . schedulable—

X
d

end_releases . schedulable—
(Skip )

nXx e
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Release = valindez : N @

if missedReleases = 0—>

release . schedulable—
handleAsyncEventCall . schedulable—
Skip

[[missedReleases # 0—
handleAsyncEventCall . schedulable—>
missedReleases := missedReleases — 1;
Skip

handle AsyncEventRet . schedulable—
periodic_release_complete . schedulable . indexr—
Skip
[@ | { handleAsyncEventRet [} | @]
release . schedulable—
missedReleases := missedReleases + 1;
X
O
(handleAsyncEventRet . schedulable—>)

nX e

Skip

Release(index + 1)
O

Skip

DeadlineClock = valindex : N @
wait valueOf (deadline);
release . deadlineMissHandler —
periodic_release_complete . schedulable . index —
Skip
]
periodic_release_complete . schedulable . indexr—
<Skip )
end_releases . schedulable—
A | periodic_release_complete . schedulable ? index—
Skip

SignalTermination =
signalTerminationCall . schedulable—
set_periodic Terminating . schedulable ! True—>
end_releases . schedulable—
signal TerminationRet . schedulable—
done_schedulable . schedulable—
Skip

Cleanup =
cleanupSchedulableCall . schedulable—
cleanupSchedulableRet . schedulable—
Skip
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(getperz'odz'c Terminating . schedulable ? periodic Terminating : (periodic Terminating = False)—

(getperiodic Terminating . schedulable ? periodic Terminating : (periodic Terminating = True)—

wait valueOf (period);
DeadlineClock(index + 1)

)
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Periodic TerminatingController =
get_periodic Terminating . schedulable ! periodic Terminating—>
(Periodic TerminatingController >
O
set_periodic Terminating . schedulable 7 newPeriodic Terminating—
periodic Terminating := newPeriodic Terminating;
Periodic TerminatingController

Init ; Start;
if application Terminating = False—>
(Eatecute ; Cleanup ; X)
o | uXe lapplication Terminating = True—>
end_periodic_app . schedulable—
(Skip >
fi

end
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13.3 OneShotEventHandlerFW

section OneShotEventHandlerF'W parents MissionChan, Schedulable Chan, Schedulableld,
Missionld, Missionlds, TopLevelMissionSequencerChan, OneShotEventHandler Chan,
SafeletMethChan, FrameworkChan, AperiodicParameters

process OneShotEventHandlerFW =

schedulable : SchedulableID; startTime : JTime; aperiodicParameters : AperiodicParameters ®
begin

__state State
controllingMission : MisstonID
application Terminating : B
deadline : JTime
deadlineMissHandler : SchedulablelD

__Init
State’

controllingMission’ = nullMissionld
application Terminating’ = False
deadline’ = deadline OfAperiodic(aperiodicParameters)
deadlineMissHandler' = missHandlerOfAperiodic(aperiodicParameters)

Start =
Register;
(Activate )
a
activate_schedulables? someMissionlD —
<Start >
a

done_toplevel_sequencer —>
application Terminating := True

Register =
register . schedulable ? mID —
controllingMission := mID

Activate =
activate_schedulables . controllingMission—>
Skip
Execute =
Run
[@ | MethodsSync | 2]
Methods
[@ | { end_releases [} | &]
SignalTermination
[@ | STCSync | {startTime}]
Start TimeController
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Run =
if deadlineMissHandler = nullSchedulableld —

ScheduleOrWait

[@ | ReleaseSync | ]

Release

(| deadlineMissHandler # nullSchedulableld—
ScheduleOr Wait
[@ | ReleaseSync | @] | [ @ | DeadlineSync | ]
Release

DeadlineClock

fi

ScheduleOrWait =
get_startTime . schedulable ? startTime—
if startTime! = NULL—

Scheduled
(|startTime = NULL—
NotScheduled
fi
Release =

handleAsyncEventCall . schedulable—>
handleAsyncEventRet . schedulable—
release_complete . schedulable—
Release

reschedule_handler . schedulable 7 newStartTime—
set_startTime . schedulable ! newStart Time—
Release

end_releases . schedulable—
stop_release . schedulable—
Skip

DeadlineClock =
release . schedulable—
wait valueOf (deadline);
release . deadlineMissHandler—
DeadlineClock
O
release_complete . schedulable—
DeadlineClock
deschedule_handler . schedulable—))

DeadlineClock
end_releases . schedulable—
Skip
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Scheduled =
get_startTime . schedulable ? startTime—
wait valueOf (start Time)
release . schedulable—>
handleAsyncEventCall . schedulable—>
NotScheduled
A
deschedule_handler . schedulable—
<N otScheduled >
O
reschedule_handler . schedulable ? newStartTime—>
set_startTime . schedulable ! newStartTime—
Scheduled

NotScheduled =
deschedule_handler . schedulable—
NotScheduled

]
reschedule_handler . schedulable ? newStart Time—
set_startTime . schedulable ! newStart Time—
Scheduled

O

end_releases . schedulable—>

(Skip )

Methods =
Deschedule;
Methods

GetNextReleaseTime;
Methods

ScheduleNextRelease;
Methods

O ——0o0 —20od

end_releases . schedulable—>
Skip

Deschedule = var wasScheduled : B @
descheduleCall . schedulable—
deschedule_handler.schedulable—>
get_startTime . schedulable ? startTime—

if startTime = NULL—>
wasScheduled := False

[|startTime # NULL—
wasScheduled := True

fi

set_startTime . schedulable! NULL—>

descheduleRet . schedulable ! wasScheduled—

Skip
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GetNextRelease Time =
getNextRelease TimeCall . schedulable—
get_startTime . schedulable ? startTime—
getNextRelease TimeRet . schedulable ! start Time—
Skip

ScheduleNextRelease =
scheduleNextRelease . schedulable ? newStart Time—
set_startTime . schedulable ! newStart Time—
if newStartTime = NULL—
deschedule_handler.schedulable—
(Skip )
|newStartTime # NULL—
reschedule_handler ! schedulable ! newStart Time—>
(Skip )
fi

SignalTermination =
signalTerminationCall . schedulable—
end_releases . schedulable—
stgnal TerminationRet . schedulable—
done_schedulable . schedulable—
Skip

StartTimeController =
get_startTime . schedulable ! startTime—
StartTimeController
O
set_startTime . schedulable ? newStartTime—
StartTimeController

Cleanup =
cleanupSchedulableCall . schedulable—
cleanupSchedulableRet . schedulable—
Skip

Init ; Start;
if application Terminating = False—>
(Execute ; Cleanup ; X )
o | uXe lapplication Terminating = True—>
end_oneShot_app . schedulable—>
(Skip )
fi

end
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14 ManagedThreadFW

section ManagedThread parents Managed ThreadChan, Schedulableld, Missionld, Missionlds,
TopLevelMissionSequencerChan, SchedulableChan, SafeletMethChan, FrameworkChan

process ManagedThreadFW = schedulable : SchedulableID ® begin

__State

controllingMission : MissionID
applicationTerminating : B

__Init

State’

controllingMission’ = nullMissionld
application Terminating’ = False

Start =
Register;
<Activate )
d
( activate_schedulables? someMissionID —>>
O

done_toplevel_sequencer—
application Terminating := True

Register =
register . schedulable ? mID —
controllingMission := mID

Activate =
activate_schedulables . controllingMission—
Skip

Ezecute =
Run [ @ | { runRet [} | @] Methods

Run =
runCall . schedulable—
runRet . schedulable—
done_schedulable . schedulable—>
Skip
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Methods =
(SignalTermmationMeth; Methods)
O
runRet . schedulable—
Skip

SignalTerminationMeth =
signalTerminationCall . schedulable—
signalTerminationRet . schedulable — Skip

Cleanup =
cleanupSchedulableCall . schedulable—
cleanupSchedulableRet . schedulable — Skip

pnX e Init; Start;
if application Terminating = False—>
(Execute ; Cleanup ; X)
o lapplication Terminating = True—>
end_managed Thread_app . schedulable—
(Skip )
fi

end
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