
Safety-Critical Java Level 2 Framework Model

Matt Luckcuck

Department of Computer Science,
University of York, UK

ml881@york.ac.uk

January 11, 2016

Contents

1 Introduction 3

2 GlobalTypes 3

3 Priority 4

4 Priority Queue 5

5 Ids 6
5.1 MissionId . 6
5.2 SchedulableId . 6
5.3 SchedulableIds . 7

6 Channels 8
6.1 FrameworkChan . 8
6.2 SafeletChan . 8
6.3 SafeletFWChan . 8
6.4 SafeletMethChan . 8
6.5 MissionSequencerMethChan . 8
6.6 TopLevelMissionSequencerChan . 9
6.7 TopLevelMissionSequencerFWChan . 9
6.8 MissionChan . 9
6.9 MissionFWChan . 9
6.10 MissionMethChan . 9
6.11 SchedulableChan . 10
6.12 SchedulableMissionSequencerChan . 10
6.13 SchedulableMissionSequencerFWChan . 10
6.14 ManagedThreadChan . 10
6.15 ManagedThreadFWChan . 10
6.16 ManagedThreadMethChan . 10

7 ObjectFW 11

8 ThreadFW 22

1

9 SafeletFW 24

10 TopLevelMissionSequencerFW 26

11 MissionFW 28

12 SchedulableMissionSequencerFW 34

13 Event Handlers 37
13.1 AperiodicEventHandlerFW . 37
13.2 PeriodicEventHandlerFW . 41
13.3 OneShotEventHandlerFW . 45

14 ManagedThreadFW 49

2

1 Introduction

Safety-Critical Java (SCJ) [1] is a Java-based language for applications that must be certified. To
aid certification efforts, SCJ is organised into three compliance levels. Level 0 applications are simple
single-processor programs executed by a cyclic executive. By contrast, Level 2 applications are highly
concurrent, potentially multi-processor, and make use of suspension and a variety of release patterns.

We model SCJ Level 2 applications using the state-rich process algebra Circus [2]. We approach
this by splitting our models into a reusable Framework model, which captures the API behaviour of
SCJ, and a specific Application model, which captures the application’s behaviour.

Here we present our SCJ Level 2 Framework model, which captures the unchanging behaviour of
the API. It is intended that the Framework model be combined with a Application model to produce
a model of that specific application.

2 GlobalTypes

section GlobalTypes parents scj prelude,SchedulableId

[ThreadID]

SafeletThreadId : ThreadID
nullThreadId : ThreadID

[ObjectID]

[totalThreads]

ThreadMap == ThreadID 7→ N1

ExceptionType ::= interruptedException | illegalMonitorStateException | illegalArgumentException |
illegalThreadStateException | illegalStateException | ceilingViolationException

maxNanos == 999999

AperiodicType ::= aperiodic | aperiodicLong

3

3 Priority

section Priority parents scj prelude

MinPriority : N1

MaxPriority : N1

MaxPriority −MinPriority ≥ 2

PriorityLevel == MinPriority . . MaxPriority

4

4 Priority Queue

section PriorityQueue parents scj prelude,GlobalTypes,Priority

PriorityQueue == PriorityLevel → (iseq ThreadID)

∀ pq : PriorityQueue • nullThreadId 6∈ ran(
⋃

(ran pq))

IsEmpty : PriorityQueue→ B

∀ pq : PriorityQueue | (
⋃

(pq L PriorityLevel M)) = ∅ •
IsEmpty(pq) = True

AddToPriorityQueue : PriorityQueue × ThreadID × PriorityLevel → PriorityQueue

∀ pq : PriorityQueue; t : ThreadID ; p : PriorityLevel |
t 6= nullThreadId ∧
t 6∈ ran(

⋃
(ran(pq))) •

AddToPriorityQueue(pq , t , p) = (pq ⊕ {p 7→ pq(p)a 〈t〉})

RemoveFromPriorityQueue : PriorityQueue 7→ PriorityQueue × ThreadID

(∀ pq : PriorityQueue •
(∃ t : ThreadID ; p : PriorityLevel |

p = max {pl : PriorityLevel | pq(pl) 6= 〈〉} ∧
t = head pq(p)
• RemoveFromPriorityQueue(pq) = (pq ⊕ {p 7→ tail pq(p)}, t)))

RemoveThreadFromPriorityQueue : PriorityQueue × ThreadID × PriorityLevel → PriorityQueue

∀ pq : PriorityQueue; t : ThreadID ; p : PriorityLevel |
pq(p) � {t} 6= 〈〉 •
RemoveThreadFromPriorityQueue(pq , t , p) = pq ⊕ {p 7→ squash (pq(p)−B {t})}

ElementsOf : PriorityQueue→ PThreadID

∀ pq : PriorityQueue | pq 6= ∅ •
(∃ elems : PThreadID |

elems =
⋃

(ran L ran pq M)
• ElementsOf (pq) = elems)

5

5 Ids

5.1 MissionId

section MissionId

[MissionID]

nullMissionId : MissionID

5.2 SchedulableId

section SchedulableId

[SchedulableID]

TopLevelSequencerId : SchedulableID
nullSequencerId : SchedulableID
nullSchedulableId : SchedulableID

6

5.3 SchedulableIds

section SchedulableIds parents scj prelude,SchedulableId

InputHandlerId : SchedulableID
OutputHandlerId : SchedulableID
MainMissionSequencerId : SchedulableID
EchoMissionSequencerId : SchedulableID
InputMissionSequencerId : SchedulableID
OutputMissionSequencerId : SchedulableID

distinct〈TopLevelSequencerId , InputHandlerId ,OutputHandlerId ,
MainMissionSequencerId ,EchoMissionSequencerId ,
InputMissionSequencerId ,OutputMissionSequencerId ,nullSequencerId ,nullSchedulableId〉

7

6 Channels

6.1 FrameworkChan

section FrameworkChan parents GlobalTypes

channel throw : ExceptionType
channel done toplevel sequencer

6.2 SafeletChan

section SafeletChan parents SafeletFWChan,SafeletMethChan

6.3 SafeletFWChan

section SafeletFWChan parents scj prelude

channel end safelet app
channel done safeletFW

6.4 SafeletMethChan

section SafeletMethChan parents scj prelude,SchedulableId ,MissionId

channel initializeApplicationCall
channel initializeApplicationRet

channel getSequencerCall
channel getSequencerRet : SchedulableID

channel checkSchedulable : MissionID × B

channel deregister : FSchedulableID

6.5 MissionSequencerMethChan

section MissionSequencerMethChan parents scj prelude,MissionId ,SchedulableId

channel getNextMissionCall : SchedulableID
channel getNextMissionRet : (SchedulableID ×MissionID)

channel requestSequenceTermination : (SchedulableID × B)

channel sequenceTerminationPendingCall : SchedulableID
channel sequenceTerminationPendingRet : (SchedulableID × B)

8

6.6 TopLevelMissionSequencerChan

section TopLevelMissionSequencerChan parents TopLevelMissionSequencerFWChan,MissionSequencerChan

6.7 TopLevelMissionSequencerFWChan

section TopLevelMissionSequencerFWChan parents scj prelude,MissionSequencerFWChan,
SchedulableId ,SchedulableIds

channel start toplevel sequencer : SchedulableID
channel set continue : SchedulableID × B

channelset CCSync == {| get continue, set continue |}
channelset TopLevelMissionSequencerFWChan ==
{| start toplevel sequencer , end sequencer app, end methods,
get continue, set continue |}

6.8 MissionChan

section MissionChan parents MissionFWChan,MissionMethChan,SchedulableMethChan

channelset MissionAppSync ==
{| initializeCall , initializeRet , register , cleanupMissionCall , cleanupMissionRet ,
end mission app |}

6.9 MissionFWChan

section MissionChan parents MissionFWChan,MissionMethChan,SchedulableMethChan

channelset MissionAppSync ==
{| initializeCall , initializeRet , register , cleanupMissionCall , cleanupMissionRet ,
end mission app |}

6.10 MissionMethChan

section MissionChan parents MissionFWChan,MissionMethChan,SchedulableMethChan

channelset MissionAppSync ==
{| initializeCall , initializeRet , register , cleanupMissionCall , cleanupMissionRet ,
end mission app |}

9

6.11 SchedulableChan

section SchedulableChan parents MissionId ,SchedulableId ,SchedulableFWChan,SchedulableMethChan

6.12 SchedulableMissionSequencerChan

section SchedulableMissionSequencerChan parents SchedulableMissionSequencerFWChan,MissionSequencerChan

6.13 SchedulableMissionSequencerFWChan

section SchedulableMissionSequencerFWChan parents scj prelude,MissionSequencerFWChan,SchedulableId ,SchedulableIds

channel set continueBelow : SchedulableID × B
channel set continueAbove : SchedulableID × B

channelset CCSync == {| get continue, set continueBelow , set continueAbove |}

channelset SchedulableMissionSequencerFWChan ==
{| end sequencer app, end methods, end terminations, get continue |}

6.14 ManagedThreadChan

section ManagedThreadChan parents ManagedThreadFWChan,ManagedThreadMethChan,SchedulableChan

channelset MtAppSync == {| runCall , runRet , end managedThread app |}

6.15 ManagedThreadFWChan

section ManagedThreadFWChan parents SchedulableId

channel end managedThread app : SchedulableID

6.16 ManagedThreadMethChan

section ManagedThreadMethChan parents SchedulableId

channel runCall : SchedulableID
channel runRet : SchedulableID

10

7 ObjectFW

section Object parents scj prelude,GlobalTypes,ObjectChan,MissionChan,SchedulableChan,
SchedulableId ,MissionId ,MissionIds,TopLevelMissionSequencerChan,
HandlerChan,SafeletMethChan,FrameworkChan,PriorityQueue,Priority ,ThreadChan

process ObjectFW =̂ object : ObjectID • begin

state State
waitQueue : PriorityQueue
lockedBy : ThreadID
locks : N
previousLocks : ThreadMap
queueForLock : PriorityQueue
ceilingPriority : PriorityLevel
waitForObjectThreads : PThreadID

locks > 0⇔ lockedBy 6= nullSchedulableID
lockedBy 6∈ dom previousLocks
lockedBy 6∈ ElementsOf (waitQueue)
lockedBy 6∈ ElementsOf (queueForLock)
waitForObjectThreads ⊆ ElementsOf (waitQueue)

Init
State ′

IsEmpty(queueForLock ′) = True
IsEmpty(waitQueue ′) = True
locks ′ = 0
previousLocks ′ = ∅
ceilingPriority ′ = MaxPriority
waitForObjectThreads ′ = ∅

FullyUnlock
∆State
lockedBy? : ThreadID
locks? : N1

previousLocks ′ = previousLocks ⊕ {lockedBy? 7→ locks?}
lockedBy ′ = nullSchedulableID
locks ′ = 0
waitQueue ′ = waitQueue
queueForLock ′ = queueForLock
ceilingPriority ′ = ceilingPriority
waitForObjectThreads ′ = waitForObjectThreads

11

AddToQueueForLock
∆State
someThread? : ThreadID
priorityLevel? : PriorityLevel

someThread? 6= nullSchedulableID
someThread? 6∈ ElementsOf (queueForLock)
queueForLock ′ = AddToPriorityQueue(queueForLock , someThread?, priorityLevel?)
lockedBy ′ = lockedBy
locks ′ = locks
previousLocks ′ = previousLocks
waitQueue ′ = waitQueue
ceilingPriority ′ = ceilingPriority
waitForObjectThreads ′ = waitForObjectThreads

AssignEligible
∆State

(queueForLock ′, lockedBy ′) = RemoveFromPriorityQueue(queueForLock)
lockedBy ′ ∈ dom previousLocks ⇒ locks ′ = previousLocks(lockedBy ′)
lockedBy ′ 6∈ dom previousLocks ⇒ locks ′ = 1
previousLocks ′ = {lockedBy} −C previousLocks
waitQueue ′ = waitQueue
ceilingPriority ′ = ceilingPriority
waitForObjectThreads ′ = waitForObjectThreads

AddToWaitQueue
∆State
someThread? : ThreadID
priorityLevel? : PriorityLevel
waitType? : WaitType

someThread? 6= nullSchedulableID
someThread? 6∈ ElementsOf (waitQueue)
waitQueue ′ = AddToPriorityQueue(waitQueue, someThread?, priorityLevel?)
lockedBy ′ = lockedBy
locks ′ = locks
previousLocks ′ = previousLocks
queueForLock ′ = queueForLock
ceilingPriority ′ = ceilingPriority
waitType? = waitForObject ⇒ waitForObjectThreads ′ = waitForObjectThreads ∪ {someThread?}
waitType? = wait ⇒ waitForObjectThreads ′ = waitForObjectThreads

12

RemoveThreadFromWaitQueue
∆State
waitingThread? : ThreadID
priorityLevel? : PriorityLevel

waitingThread? ∈ ran(waitQueue(priorityLevel?))
waitQueue ′ = RemoveThreadFromPriorityQueue(waitQueue,waitingThread?, priorityLevel?)
lockedBy ′ = lockedBy
locks ′ = locks
previousLocks ′ = previousLocks
ceilingPriority ′ = ceilingPriority
waitForObjectThreads ′ = waitForObjectThreads \ {waitingThread?}

RemoveMostEligigbleFromWaitQueue
∆State
notified ! : ThreadID
waitType! : WaitType

(waitQueue ′,notified !) = RemoveFromPriorityQueue(waitQueue)
lockedBy ′ = lockedBy
locks ′ = locks
previousLocks ′ = previousLocks
queueForLock ′ = queueForLock
ceilingPriority ′ = ceilingPriority
notified ! ∈ waitForObjectThreads ⇒ waitType! = waitForObject
notified ! 6∈ waitForObjectThreads ⇒ waitType! = wait
waitForObjectThreads ′ = waitForObjectThreads \ {notified !}

Execute =̂

var interruptedThreads : PThreadID •




Monitor
J∅ |

MonitorSync |
{waitQueue,waitForObjectThreads}K
Synchronisation


J{waitQueue,waitForObjectThreads} |

MLCSync |
{queueForLock , previousLocks, locks, lockedBy}K
MonitorLockController

(
interruptedThreads

)


J{waitQueue,waitForObjectThreads, queueForLock , previousLocks, locks, lockedBy} |

CPCSync |
{ceilingPriority}K

CeilingPriorityController



Monitor =̂
MonitorUnlocked

13

MonitorUnlocked =̂startSynchMeth . object ? someThread−→
lock request . object ! someThread−→
MonitorUnlocked


@

lockAcquired . object ? lockingThread−→
get ceilingPriority . object ? ceilingPriority−→

get priorityLevel . lockingThread . object ? priority : (priority ≤ ceilingPriority)−→
raise thread priority . lockingThread ! ceilingPriority−→
MonitorLocked(lockingThread)


@get priorityLevel . lockingThread . object ? priority : (priority > ceilingPriority)−→

throw .ceilingViolationException−→
Chaos







MonitorLocked =̂ val lockedBy : ThreadID •startSynchMeth . object . lockedBy−→
increment locks . object−→
MonitorLocked(lockedBy)


@startSynchMeth . object ? someThread : (someThread 6= lockedBy)−→

lock request . object ! someThread−→
MonitorLocked(lockedBy)


@

endSyncMeth . object . lockedBy−→

decrement locks . object . 0−→
lower thread priority . lockedBy−→
MonitorUnlocked


@(

decrement locks . object ? l : (l 6= 0)−→
MonitorLocked(lockedBy)

)




@

unlock Monitor . object ? unlockingThread−→
fully unlock . object−→
lower thread priority . unlockingThread−→
MonitorUnlocked



Synchronisation =̂



WaitActions
J∅ |WaitSync | ∅K
NotifyActions


J∅ |

WQSync |
{waitQueue,waitForObjectThreads}K

WaitQueueController


J{waitQueue,waitForObjectThreads} | InterruptSync | ∅K
Interrupt


14

WaitActions =̂(
Wait 9 TimedWait

)
9 WaitForObject

NotifyActions =̂
Notify 9 NotifyAll

Wait =̂
waitCall . object ? someThread−→



isInterruptedCall . someThread−→
isInterruptedRet . someThread .False−→


get lockedBy . object . someThread−→
get priorityLevel . someThread . object ? priorityLevel−→
add to wait . object ! someThread ! priorityLevel ! wait−→
unlock Monitor . object ! someThread−→
Wait


@get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→

throw . illegalMonitorStateException−→
Chaos






@

isInterruptedCall . someThread−→
isInterruptedRet . someThread .True−→
throw .interruptedException−→
Chaos




TimedWait =̂

TimedWaitHandler
J∅ | {| start timer |} | ∅K(
9 t : ThreadID • TimedWaitTimer(t)

)
TimedWaitHandler =̂

timedWaitCall . object ? someThread ? waitTime−→



get lockedBy . object . someThread−→
if(timeMillis(waitTime) < 0) ∨

(timeNanos(waitTime) < 0 ∧ timeNanos(waitTime) > maxNanos))−→(
throw . illegalArgumentException−→
Chaos

)
8(timeMillis(waitTime) > 0) ∧

(timeNanos(waitTime) > 0) ∧ (timeNanos(waitTime) ≤ maxNanos))−→
get priorityLevel . someThread . object ? priorityLevel−→
add to wait . object ! someThread ! priorityLevel ! wait−→
start timer . object ! someThread ! priorityLevel ! waitTime−→
unlock Monitor . object ! someThread−→
TimedWaitHandler


fi


@get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→
throw . illegalMonitorStateException−→
Chaos




15

TimedWaitTimer =̂ val waitingThread : ThreadID •

start timer . object .waitingThread ? priorityLevel ? waitTime−→




wait valueOf (waitTime);
remove from wait . object ! waitingThread ! priorityLevel−→
waitRet . object ! waitingThread−→
Skip


@(

cancel wait timer . object .waitingThread−→
Skip

)


;
relock this . object ! waitingThread−→
TimedWaitTimer(waitingThread)




@(

cancel wait timer . object .waitingThread−→
TimedWaitTimer(waitingThread)

)
@(waitRet . object .waitingThread −→ TimedWaitTimer(waitingThread)

)
@(

waitForObjectRet . object .waitingThread ? w −→ TimedWaitTimer(waitingThread)
)


WaitForObject =̂
WaitForObjectHandler

J∅ | {| start waitForObject timer |} | ∅K(
9 t : ThreadID •WaitForObjectTimer(t)

)
WaitForObjectHandler =̂

waitForObjectCall . object ? someThread ? waitTime−→



get lockedBy . object . someThread−→
if((timeMillis(waitTime) < 0) ∨ (timeNanos(waitTime) < 0))−→(

throw . illegalArgumentException−→
Chaos

)
8((timeMillis(waitTime) ≥ 0) ∧ (timeNanos(waitTime) ≥ 0))−→

get priorityLevel . someThread . object ? priorityLevel−→
add to wait . object ? someThread ? priorityLevel ! waitForObject−→
start waitForObject timer . object ! someThread ! priorityLevel ! waitTime−→
unlock Monitor . object ! someThread−→
WaitForObjectHandler


fi


@get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→
throw . illegalMonitorStateException−→
Chaos





16

WaitForObjectTimer =̂ val waitingThread : ThreadID •

start waitForObject timer . object ? waitingThread ? priorityLevel ? waitTime−→




wait valueOf (waitTime);
remove from wait . object ! waitingThread ! priorityLevel−→
waitForObjectRet . object ! waitingThread ! False−→
Skip


@(

cancel wait timer . object .waitingThread−→
Skip

)


;

relock this . object ! waitingThread−→
WaitForObjectTimer(waitingThread)




@(

cancel wait timer . object .waitingThread−→
WaitForObjectTimer(waitingThread)

)
@(waitRet . object ? n −→WaitForObjectTimer(waitingThread)

)
@(

waitForObjectRet . object ? n ? w −→WaitForObjectTimer(waitingThread)
)


Notify =̂

notify . object ? someThread−→



get lockedBy . object . someThread−→
if IsEmpty(waitQueue) = False−→(

ResumeThread ;
Notify

)
8 IsEmpty(waitQueue) = True−→

Notify
fi




@get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→

throw . illegalMonitorStateException−→
Chaos






@(waitRet . object ? n −→Notify

)
@(

waitForObjectRet . object ? n ? w −→Notify
)


ResumeThread =̂
removed thread . object ? notified .wait−→
cancel wait timer . object ! notified−→
relock this . object ! notified−→
waitRet . object ! notified−→
Skip


@

removed thread . object ? notified .waitForObject−→
cancel wait timer . object ! notified−→
relock this . object ! notified−→
waitForObjectRet . object ! notified ! True−→
Skip



17

NotifyAll =̂

notifyAll . object ? someThread−→

get lockedBy . object . someThread−→
NotifyAllHandler ;
NotifyAll


@get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→

throw . illegalMonitorStateException−→
Chaos






@(waitRet . object ? n −→NotifyAll

)
@(

waitForObjectRet . object ? n ? w −→NotifyAll
)


NotifyAllHandler =̂ var notified : ThreadID •
if IsEmpty(waitQueue) = False−→(

ResumeThread ;
NotifyAllHandler

)
8 IsEmpty(waitQueue) = True−→

Skip
fi

WaitQueueController =̂add to wait . object ? someThread ? priorityLevel ? waitType−→
AddToWaitQueue;
WaitQueueController


@remove from wait . object ? waitingThread ? priorityLevel−→

RemoveThreadFromWaitQueue;
WaitQueueController


@

IsEmpty(waitQueue) = FalseN
var notified : ThreadID •
var waitType : WaitType •
RemoveMostEligigbleFromWaitQueue;
removed thread . object ! notified ! waitType−→
WaitQueueController


@(

get waitQueue . object ! waitQueue−→
WaitQueueController

)
@(

get waitForObjectThreads . object ! waitForObjectThreads−→
WaitQueueController

)

18

Interrupt =̂
interrupt ? waitingThread−→



get waitQueue . object ? retreivedWait : (waitingThread ∈ ElementsOf (retreivedWait))−→
cancel wait timer . object ! waitingThread−→
get priorityLevel .waitingThread . object ? priorityLevel−→
remove from wait . object ! waitingThread ! priorityLevel−→
relock this . object ! waitingThread−→

get waitForObjectThreads . object ? wfot : (waitingThread 6∈ wfot)−→
waitRet . object ! waitingThread−→
Skip


@get waitForObjectThreads . object ? wfot : (waitingThread ∈ wfot)−→

waitForObjectRet . object ! waitingThread ! True−→
Skip




;

Interrupt


@(

get waitQueue . object ? retreivedWait : (waitingThread 6∈ ElementsOf (retreivedWait))−→
Interrupt

)



19

MonitorLockController =̂ val interruptedThreads : PThreadID •
lock request . object ? someThread−→
get priorityLevel . someThread . object ? priorityLevel−→
AddToQueueForLock ;
MonitorLockController(interruptedThreads)


@

relock this . object ? someThread−→
get priorityLevel . someThread . object ? priorityLevel−→

AddToQueueForLock ;

isInterruptedCall . someThread−→
isInterruptedRet . someThread .False−→
MonitorLockController(interruptedThreads)


@

isInterruptedCall . someThread−→
isInterruptedRet . someThread .True−→
interruptedThreads := interruptedThreads ∪ {someThread};
MonitorLockController(interruptedThreads)








@

IsEmpty(queueForLock) = False ∧ lockedBy = nullSchedulableIDN

AssignEligible;
lockAcquired . object . lockedBy−→
if lockedBy ∈ interruptedThreads−→(

throw .interruptedException−→
Chaos

)
8lockedBy 6∈ interruptedThreads −→ (

MonitorLockController(interruptedThreads)
)

fi




@(

get lockedBy . object ! lockedBy−→
MonitorLockController(interruptedThreads)

)
@increment locks . object−→

locks := locks + 1;
MonitorLockController(interruptedThreads)


@

decrement locks . object ! (locks − 1)−→

locks := locks − 1;
if locks = 0−→(

lockedBy := nullSchedulableID;
MonitorLockController(interruptedThreads)

)
8locks 6= 0−→

MonitorLockController(interruptedThreads)
fi






@fully unlock . object−→

FullyUnlock ;
MonitorLockController(interruptedThreads)



20

CeilingPriorityController =̂setCeilingPriority ? mission ! object ? priority−→
ceilingPriority := priority;
µX • (get ceilingPriority . object ! ceilingPriority −→X

)


@(
get ceilingPriority . object ! ceilingPriority−→
CeilingPriorityController

)

• (Init ; Execute
)
4
(

done toplevel sequencer −→ Skip
)

end

21

8 ThreadFW

section ThreadFW parents scj prelude,GlobalTypes,
ThreadChan,ObjectFWChan,FrameworkChan,Priority

process ThreadFW =̂ thread : ThreadID ; basePriority : PriorityLevel • begin

state State
priorityStack : seq1 PriorityLevel
activePriority : PriorityLevel
interrupted : B

activePriority = last priorityStack

Init
∆State

priorityStack ′ = 〈basePriority〉
interrupted ′ = False

Execute =̂

Priority
||[{basePriority} | {interrupted}]||
Interrupts


9
GetPriorityLevel




4
(

done toplevel sequencer−→
Skip

)
Priority =̂

if priorityStack = 〈basePriority〉−→
IncreasePriority

8priorityStack 6= 〈basePriority〉−→(
IncreasePriority
@DecreasePriority

)
fi

IncreasePriority =̂
raise thread priority . thread ? ceilingPriority−→
activePriority := ceilingPriority;
IncreasePriority

DecreasePriority =̂
lower thread priority . thread−→
activePriority := basePriority;
DecreasePriority

22

Interrupts =̂


Interrupt
||[∅ | ∅]||

IsInterrupted


||[∅ | ∅]||

Interrupted


J∅ | {| set interrupted , get interrupted |} | ∅K

InterruptedController



Interrupt =̂
interrupt . thread−→
set interrupted . thread ! True−→
Skip

IsInterrupted =̂
isInterruptedCall . thread−→
get interrupted . thread ? interrupted−→
isInterruptedRet . thread ! interrupted−→
Skip

Interrupted =̂
interruptedCall . thread−→
get interrupted . thread ? interrupted−→
interruptedRet . thread ! interrupted−→
set interrupted . thread ! False−→
Skip

InterruptedController =̂(
get interrupted . thread ! interrupted−→
InterruptedController

)
@set interrupted . thread ? newInterrupted−→

interrupted := newInterrupted ;
InterruptedController



GetPriorityLevel =̂
get priorityLevel . thread ? object ! activePriority−→
GetPriorityLevel

• (Init ; Execute
)
4
(

done toplevel sequencer −→ Skip
)

end

23

9 SafeletFW

section SafeletFW parents scj prelude,SchedulableId ,SchedulableIds,SafeletChan,
TopLevelMissionSequencerChan,FrameworkChan,SchedulableChan

process SafeletFW =̂ begin

State
globallyRegistered : FSchedulableID
topLevelSequencer : SchedulableID

Init
State ′

globallyRegistered ′ = ∅
topLevelSequencer ′ = nullSequencerId

InitializeApplication =̂
initializeApplicationCall−→
initializeApplicationRet−→
Skip

Execute =̂
GetSequencerMeth;
if topLevelSequencer 6= nullSequencerId−→(

start toplevel sequencer . topLevelSequencer−→
Methods

)
8topLevelSequencer = nullSequencerId−→

Skip
fi

GetSequencerMeth =̂
getSequencerCall−→
getSequencerRet ? sequencer−→
topLevelSequencer := sequencer

Methods =̂

(
Register ;
Methods

)
@(

Deregister ;
Methods

)
@(

done toplevel sequencer−→
Skip

)



24

Register =̂
register ? schedulable : (schedulable 6∈ globallyRegistered) ? mission−→globallyRegistered := globallyRegistered ∪ {schedulable};

checkSchedulable .mission ! True−→
Skip




@register ? schedulable : (schedulable ∈ globallyRegistered) ? mission−→
checkSchedulable .mission ! False−→
Skip



Deregister =̂
deregister ? schedulables−→
globallyRegistered := (globallyRegistered \ schedulables);
Skip

• (Init ; InitializeApplication ; Execute
)

end

25

10 TopLevelMissionSequencerFW

section TopLevelMissionSequencerFW parents TopLevelMissionSequencerChan,
MissionId ,MissionMethChan,SchedulableId ,MissionFWChan,FrameworkChan

process TopLevelMissionSequencerFW =̂ sequencer : SchedulableID • begin

State
currentMission : MissionID
continue : B

Init
State ′

continue ′ = True
currentMission ′ = nullMissionId

Start =̂
start toplevel sequencer . sequencer−→
Skip

Execute =̂


RunMission;

end methods . sequencer−→
Skip


J{currentMission} | {| end methods |} | ∅K
Methods


J∅ | CCSync | {continue}K
ContinueController



RunMission =̂
GetNextMission;
StartMission;
Continue

GetNextMission =̂
getNextMissionCall . sequencer−→
getNextMissionRet . sequencer ? next−→
currentMission := next

StartMission =̂
if currentMission 6= nullMissionId−→

start mission . currentMission . sequencer−→
done mission . currentMission ? returnedcontinue−→
set continue . sequencer ! returnedcontinue−→
Skip


8currentMission = nullMissionId−→(

set continue . sequencer ! False−→
Skip

)
fi

26

Continue =̂(
get continue . sequencer ? continue : (continue = True)−→
RunMission

)
@(

get continue . sequencer ? continue : (continue = False)−→
Skip

)
Methods =̂(

SequenceTerminationPending;
Methods

)
@(

end methods . sequencer−→
Skip

)
SequenceTerminationPending =̂

sequenceTerminationPendingCall . sequencer−→
get continue . sequencer ? continue−→
sequenceTerminationPendingRet . sequencer ! continue−→
Skip

ContinueController =̂(
get continue . sequencer ! continue−→
ContinueController

)
@set continue . sequencer ? newContinue−→

continue := newContinue;
ContinueController


@(

end methods . sequencer−→
Skip

)
Finish =̂done toplevel sequencer−→

end sequencer app . sequencer−→
Skip



• Init ; Start ; Execute ; Finish

end

27

11 MissionFW

section MissionFW parents SafeletMethChan,MissionId ,
SchedulableId ,MissionChan,SchedulableChan,FrameworkChan,ServicesChan,
scj prelude

process MissionFW =̂ mission : MissionID • begin

State
registeredSchedulables : FSchedulableID
activeSchedulables : FSchedulableID
missionTerminating : B
applicationTerminating : B
controllingSequencer : SchedulableID

Init
State ′

registeredSchedulables ′ = ∅
activeSchedulables ′ = ∅
missionTerminating = False
applicationTerminating = False
controllingSequencer = nullSequencerId

AddSchedulable
∆State
s? : SchedulableID

s? 6∈ registeredSchedulables
registeredSchedulables ′ = registeredSchedulables ∪ {s?}
activeSchedulables ′ = activeSchedulables
missionTerminating ′ = missionTerminating
applicationTerminating ′ = applicationTerminating
controllingSequencer ′ = controllingSequencer

Start =̂(
start mission .mission ? mySequencer−→
controllingSequencer := mySequencer

)
@(

done toplevel sequencer−→
applicationTerminating := True

)
InitializePhase =̂

initializeCall .mission −→
Initialize

28

Initialize =̂

(
Register ;
Initialize

)
@(

SetCeilingPriority;
Initialize

)
@(

initializeRet .mission−→
Skip

)



Register =̂
register ? s ! mission−→

(
checkSchedulable .mission ? check : (check = True)−→
AddSchedulable

)
@checkSchedulable .mission ? check : (check = False)−→

throw .illegalStateException−→
Chaos





RegisterException =̂
register ? s ! mission−→
throw .illegalStateException−→
Chaos

SetCeilingPriority =̂
setCeilingPriority .mission ? o ? p−→
Skip

SetCeilingPriorityException =̂
setCeilingPriority .mission ? o ? p−→
throw .illegalStateException−→
Chaos

MissionPhase =̂
Execute

J{registeredSchedulables, activeSchedulables,missionTerminating ,
applicationTerminating , controllingSequencer} | {| done schedulables |} | ∅K

Exceptions

29

Execute =̂

if registeredSchedulables = ∅−→(
done schedulables .mission−→
Skip

)
8registeredSchedulables 6= ∅−→

activate schedulables .mission −→
activeSchedulables := registeredSchedulables;

TerminateAndDone
J{activeSchedulables} |
{| stop schedulables, done schedulables |}

| {missionTerminating}K
Methods




fi


\{| done schedulables |}

TerminateAndDone =̂
SignalTermination

J∅ | TerminateSync | {activeSchedulables}K
DoneSchedulables

 ;

done schedulables .mission−→
Skip



SignalTermination =̂
stop schedulables .mission−→
get activeSchedulables .mission ? schedulablesToStop−→
StopSchedulables(schedulablesToStop);
schedulables stopped .mission−→
Skip


4(schedulables stopped .mission −→ Skip)

StopSchedulables =̂ val schedulablesToStop : FSchedulableID •
9 s : schedulablesToStop •

signalTerminationCall . s−→
signalTerminationRet . s−→
Skip



30

DoneSchedulables =̂


@ schedulable : activeSchedulables •
done schedulable . schedulable−→
activeSchedulables := activeSchedulables \ {schedulable};
Skip

 ;

if activeSchedulables = ∅−→(
schedulables stopped .mission−→
Skip

)
8activeSchedulables 6= ∅−→

DoneSchedulables
fi


@(

get activeSchedulables .mission ! activeSchedulables−→
DoneSchedulables

)
Methods =̂
RequestTerminationMeth

J∅ | {| end mission terminations |} | ∅K
TerminationPendingMeth


J∅ | MTCSync | {missionTerminating}K
MissionTerminatingController


J{missionTerminating} | {| end mission terminations |} | ∅Kdone schedulables .mission−→
end mission terminations .mission−→
Skip



RequestTerminationMeth =̂(
end mission terminations .mission−→
Skip

)
@

(
@ schedulable : registeredSchedulables • requestTermination .mission . schedulable−→
Skip

)
;


get missionTerminating .mission?missionTerminating : (missionTerminating = False)−→
set missionTerminating .mission ! True−→
stop schedulables .mission−→
RequestTerminationMeth


@(

get missionTerminating .mission?missionTerminating : (missionTerminating = True)−→
RequestTerminationMeth

)





TerminationPendingMeth =̂(
end mission terminations .mission−→
Skip

)
@

terminationPendingCall .mission−→
get missionTerminating .mission ? missionTerminating−→
terminationPendingRet .mission ! missionTerminating−→
TerminationPendingMeth



31

MissionTerminatingController =̂(
get missionTerminating .mission ! missionTerminating−→
MissionTerminatingController

)
@set missionTerminating .mission ? newMissionTerminating−→

missionTerminating := newMissionTerminating;
MissionTerminatingController


@(

end mission terminations .mission−→
Skip

)

CleanupPhase =̂
Cleanup

J{registeredSchedulables, activeSchedulables,missionTerminating ,
applicationTerminating , controllingSequencer} | {| done schedulables |} | ∅K

Exceptions

Cleanup =̂
deregister !registeredSchedulables−→
CleanupSchedulables;
cleanupMissionCall .mission−→
cleanupMissionRet .mission ? continueSequencer−→
Finish(continueSequencer)


CleanupSchedulables =̂

9 s : registeredSchedulables •
cleanupSchedulableCall . s−→
cleanupSchedulableRet . s−→
Skip


Finish =̂ val continueSequencer : B •

end mission app .mission−→
done mission .mission ! continueSequencer−→
Skip

Exceptions =̂RegisterException
9
SetCeilingPriorityException


@(

done schedulables .mission−→
Skip

)

•



µX • Init ; Start;
if applicationTerminating = False−→(

InitializePhase ; MissionPhase ; CleanupPhase ; X
)

8applicationTerminating = True−→(
end mission app .mission−→
Skip

)
fi




32

end

33

12 SchedulableMissionSequencerFW

section SchedulableMissionSequencerFW parents SchedulableMissionSequencerChan,
SchedulableChan,MissionIds,MissionChan,
SchedulableId , scj prelude,SafeletMethChan,FrameworkChan

process SchedulableMissionSequencerFW =̂ sequencer : SchedulableID • begin

State
currentMission : MissionID
continueAbove : B
continueBelow : B
controllingMission : MissionID
applicationTerminating : B

Init
State ′

continueAbove ′ = True
continueBelow ′ = True
applicationTerminating ′ = False
currentMission ′ = nullMissionId
controllingMission ′ = nullMissionId

GetContinue
ΞState
continue! : B

continueAbove = True ∧ continueBelow = True⇒ continue! = True

Start =̂(
Register ;
Activate

)
@(

done toplevel sequencer−→
applicationTerminating := True

)
@(

activate schedulables ? someMissionID−→
Start

)
Register =̂

register . sequencer ? mID−→
controllingMission := mID

Activate =̂
activate schedulables.controllingMission−→
Skip

34

Execute =̂


RunMission;

end methods . sequencer−→
Skip


J{currentMission} | {| end methods |} | ∅K
Methods


J∅ | CCSync | {continueAbove, continueBelow}K
ContinueController


;

done schedulable . sequencer −→ Skip

RunMission =̂
GetNextMission;
StartMission;
Continue

GetNextMission =̂
getNextMissionCall . sequencer−→
getNextMissionRet . sequencer ? next−→
currentMission := next

StartMission =̂
if currentMission 6= nullMissionId−→

start mission . currentMission . sequencer−→
initializeRet . currentMission−→

SignalTermination
J∅ | {| end terminations |} | ∅K
done mission . currentMission ? continueReturn−→
set continueBelow . sequencer ! continueReturn−→
end terminations . sequencer−→
Skip






8 currentMission = nullMissionId−→(

set continueBelow . sequencer ! False−→
Skip

)
fi

Continue =̂(
get continue . sequencer ? continue : (continue = True)−→
RunMission

)
@(
get continue . sequencer ? continue : (continue = False)−→
Skip

)
SignalTermination =̂

(
end terminations . sequencer−→
Skip

)
@

signalTerminationCall . sequencer−→
set continueAbove . sequencer ! False−→
requestTermination . currentMission . sequencer−→
signalTerminationRet . sequencer−→
Skip

 ;

end terminations . sequencer−→
Skip


35

Methods =̂(
SequenceTerminationPending;
Methods

)
@(
end methods . sequencer−→
Skip

)
SequenceTerminationPending =̂

sequenceTerminationPendingCall . sequencer−→
get continue . sequencer ? continue−→
sequenceTerminationPendingRet . sequencer ! continue−→
Skip

ContinueController =̂ var continue : B •(
GetContinue ; get continue . sequencer ! continue−→
ContinueController

)
@set continueBelow . sequencer ? newContinueBelow−→
continueBelow := newContinueBelow ;
ContinueController


@set continueAbove . sequencer ? newContinueAbove−→
continueAbove := newContinueAbove;
ContinueController


@(
end methods . sequencer−→
Skip

)
Cleanup =̂

cleanupSchedulableCall . sequencer−→
cleanupSchedulableRet . sequencer−→
Finish

Finish =̂
done schedulable . sequencer−→
Skip

•



µX • Init ; Start;
if applicationTerminating = False−→(

Execute ; Cleanup ; X
)

8applicationTerminating = True−→(
end sequencer app . sequencer−→
Skip

)
fi





end

36

13 Event Handlers

13.1 AperiodicEventHandlerFW

section AperiodicEventHandlerFW parents MissionChan,SchedulableChan,SchedulableId ,
MissionId ,MissionIds,TopLevelMissionSequencerChan,SafeletMethChan,FrameworkChan,
AperiodicEventHandlerChan,AperiodicParameters

process AperiodicEventHandlerFW =̂
schedulable : SchedulableID ; aperiodicType : AperiodicType;

aperiodicParameters : AperiodicParameters •
begin

state State
controllingMission : MissionID
applicationTerminating : B
pending : B
data : Z
deadline : JTime
deadlineMissHandler : SchedulableID

Init
State ′

controllingMission ′ = nullMissionId
applicationTerminating ′ = False
pending ′ = False
deadline ′ = deadlineOfAperiodic(aperiodicParameters)
deadlineMissHandler ′ = missHandlerOfAperiodic(aperiodicParameters)

Start =̂(
Register ;
Activate

)
@(
activate schedulables?someMissionID−→
Start

)
@(
done toplevel sequencer−→
applicationTerminating := True

)
Register =̂

register . schedulable ? missionID−→
controllingMission := missionID

Activate =̂
activate schedulables . controllingMission−→
Skip

37

Execute =̂
if deadlineMissHandler ! = nullSchedulableId−→




if aperiodicType = aperiodic−→

Ready
8aperiodicType = aperiodicLong−→

ReadyLong
fi


J{pending , data} | {| end releases |} | ∅K

SignalTermination


J{pending , data} |

DeadlineClockSync ∪ {| release . schedulable, releaseLong .schedulable |} |
∅K


release . schedulable −→ Skip

@
releaseLong . schedulable?data −→ Skip


; DeadlineClock


4
(

end releases.schedulable−→
Skip

)




8deadlineMissHandler == nullSchedulableId−→


if aperiodicType = aperiodic−→

Ready
8aperiodicType = aperiodicLong−→

ReadyLong
fi


J{pending , data} | {| end releases |} | ∅K

SignalTermination


fi

DeadlineClock =̂



wait valueOf (deadline);
release . deadlineMissHandler−→
DeadlineClock


@(

release complete . schedulable−→
DeadlineClock

)




4
(

end releases . schedulable−→
Skip

)

Ready =̂release.schedulable−→
handleAsyncEventCall . schedulable−→
Release


@(

end releases . schedulable−→
Skip

)

38

ReadyLong =̂
releaseLong . schedulable ? longData−→
data := longData;
handleAsyncLongEventCall . schedulable . data−→
ReleaseLong


@(

end releases . schedulable−→
Skip

)
SignalTermination =̂

signalTerminationCall . schedulable−→
end releases . schedulable−→
signalTerminationRet . schedulable−→
done schedulable . schedulable−→
Skip



Release =̂release.schedulable−→
pending := True;
Release


@

handleAsyncEventRet .schedulable−→
if pending = True−→

pending := False;
release complete . schedulable−→
handleAsyncEventCall .schedulable−→
Release


8pending = False−→

Ready
fi


@(

end releases.schedulable−→
Skip

)

39

ReleaseLong =̂
releaseLong .schedulable ? longData−→
data := longData;
pending := True;
ReleaseLong


@

handleAsyncLongEventRet .schedulable−→
if pending = True−→

pending := False;
release complete . schedulable−→
handleAsyncLongEventCall .schedulable.data−→
ReleaseLong


8pending = False−→

ReadyLong
fi


@(

end releases.schedulable−→
Skip

)

Cleanup =̂
cleanupSchedulableCall . schedulable−→
cleanupSchedulableRet . schedulable−→
Skip

•


µX •



Init ; Start;
if applicationTerminating = False−→(

Execute ; Cleanup ; X
)

8applicationTerminating = True−→(
end aperiodic app . schedulable−→
Skip

)
fi







end

40

13.2 PeriodicEventHandlerFW

section PeriodicEventHandlerFW parents MissionChan,SchedulableChan,SchedulableId ,
MissionId ,MissionIds,TopLevelMissionSequencerChan,PeriodicEventHandlerChan,
SafeletMethChan,FrameworkChan,PeriodicParameters

process PeriodicEventHandlerFW =̂

schedulable : SchedulableID ; periodicParameters : PeriodicParameters • begin

state State
controllingMission : MissionID
applicationTerminating : B
period : JTime
startTime : JTime
deadline : JTime
deadlineMissHandler : SchedulableID
missedReleases : N
periodicTerminating : B

valueOf (deadline) ≤ valueOf (period)

Init
State ′

controllingMission ′ = nullMissionId
applicationTerminating ′ = False
periodicTerminating ′ = False
period ′ = periodOf (periodicParameters)
startTimeOf (periodicParameters) = NULL⇒ startTime ′ = time (0, 0)
startTimeOf (periodicParameters) 6= NULL⇒

startTime ′ = startTimeOf (periodicParameters)
deadlineOfPeriodic(periodicParameters) = NULL⇒

deadline ′ = period ′

deadlineOfPeriodic(periodicParameters) 6= NULL⇒
deadline ′ = deadlineOfPeriodic(periodicParameters)

missedReleases ′ = 0
deadlineMissHandler ′ = missHandlerOfPeriodic(periodicParameters)

Start =̂(
Register ;
Activate

)
@(

activate schedulables?someMissionID−→
Start

)
@(

done toplevel sequencer−→
applicationTerminating := True

)
Register =̂

register . schedulable ? missionID−→
controllingMission := missionID

41

Activate =̂
activate schedulables . controllingMission−→
Skip

Execute =̂




wait valueOf (startTime);
if deadlineMissHandler 6= nullSchedulableId−→

RunningWithDeadlineDetection
8deadlineMissHandler = nullSchedulableId−→

Running
fi


@(

end releases . schedulable−→
Skip

)


J{startTime} | {| stop period |} | ∅K

SignalTermination


J{startTime} | PTCSYnc | ∅K

PeriodicTerminatingController

Running =̂PeriodicClock
J∅ | ReleaseSync | {missedReleases}K

Release(0)



RunningWithDeadlineDetection =̂Running
J{missedReleases} | ReleaseSync | ∅K

DeadlineClock(0)



PeriodicClock =̂
release . schedulable−→µX •



wait valueOf (period);
release . schedulable−→
X


@(

end releases . schedulable−→
Skip

)





42

Release =̂ val index : N •
if missedReleases = 0−→release . schedulable−→

handleAsyncEventCall . schedulable−→
Skip


8missedReleases 6= 0−→handleAsyncEventCall . schedulable−→

missedReleases := missedReleases − 1;
Skip


fi ;

handleAsyncEventRet . schedulable−→
periodic release complete . schedulable . index−→
Skip


J∅ | {| handleAsyncEventRet |} | ∅KµX •



release . schedulable−→
missedReleases := missedReleases + 1;
X


@(

handleAsyncEventRet . schedulable−→
Skip

)






;


(

get periodicTerminating . schedulable ? periodicTerminating : (periodicTerminating = False)−→
Release(index + 1)

)
@(

get periodicTerminating . schedulable ? periodicTerminating : (periodicTerminating = True)−→
Skip

)


DeadlineClock =̂ val index : N •




wait valueOf (deadline);
release . deadlineMissHandler−→
periodic release complete . schedulable . index−→
Skip


@(

periodic release complete . schedulable . index−→
Skip

)


9
((

wait valueOf (period);
DeadlineClock(index + 1)

))


4

end releases . schedulable−→
periodic release complete . schedulable ? index−→
Skip


SignalTermination =̂

signalTerminationCall . schedulable−→
set periodicTerminating . schedulable ! True−→
end releases . schedulable−→
signalTerminationRet . schedulable−→
done schedulable . schedulable−→
Skip

Cleanup =̂
cleanupSchedulableCall . schedulable−→
cleanupSchedulableRet . schedulable−→
Skip

43

PeriodicTerminatingController =̂(
get periodicTerminating . schedulable ! periodicTerminating−→
PeriodicTerminatingController

)
@set periodicTerminating . schedulable ? newPeriodicTerminating−→

periodicTerminating := newPeriodicTerminating;
PeriodicTerminatingController



•


µX •



Init ; Start;
if applicationTerminating = False−→(

Execute ; Cleanup ; X
)

8applicationTerminating = True−→(
end periodic app . schedulable−→
Skip

)
fi







end

44

13.3 OneShotEventHandlerFW

section OneShotEventHandlerFW parents MissionChan,SchedulableChan,SchedulableId ,
MissionId ,MissionIds,TopLevelMissionSequencerChan,OneShotEventHandlerChan,
SafeletMethChan,FrameworkChan,AperiodicParameters

process OneShotEventHandlerFW =̂

schedulable : SchedulableID ; startTime : JTime; aperiodicParameters : AperiodicParameters •
begin

state State
controllingMission : MissionID
applicationTerminating : B
deadline : JTime
deadlineMissHandler : SchedulableID

Init
State ′

controllingMission ′ = nullMissionId
applicationTerminating ′ = False
deadline ′ = deadlineOfAperiodic(aperiodicParameters)
deadlineMissHandler ′ = missHandlerOfAperiodic(aperiodicParameters)

Start =̂(
Register ;
Activate

)
@(

activate schedulables?someMissionID−→
Start

)
@(

done toplevel sequencer−→
applicationTerminating := True

)
Register =̂

register . schedulable ? mID−→
controllingMission := mID

Activate =̂
activate schedulables . controllingMission−→
Skip

Execute =̂


Run

J∅ | MethodsSync | ∅K
Methods


J∅ | {| end releases |} | ∅K
SignalTermination


J∅ | STCSync | {startTime}K

StartTimeController


45

Run =̂
if deadlineMissHandler = nullSchedulableId−→ScheduleOrWait

J∅ | ReleaseSync | ∅K
Release


8deadlineMissHandler 6= nullSchedulableId−→
ScheduleOrWait

J∅ | ReleaseSync | ∅K
Release

 J ∅ | DeadlineSync | ∅K

DeadlineClock


fi

ScheduleOrWait =̂
get startTime . schedulable ? startTime−→
if startTime! = NULL−→

Scheduled
8startTime = NULL−→

NotScheduled
fi

Release =̂
handleAsyncEventCall . schedulable−→
handleAsyncEventRet . schedulable−→
release complete . schedulable−→
Release


@reschedule handler . schedulable ? newStartTime−→

set startTime . schedulable ! newStartTime−→
Release


@end releases . schedulable−→

stop release . schedulable−→
Skip



DeadlineClock =̂
release . schedulable−→



wait valueOf (deadline);
release . deadlineMissHandler−→
DeadlineClock


@(

release complete . schedulable−→
DeadlineClock

)
@(

deschedule handler . schedulable−→
DeadlineClock

)




4
(

end releases . schedulable−→
Skip

)

46

Scheduled =̂
get startTime . schedulable ? startTime−→


wait valueOf (startTime)
release . schedulable−→
handleAsyncEventCall . schedulable−→
NotScheduled


4

(
deschedule handler . schedulable−→
NotScheduled

)
@reschedule handler . schedulable ? newStartTime−→

set startTime . schedulable ! newStartTime−→
Scheduled






NotScheduled =̂(

deschedule handler . schedulable−→
NotScheduled

)
@reschedule handler . schedulable ? newStartTime−→

set startTime . schedulable ! newStartTime−→
Scheduled


@(

end releases . schedulable−→
Skip

)

Methods =̂(
Deschedule;
Methods

)
@(

GetNextReleaseTime;
Methods

)
@(

ScheduleNextRelease;
Methods

)
@(

end releases . schedulable−→
Skip

)
Deschedule =̂ var wasScheduled : B •

descheduleCall . schedulable−→
deschedule handler .schedulable−→
get startTime . schedulable ? startTime−→

if startTime = NULL−→
wasScheduled := False

8startTime 6= NULL−→
wasScheduled := True

fi ;
set startTime . schedulable ! NULL−→
descheduleRet . schedulable ! wasScheduled−→
Skip


47

GetNextReleaseTime =̂
getNextReleaseTimeCall . schedulable−→
get startTime . schedulable ? startTime−→
getNextReleaseTimeRet . schedulable ! startTime−→
Skip

ScheduleNextRelease =̂
scheduleNextRelease . schedulable ? newStartTime−→
set startTime . schedulable ! newStartTime−→
if newStartTime = NULL−→(

deschedule handler .schedulable−→
Skip

)
8newStartTime 6= NULL−→(

reschedule handler ! schedulable ! newStartTime−→
Skip

)
fi

SignalTermination =̂
signalTerminationCall . schedulable−→
end releases . schedulable−→
signalTerminationRet . schedulable−→
done schedulable . schedulable−→
Skip

StartTimeController =̂(
get startTime . schedulable ! startTime−→
StartTimeController

)
@(

set startTime . schedulable ? newStartTime−→
StartTimeController

)
Cleanup =̂

cleanupSchedulableCall . schedulable−→
cleanupSchedulableRet . schedulable−→
Skip

•


µX •



Init ; Start;
if applicationTerminating = False−→(

Execute ; Cleanup ; X
)

8applicationTerminating = True−→(
end oneShot app . schedulable−→
Skip

)
fi







end

48

14 ManagedThreadFW

section ManagedThread parents ManagedThreadChan,SchedulableId ,MissionId ,MissionIds,
TopLevelMissionSequencerChan,SchedulableChan,SafeletMethChan,FrameworkChan

process ManagedThreadFW =̂ schedulable : SchedulableID • begin

State
controllingMission : MissionID
applicationTerminating : B

Init
State ′

controllingMission ′ = nullMissionId
applicationTerminating ′ = False

Start =̂(
Register ;
Activate

)
@(

activate schedulables?someMissionID−→
Start

)
@(

done toplevel sequencer−→
applicationTerminating := True

)

Register =̂
register . schedulable ? mID−→
controllingMission := mID

Activate =̂
activate schedulables . controllingMission−→
Skip

Execute =̂
Run J ∅ | {| runRet |} | ∅ K Methods

Run =̂
runCall . schedulable−→
runRet . schedulable−→
done schedulable . schedulable−→
Skip

49

Methods =̂(
SignalTerminationMeth ; Methods

)
@(

runRet . schedulable−→
Skip

)
SignalTerminationMeth =̂

signalTerminationCall . schedulable−→
signalTerminationRet . schedulable −→ Skip

Cleanup =̂
cleanupSchedulableCall . schedulable−→
cleanupSchedulableRet . schedulable −→ Skip

•



µX • Init ; Start;
if applicationTerminating = False−→(

Execute ; Cleanup ; X
)

8applicationTerminating = True−→(
end managedThread app . schedulable−→
Skip

)
fi





end

50

References

[1] The Open Group. Safety-Critical Java Technology Specification. Technical report, The Open
Group, 27 December 2014.

[2] Jim Woodcock and Ana Cavalcanti. The Semantics of Circus. In Didier Bert, Jonathan P. Bowen,
Martin C. Henson, and Ken Robinson, editors, ZB 2002:Formal Specification and Development
in Z and B, volume 2272 of Lecture Notes in Computer Science, pages 184–203. Springer Berlin
Heidelberg, 2002.

51

	Introduction
	GlobalTypes
	Priority
	Priority Queue
	Ids
	MissionId
	SchedulableId
	SchedulableIds

	Channels
	FrameworkChan
	SafeletChan
	SafeletFWChan
	SafeletMethChan
	MissionSequencerMethChan
	TopLevelMissionSequencerChan
	TopLevelMissionSequencerFWChan
	MissionChan
	MissionFWChan
	MissionMethChan
	SchedulableChan
	SchedulableMissionSequencerChan
	SchedulableMissionSequencerFWChan
	ManagedThreadChan
	ManagedThreadFWChan
	ManagedThreadMethChan

	ObjectFW
	ThreadFW
	SafeletFW
	TopLevelMissionSequencerFW
	MissionFW
	SchedulableMissionSequencerFW
	Event Handlers
	AperiodicEventHandlerFW
	PeriodicEventHandlerFW
	OneShotEventHandlerFW

	ManagedThreadFW

