Safety-Critical Java Level 2 Framework Model
Matt Luckcuck

Department of Computer Science,
University of York, UK

ml881@york.ac.uk
January 11, 2016

Contents

(1 Introductionl

2 GlobalTypes|

4 Priority Queue|

6.5 MissionSequencerMethChan| 0 o o
6.6 TopLevelMissionSequencerChan|.,
6.7 TopLevelMissionSequencerEWChan| o 0oL,
6.8 MissionChanl

16.12 SchedulableMissionSequencerChan| o oo 0oL o Lo
16.13 SchedulableMissionsequencerEWChan| oo 0000000
[6.14 ManagedThreadChan|
[6.15 ManagedThrea an|

[6.16 ManagedThreadMethChan|

Ob W

B_ThreadFW]

[9__SafeletFW]

IL0 TopLevelMissionSequencerFW]|
11 MissionFWI

112 SchedulableMissionSequencerF'W|

13 Event Handlers|
[13.1 AperiodicEventHandlerEW|0 oo oo

[13.2 PeriodicEventHandlerEWI e

14 Manage rea

24

26

28

34

37
37
41
45

49

1 Introduction

Safety-Critical Java (SCJ) [1] is a Java-based language for applications that must be certified. To
aid certification efforts, SCJ is organised into three compliance levels. Level 0 applications are simple
single-processor programs executed by a cyclic executive. By contrast, Level 2 applications are highly
concurrent, potentially multi-processor, and make use of suspension and a variety of release patterns.

We model SCJ Level 2 applications using the state-rich process algebra Circus [2]. We approach
this by splitting our models into a reusable Framework model, which captures the API behaviour of
SCJ, and a specific Application model, which captures the application’s behaviour.

Here we present our SCJ Level 2 Framework model, which captures the unchanging behaviour of
the API. It is intended that the Framework model be combined with a Application model to produce
a model of that specific application.

2 GlobalTypes

section GlobalTypes parents scj_prelude, Schedulableld
[ThreadID)

‘ SafeletThreadld : ThreadlD
‘ nullThreadld : ThreadlID

[ObjectID]

[totalThreads]
ThreadMap == ThreadID -+ N

ExceptionType ::= interruptedException | illegalMonitorState Ezception | illegal ArgumentEzception |
illegal ThreadState Exception | illegalState Exception | ceiling ViolationException

mazrNanos == 999999

Aperiodic Type ::= aperiodic | aperiodicLong

3 Priority
section Priority parents scj_prelude
MinPriority : Ny

‘ MazxPriority : Ny
‘ MazPriority — MinPriority > 2

PriorityLevel == MinPriority .. MaxPriority

4 Priority Queue

section PriorityQueue parents scj_prelude, GlobalTypes, Priority

PriorityQueuve == PriorityLevel — (iseq ThreadID)
Y pq : PriorityQueue ® nullThreadld ¢ ran(|J(ran pq))

IsEmpty : PriorityQueue — B

Y pq : PriorityQueue | (U(pq (PriorityLevel)))) = & o
IsEmpty(pq) = True

AddToPriorityQueue : PriorityQueue X ThreadID x PriorityLevel — PriorityQueue
Y pq : PriorityQueue; t : ThreadID; p : PriorityLevel |
t # nullThreadld N
t & ran({J(ran(pq))) o

AddToPriorityQueue(pq, t,p) = (pq ® {p — pa(p) ~ (£)})

RemoveFromPriorityQueue : PriorityQueue - PriorityQueue X ThreadlD
(¥ pq : PriorityQueue o
(3t : ThreadID; p : PriorityLevel |

p = maz {pl : PriorityLevel | pg(pl) # ()} A
t = head pq(p)
e RemoveFromPriorityQueue(pq) = (pq @ {p — tail pg(p)}, 1))

RemoveThreadFromPriorityQueue : PriorityQueue X ThreadID x PriorityLevel — PriorityQueue

V pq : PriorityQueue; t : ThreadID; p : PriorityLevel |

pa(p) [{t} # () o
RemoveThreadFromPriorityQueue(pg, t, p) = pqg ® {p — squash (pq(p) & {t})}

ElementsOf : PriorityQueue — P ThreadlD
Y pq : PriorityQueuve | pg # & o
(J elems : P ThreadID |

elems = | J(ran (ran pq))
o ElementsOf (pq) = elems)

5 Ids
5.1 Missionld

section Missionld

[MissionID)]

\ nullMissionld : MissionlD

5.2 Schedulableld

section Schedulableld
[SchedulablelD)

‘ TopLevelSequencerld : SchedulableID
‘ nullSequencerld : SchedulableID
‘ nullSchedulableld : SchedulableID

5.3 Schedulablelds

section Schedulablelds parents scj_prelude, Schedulableld

InputHandlerld : SchedulableID
OutputHandlerld : SchedulableID
MainMissionSequencerld : SchedulablelD
EchoMissionSequencerld : SchedulableID
InputMissionSequencerld : SchedulableID
OutputMissionSequencerld : SchedulablelD

distinct{ TopLevelSequencerld, InputHandlerId, OutputHandlerld,
MainMissionSequencerld, EchoMissionSequencerld,
InputMissionSequencerld, OutputMissionSequencerld, nullSequencerld, nullSchedulableld)

6 Channels
6.1 FrameworkChan

section FrameworkChan parents GlobalTypes

channel throw : ExceptionType
channel done_toplevel_sequencer

6.2 SafeletChan

section SafeletChan parents SafeletF'WChan, SafeletMethChan

6.3 SafeletFWChan

section SafeletFWChan parents scj_prelude

channel end_safelet_app
channel done_safeletF W

6.4 SafeletMethChan

section SafeletMethChan parents scj_prelude, Schedulableld, Missionld

channel initializeApplicationCall
channel initialize ApplicationRet

channel getSequencerCall
channel getSequencerRet : SchedulablelD

channel checkSchedulable : MissionID x B

channel deregister : F SchedulableID

6.5 MissionSequencerMethChan

section MissionSequencerMethChan parents scj_prelude, Missionld, Schedulableld

channel getNextMissionCall : SchedulableID
channel getNextMissionRet : (SchedulableID x MissionID)

channel requestSequence Termination : (SchedulableID x B)

channel sequenceTerminationPendingCall : SchedulablelD
channel sequence TerminationPendingRet : (SchedulableID x B)

6.6 TopLevelMissionSequencerChan
section TopLevelMissionSequencerChan parents TopLevelMissionSequencerE W Chan, MissionSequencerChan

6.7 TopLevelMissionSequencerFWChan

section TopLevelMissionSequencerFWChan parents scj_prelude, MissionSequencerF'WChan,
Schedulableld, Schedulablelds

channel start_toplevel_sequencer : SchedulablelD
channel set_continue : SchedulableID x B

channelset CCSync == { get_continue, set_continue [}
channelset TopLevelMissionSequencerFWChan ==
{ start_toplevel _sequencer, end_sequencer—_app, end_methods,
get_continue, set_continue [}

6.8 MissionChan

section MissionChan parents MissionF'WChan, MissionMethChan, SchedulableMethChan

channelset MissionAppSync ==
{ initialize Call, initializeRet, register, cleanupMissionCall, cleanupMissionRet,
end_mission_app [}

6.9 MissionFWChan
section MissionChan parents MissionF W Chan, MissionMethChan, SchedulableMethChan

channelset MissionAppSync ==
{ initialize Call, initialize Ret, register, cleanupMissionCall, cleanupMissionRet,
end_mission_app [}

6.10 MissionMethChan
section MissionChan parents MissionF'WChan, MissionMethChan, SchedulableMethChan

channelset MissionAppSync ==
{ initializeCall, initialize Ret, register, cleanupMissionCall, cleanupMissionRet,
end_mission_app [}

6.11 SchedulableChan

section SchedulableChan parents Missionld, Schedulableld, SchedulableF W Chan, Schedulable MethChan

6.12 SchedulableMissionSequencerChan

section SchedulableMissionSequencerChan parents Schedulable MissionSequencerFWChan, MissionSequencer Chan

6.13 SchedulableMissionSequencerFWChan
section SchedulableMissionSequencerF W Chan parents scj_prelude, MissionSequencerF W Chan, Schedulableld, Sched

channel set_continueBelow : SchedulableID x B
channel set_continueAbove : SchedulableID x B

channelset CCSync == { get_continue, set_continueBelow, set_continueAbove [}

channelset SchedulableMissionSequencerFWChan ==
{ end_sequencer_app, end_methods, end_terminations, get_continue [}

6.14 ManagedThreadChan

section Managed ThreadChan parents Managed ThreadF'WChan, Managed ThreadMethChan, Schedulable Chan

channelset MtAppSync == { runCall, runRet, end_managed Thread_app }

6.15 ManagedThreadFWChan

section ManagedThreadFWChan parents Schedulableld

channel end_managed Thread_app : SchedulableID

6.16 ManagedThreadMethChan

section ManagedThreadMethChan parents Schedulableld

channel runCall : SchedulableID
channel runRet : SchedulableID

10

7 ObjectFW

section Object parents scj_prelude, GlobalTypes, ObjectChan, MissionChan, Schedulable Chan,
Schedulableld, Missionld, Missionlds, TopLevelMissionSequencerChan,
HandlerChan, SafeletMethChan, FrameworkChan, PriorityQueue, Priority, ThreadChan

process ObjectFW = object : ObjectID o begin

__state State
waitQueue : PriorityQueue
lockedBy : ThreadlD
locks : N
previousLocks : ThreadMap
queueForLock : PriorityQueue
ceilingPriority : PriorityLevel
waitForObject Threads : P ThreadID

locks > 0 < lockedBy # nullSchedulableID
lockedBy ¢ dom previousLocks
lockedBy ¢ ElementsOf (waitQueue)
lockedBy ¢ ElementsOf (queueForLock)
waitForObject Threads C ElementsOf (waitQueue)

__Init
State’

IsEmpty(queueForLock’) = True
IsEmpty(waitQueue’) = True
locks’ =0
previousLocks' = &
ceilingPriority’ = MazPriority
waitForObject Threads' = &

— FullyUnlock
AState
lockedBy? : ThreadlD
locks? : Ny

previousLocks’ = previousLocks & {lockedBy? — locks?}
lockedBy' = nullSchedulableID

locks’ =0

waitQueue’ = waitQueue

queueForLock’ = queueForLock

ceilingPriority’ = ceilingPriority

waitForObject Threads’ = waitForObject Threads

11

__AddToQueueForLock
AState
someThread? : ThreadID
priorityLevel? : PriorityLevel

someThread? # nullSchedulableID

someThread? ¢ ElementsOf (queueForLock)

queueForLock’ = AddToPriorityQueue(queweForLock, someThread?, priorityLevel?)
lockedBy' = lockedBy

locks’ = locks

previousLocks’ = previousLocks

waitQueue’ = waitQueue

ceilingPriority’ = ceilingPriority

waitForObject Threads’ = waitForObject Threads

_ AssignEligible
AState

(queueForLock’, lockedBy') = RemoveFromPriorityQueue(queueForLock)
lockedBy' € dom previousLocks = locks’ = previousLocks(lockedBy')
lockedBy' & dom previousLocks = locks’ = 1

previousLocks’ = {lockedBy} <4 previousLocks

waitQueue’ = waitQueue

ceilingPriority’ = ceilingPriority

waitForObject Threads’ = waitForObject Threads

— AddToWuaitQueue
AState
someThread? : ThreadlD
priorityLevel? : PriorityLevel
wait Type? : Wait Type

someThread? # nullSchedulableID

someThread? & ElementsOf (waitQueue)

waitQueue’ = AddToPriorityQueve(waitQueue, someThread?, priorityLevel?)

lockedBy' = lockedBy

locks’ = locks

previousLocks’ = previousLocks

queueForLock! = queueForLock

ceilingPriority’ = ceilingPriority

waitType? = waitForObject = waitForObject Threads’ = waitForObject Threads U {someThread?}
waitType? = wait = waitForObject Threads’ = waitForObject Threads

12

— RemoveThreadFromWaitQueue
AState
waiting Thread? : ThreadlD
priorityLevel? : PriorityLevel

waiting Thread? € ran(waitQueve(priorityLevel?))

waitQueue’ = Remove ThreadFromPriorityQueue(waitQueue, waiting Thread?, priorityLevel?)
lockedBy' = lockedBy

locks’ = locks

previousLocks’ = previousLocks

ceilingPriority’ = ceilingPriority

waitForObject Threads’ = waitForObject Threads \ {waiting Thread?}

— RemoveMostEligigble From Wait Queue
AState
notified! : ThreadlD
wait Type! : Wait Type

(waitQueue’, notified!) = RemoveFromPriorityQueue(waitQueue)
lockedBy' = lockedBy

locks’ = locks

previousLocks’ = previousLocks

queueForLock’ = queueForLock

ceilingPriority’ = ceilingPriority

notified! € waitForObject Threads = wait Type! = waitForObject
notified! & waitForObject Threads = waitType! = wait
waitForObject Threads’ = waitForObjectThreads \ {notified!}

Ezxecute =
var interrupted Threads : P ThreadID e
Monitor
(2|
MonitorSync |
{waitQueue, waitForObject Threads}]
Synchronisation
[{waitQueue, waitForObject Threads} |
MLCSync |
{queuweForLock, previousLocks, locks, locked By }]
MonitorLockController (interrupted Threads)
[{ waitQueuve, waitForObject Threads, queueForLock, previousLocks, locks, lockedBy} |
CPCSync |
{ceilingPriority}]
CeilingPriorityController

Monitor =
MonitorUnlocked

13

Monitor Unlocked =

O

startSynchMeth . object 7 someThread—
lock_request . object ! someThread—
MonitorUnlocked

lockAcquired . object ? locking Thread —

get_ceilingPriority . object ? ceilingPriority—
get_priorityLevel . lockingThread . object ? priority : (priority < ceilingPriority)—
raise_thread_priority . locking Thread ! ceilingPriority—
MonitorLocked (locking Thread)

O

get_priorityLevel . lockingThread . object ? priority : (priority > ceilingPriority)—
throw.ceiling Violation Exception—

Chaos

MonitorLocked = val lockedBy : ThreadID ®

O

O

startSynchMeth . object . locked By—
increment_locks . object—
MonitorLocked (lockedBy)

startSynchMeth . object ? someThread : (someThread # lockedBy)—
lock_request . object ! someThread—
MonitorLocked(locked By)

endSyncMeth . object . locked By—
decrement_locks . object . 0—
lower_thread_priority . locked By—
MonitorUnlocked
(]
decrement_locks . object 71 : (1 # 0)—
<M0nit0rLocked(lockedBy))

unlock_Monitor . object 7 unlocking Thread—>

Sully_unlock . object—

lower_thread_priority . unlockingThread —
MonitorUnlocked

Synchronisation =

WaitActions
[| WaitSync | 2]
NotifyActions
2]
WQSync |
{waitQueue, waitForObject Threads}]
WaitQueueController
[{ waitQueuve, waitForObject Threads} | InterruptSync |]
Interrupt

14

WaitActions =
(Wait ||| TimedWait) || WaitForObject

NotifyActions =
Notify ||| NotifyAll

Wait =

waitCall . object 7 some Thread—
isInterruptedCall . someThread —
isInterruptedRet . someThread . False—>
get_lockedBy . object . someThread—>
get_priorityLevel . someThread . object ? priorityLevel—>
add_to_wait . object ! someThread ! priorityLevel ! wait—
unlock_Monitor . object ! someThread—
Wait
O
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—
throw . illegalMonitorState Exception—
Chaos

isInterruptedCall . someThread—
isInterruptedRet . someThread . True—>
throw.interrupted Exception—

Chaos

Timed Wait =
Timed WaitHandler
[2 | { start_timer [} |]

(||| t: ThreadID ® TimedWaitTimer(t))

Timed WaitHandler =
timed WaitCall . object 7 someThread ? waitTime—s
get_lockedBy . object . someThread —
if (timeMillis(waitTime) < 0) V
(timeNanos(waitTime) < 0 A timeNanos(waitTime) > maxNanos))—>
throw . illegal ArgumentException—
Chaos)
[(timeMillis(wait Time) > 0) A
(timeNanos(waitTime) > 0) A (timeNanos(waitTime) < mazNanos))—
get_priorityLevel . someThread . object ? priorityLevel —
add_to_wait . object ! someThread ! priorityLevel | wait—>
start_timer . object ! someThread ! priorityLevel ! wait Time—
unlock_Monitor . object ! some Thread—>
TimedWaitHandler
fi
]
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—
throw . illegalMonitorState Exception—
Chaos

15

Timed Wait Timer = val waiting Thread : ThreadID ®
start_timer . object . waiting Thread 7 priorityLevel ? wait Time—>
wait valueOf (wait Time);
remove_from_wait . object | waiting Thread ! priorityLevel —
waitRet . object ! waiting Thread —
Skip
O
cancel_wait_timer . object . waiting Thread—
(Skip)

?
relock_this . object | waiting Thread—
Timed Wait Timer(waiting Thread)

cancel_wait_timer . object . waiting Thread—
Timed Wait Timer (waiting Thread)

O

O

((waitRet . object . waitingThread — Timed WaitTimer(waitz’ngThread))
O

waitForObjectRet . object . waitingThread 7T w — Timed WaitTimer(waitingThread))

WaitForObject =
WaitForObjectHandler
[@ | { start_waitForObject_timer [} | @]

(|H t : ThreadlD ® WaitForObjectTimer(t))

WaitForObjectHandler =
waitForObjectCall . object 7 someThread ? wait Time—

get_lockedBy . object . someThread—

if ((timeMillis(waitTime) < 0) V (timeNanos(wait Time) < 0))—>
throw . illegal ArgumentException—>
Chaos

I ((timeMillis(waitTime) > 0) A (timeNanos(waitTime) > 0)) —
get_priorityLevel . someThread . object ? priorityLevel —
add_to_wait . object ? someThread ? priorityLevel ! waitForObject —
start_waitForObject_timer . object | someThread ! priorityLevel ! wait Time—
unlock_Monitor . object | some Thread—>
WaitForObjectHandler

fi
O
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—

throw . illegalMonitorState Exception—
Chaos

16

WaitForObject Timer = val waitingThread : ThreadID e
start_waitForObject_timer . object 7 waiting Thread 7 priorityLevel 7 wait Time—
wait valueOf (wait Time);
remove_from_wait . object | waiting Thread ! priorityLevel —
waitForObjectRet . object ! waiting Thread ! False—
Skip ;
O
cancel_wait_timer . object . waiting Thread—
(Skip)
relock_this . object | waiting Thread—
WaitForObject Timer(waitingThread)

cancel_wait_timer . object . waiting Thread—
WaitForObject Timer(waiting Thread)

O

O

((waitRet . object ? n — WaitForObject Timer (waiting Thread))
O

waitForObjectRet . object 7 n 7w — WaitForObjectTimer(waitingThread))

Notify =
notify . object 7 some Thread—
get_lockedBy . object . some Thread—
if IsEmpty(waitQueue) = False—
ResumeThread;
(Notify >
| IsEmpty(waitQueue) = True—>
Notify
fi
O
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—
throw . illegalMonitorState Exception—>
Chaos

O
(waitRet . object 7 n —> Notify)
O
(

waitForObjectRet . object 7 n 7w — Notify)

ResumeThread =

removed_thread . object ? notified . wait—
cancel_wait_timer . object ! notified—>
relock_this . object ! notified—>

waitRet . object ! notified—

Skip

removed_thread . object ? notified . waitForObject—
cancel_wait_timer . object ! notified—>

relock_this . object ! notified—>

waitForObjectRet . object ! notified ! True—

Skip

17

NotifyAll =
notifyAll . object 7 someThread—
get_lockedBy . object . someThread—
NotifyAllHandler;
NotifyAll
]
get_lockedBy . object ? lockedBy : (lockedBy # someThread)—
throw . illegalMonitorState Exception—>
Chaos
O
(waitRet . object 7n —» NotifyAll)
O
(waitForObjectRet .objectTn?Tw — Notz'fyAll)

NotifyAllHandler = var notified : ThreadlD ®
if IsEmpty(waitQueue) = False—
ResumeThread;
(NotifyAllHandler)
| IsEmpty(waitQueue) = True—>
Skip
fi

WaitQueueController =

add_to_wait . object ? someThread ? priorityLevel T wait Type—>
AddToWaitQueue;

WaitQueueController

remove_from_wait . object 7 waitingThread ? priorityLevel —>
RemoveThreadFrom WaitQueue;
WaitQueueController

IsEmpty(waitQueue) = False&

var notified : ThreadlID ®

var wait Type : WaitType ®
RemoveMostEligigble From Wait Queue;
removed_thread . object | notified ! wait Type—
WaitQueueController

O

get_waitQueue . object ! waitQueue—
WaitQueueController

O

get_waitForObject Threads . object ! waitForObject Threads—
WaitQueueController

18

Interrupt =
interrupt 7 waiting Thread —>
get_waitQueue . object ? retreived Wait : (waitingThread € ElementsOf (retreived Wait))—
cancel_wait_timer . object | waiting Thread —
get_priorityLevel . waiting Thread . object ? priorityLevel —
remove_from_wait . object ! waitingThread ! priorityLevel —
relock_this . object | waiting Thread —
get_waitForObject Threads . object ? wfot : (waiting Thread ¢ wfot)—
waitRet . object ! waiting Thread—
Skip
0)
get_waitForObject Threads . object 7 wfot : (waitingThread € wfot)—
waitForObjectRet . object | waiting Thread ! True—
Skip
Interrupt

O
get_waitQueue . object ? retreived Wait : (waitingThread & ElementsOf (retreived Wait))—
Interrupt

19

MonitorLockController = val interrupted Threads : P ThreadlD
lock_request . object ? someThread—

get_priorityLevel . someThread . object 7 priorityLevel —
AddToQueueForLock;

MonitorLockController (interrupted Threads)

O
relock_this . object 7 some Thread—>

get_priorityLevel . someThread . object 7 priorityLevel —
AddToQueueForLock;

isInterruptedCall . someThread —
isInterruptedRet . someThread . False—
MonitorLockController (interrupted Threads)

O
isInterruptedCall . some Thread—>

isInterruptedRet . someThread . True—>

interrupted Threads := interrupted Threads U { someThread};
MonitorLockController (interrupted Threads)

O
IsEmpty(queueForLock) = False A lockedBy = nullSchedulableID &

AssignEligible;

lockAcquired . object . locked By—

if lockedBy € interrupted Threads—>

throw.interrupted Exception—

<Chaos

[llockedBy ¢ interrupted Threads — (MonitorLockController(interruptedThreads))

fi

g
get_lockedBy . object ! locked By—
(MonitorLockController (interrupted Threads))
O
increment_locks . object—
locks := locks + 1,
MonitorLockController (interrupted Threads)
O
decrement_locks . object! (locks — 1)—
locks := locks — 1;
if locks = 0—
lockedBy := nullSchedulablelD;
<M onitorLockController (interrupted Threads))
locks # 0—
MonitorLockController (interrupted Threads)
fi

g
Sfully_unlock . object—

FullyUnlock;

MonitorLockController (interrupted Threads)

20

CeilingPriorityController =
setCeilingPriority 7 mission ! object ? priority—>
cetlingPriority = priority;
nXx e (get,ceilinng'ority . object ! ceilingPriority — X)

O

get_ceilingPriority . object ! ceilingPriority—
CeilingPriorityController

° (Im't ; Execute) A (done,toplevel,sequencer — Skip)

end

21

8 ThreadFW

section ThreadFW parents scj_prelude, Global Types,
ThreadChan, ObjectF'WChan, FrameworkChan, Priority

process ThreadF'W = thread : ThreadID; basePriority : PriorityLevel ® begin

__state State

priorityStack : seq, PriorityLevel
activePriority : PriorityLevel
interrupted : B

activePriority = last priorityStack

__Init

AState

priorityStack’ = (basePriority)
interrupted’ = False

Ezecute =

Priority
I[{ basePriority} | {interrupted}]|
Interrupts

If

GetPriorityLevel

done_toplevel_sequencer—
(Skip)

Priority =
if priorityStack = (basePriority) —
IncreasePriority
|priorityStack # (basePriority) —
IncreasePriority
(DDecreasePriom’ty)

IncreasePriority =
raise_thread_priority . thread ? ceilingPriority—>
actiwePriority := ceilingPriority;
IncreasePriority

DecreasePriority =
lower_thread_priority . thread—
activePriority := basePriority;
DecreasePriority

22

Interrupts =
Interrupt
i@ | 2]
IsInterrupted
2| 2l
Interrupted
[2 | { set—interrupted, get_interrupted [} | &]
InterruptedController

Interrupt =
interrupt . thread—
set_interrupted . thread ! True—>
Skip

IsInterrupted =
isInterruptedCall . thread—
get_interrupted . thread ? interrupted —
isInterruptedRet . thread ! interrupted —
Skip

Interrupted =
interruptedCall . thread—
get_interrupted . thread ? interrupted —
interruptedRet . thread ! interrupted —
set_interrupted . thread ! False—
Skip

InterruptedController =
get_interrupted . thread ! interrupted—>
(InterruptedController >
O
set_interrupted . thread ? newInterrupted—>
interrupted := newlnterrupted;
InterruptedController

GetPriorityLevel =
get_priorityLevel . thread ? object ! activePriority—>
GetPriorityLevel

° (Im't ; Execute) A (done,toplevel,sequencer — Skip)

end

23

9 SafeletFW

section SafeletF'W parents scj_prelude, Schedulableld, Schedulablelds, SafeletChan,
TopLevelMissionSequencerChan, FrameworkChan, Schedulable Chan

process SafeletFW = begin

— State
globallyRegistered : F SchedulableID

topLevelSequencer : SchedulableID

__Init
State’

globallyRegistered’ = @
topLevelSequencer’ = nullSequencerld

Initialize Application =
initialize ApplicationCall—
initialize Application Ret—
Skip

Ezecute =
GetSequencerMeth;
if topLevelSequencer # nullSequencerld—
start_toplevel_sequencer . topLevelSequencer—
(Methods)
[[topLevelSequencer = nullSequencerld—
Skip
fi

GetSequencerMeth =
getSequencerCall—
getSequencerRet 7 sequencer —
topLevelSequencer := sequencer

Methods =
Register;
(Methods >
O
Deregister;
<M ethods)
O

done_toplevel_sequencer —>
Skip

24

Register =

register 7 schedulable : (schedulable & globallyRegistered) ? mission—
globallyRegistered := globallyRegistered U { schedulable};
checkSchedulable . mission ! True—
Skip

O

register 7 schedulable : (schedulable € globallyRegistered) ? mission—

checkSchedulable . mission | False—

Skip

Deregister =
deregister ? schedulables—
globallyRegistered := (globallyRegistered \ schedulables);
Skip

° (Im't; Initialize Application ; Ea:ecute)

end

25

10 TopLevelMissionSequencerFW

section TopLevelMissionSequencerF'W parents TopLevelMissionSequencerChan,
Missionld, MissionMethChan, Schedulableld, MissionF' W Chan, FrameworkChan

process TopLevelMissionSequencerFW = sequencer : SchedulableID ® begin

__State

currentMission : MissionlD
continue : B

__Init

State’

continue’ = True
currentMission’ = nullMissionld

Start =
start_toplevel_sequencer . sequencer—»
Skip

Ezecute =
RunMission;
end_methods . sequencer—
Skip
[{ currentMission} | { end_methods [} | @]
Methods
[@ | CCSync | {continue}]

ContinueController

RunMission =
GetNextMission,
StartMission;
Continue

GetNextMission =
getNextMissionCall . sequencer—
getNextMissionRet . sequencer 7 next—s;
currentMission = next

StartMission =

if currentMission # nullMissionld —
start_mission . currentMission . sequencer—>
done_mission . currentMission 7 returnedcontinue—s»
set_continue . sequencer ! returnedcontinue—»
Skip

| currentMission = nullMissionld—
set_continue . sequencer | False—»

(Skip)
fi

26

Continue =
get_continue . sequencer ? continue : (continue = True)—
(RunMission >
O
(getcontinue . sequencer ? continue : (continue = False)—))
Skip

Methods =
Sequence TerminationPending;
(M ethods)
O
end_methods . sequencer—
(Skip)

Sequence TerminationPending =
sequenceTerminationPendingCall . sequencer—
get_continue . sequencer 7 continue—
sequence TerminationPendingRet . sequencer ! continue—s»
Skip

ContinueController =

get_continue . sequencer ! continue—>

(ContinueController)

O
set_continue . sequencer ? newContinue—>
continue := newContinue;
ContinueController

O
end_methods . sequencer—

(Skip)

Finish =
done_toplevel_sequencer—>
end_sequencer_app . sequencer—>
Skip

® [nit; Start; Execute; Finish

end

27

11 MissionFW

section MissionF'W parents SafeletMethChan, Missionld,
Schedulableld, MissionChan, Schedulable Chan, FrameworkChan, ServicesChan,
scj_prelude

process MissionFW = mission : MissionID e begin

‘ registeredSchedulables : F SchedulableID
‘ activeSchedulables : F SchedulableID

‘ mission Terminating : B

‘ application Terminating : B

‘ controllingSequencer : SchedulableID

__Init

State’

registeredSchedulables’ = &
activeSchedulables’ = &

mission Terminating = False
application Terminating = False
controllingSequencer = nullSequencerld

__AddSchedulable

AState
s? : SchedulableID

s? & registeredSchedulables
registeredSchedulables’ = registeredSchedulables U {s?}
activeSchedulables’ = activeSchedulables
missionTerminating’ = missionTerminating
applicationTerminating’ = application Terminating
controllingSequencer’ = controllingSequencer

Start =
start_mission . mission 7 mySequencer—»
(controllingSequencer = mySequencer)
g
done_toplevel_sequencer —>
(applicationTerminating = True)

InitializePhase =
initializeCall . mission —
Initialize

28

Initialize =

Register,
<Initz’alize)
O

SetCeilingPriority;
(Initz’alize)
O

initializeRet . mission—
Skip

Register =
register 7 s | mission—>
checkSchedulable . mission ? check : (check = True)—
(AddSchedulable)
O
checkSchedulable . mission ? check : (check = False)—
throw.illegalState Exception—>
Chaos

RegisterException =
register 7 s ! mission—
throw.illegalState Exception—s
Chaos

SetCeilingPriority =
setCeilingPriority . mission? o7 p—
Skip

SetCeilingPriorityFEzception =
setCeilingPriority . mission? 07 p—
throw.illegalState Exception—>
Chaos

MissionPhase =
Ezecute
[{registeredSchedulables, activeSchedulables, mission Terminating,
application Terminating, controllingSequencer} | {| done_schedulables [} | @]
FExceptions

29

Execute =
if registeredSchedulables = @—>
done_schedulables . mission—>
(Skip >
[registeredSchedulables # &—
activate_schedulables . mission —
activeSchedulables = registeredSchedulables;
TerminateAndDone
[{ activeSchedulables} |
{ stop_schedulables, done_schedulables [}
| {missionTerminating}]

Methods

\{ done_schedulables |}

TerminateAndDone =
SignalTermination
[@ | TerminateSync | {activeSchedulables}] | ;
DoneSchedulables
done_schedulables . mission—
Skip

SignalTermination =
stop_schedulables . mission—
get_activeSchedulables . mission ? schedulables ToStop—
StopSchedulables(schedulablesToStop);
schedulables_stopped . mission—>
Skip
A(schedulables_stopped . mission — Skip)

StopSchedulables = val schedulablesToStop : F SchedulableID e

H’ s : schedulablesToStop ®
signalTerminationCall . s—

signalTerminationRet . s—
Skip

30

DoneSchedulables =

[schedulable : activeSchedulables ®
done_schedulable . schedulable—
activeSchedulables := activeSchedulables \ {schedulable};
Skip
if activeSchedulables = &—
schedulables_stopped . mission—>
Skip)
[lactiveSchedulables # &—
DoneSchedulables
fi

a

get_activeSchedulables . mission ! activeSchedulables—>
DoneSchedulables

Methods =

RequestTerminationMeth
[@ | { end_mission_terminations |} | &
TerminationPendingMeth

[@ | MTCSync | {missionTerminating}]

Mission TerminatingController

[{missionTerminating} | {| end_mission_terminations [} | @]

done_schedulables . mission—

end_mission_terminations . mission—->
Skip

RequestTerminationMeth =
end_mission_terminations . mission—>
(Skip)
]

U schedulable registeredSchedulables ® request Termination . mission . schedulable— | .
Skip ’
get_missionTerminating . mission?missionTerminating : (missionTerminating = False)—
set_missionTerminating . mission ! True—;
stop_schedulables . mission—»
Request TerminationMeth
O

(getmz’ssion Terminating . mission?missionTerminating : (missionTerminating = True) —))

RequestTerminationMeth

TerminationPendingMeth =

end_mission_terminations . mission—->

(Skip >

O
terminationPendingCall . mission—>
get_missionTerminating . mission T missionTerminating—>
terminationPendingRet . mission ! mission Terminating—
TerminationPendingMeth

31

Mission TerminatingController =
get_missionTerminating . mission ! mission Terminating—>
Mission TerminatingController

O
set_missionTerminating . mission 7 newMission Terminating—>
missionTerminating := newMissionTerminating;

Mission TerminatingController

O

end_mission_terminations . mission—>>

CleanupPhase =
Cleanup
[{ registeredSchedulables, activeSchedulables, missionTerminating,
application Terminating, controllingSequencer} | {| done_schedulables [} | @]
FExceptions

Cleanup =
deregister!registeredSchedulables—
CleanupSchedulables;
cleanupMissionCall . mission—>
cleanupMissionRet . mission 7 continueSequencer—
Finish(continueSequencer)

CleanupSchedulables =

H’ s : registeredSchedulables ®
cleanupSchedulableCall . s—
cleanupSchedulableRet . s—
Skip

Finish = val continueSequencer : B @
end_mission_app . misston—-
done_mission . mission ! continueSequencer—
Skip

Exceptions =
RegisterException

SetCeilingPriorityFException

done_schedulables . mission—
Skip

O
[MX ® [nit; Start;

if applzcatzonTermmatmg = False—>
ImtzalzzePhase MissionPhase ; CleanupPhase ; X)
lapplication Termmatmg = True—)
end_mission_app . mission—>
Skip)

32

end

33

12 SchedulableMissionSequencerFW

section SchedulableMissionSequencerF'W parents Schedulable MissionSequencerChan,
Schedulable Chan, Missionlds, MissionChan,
Schedulableld, scj_prelude, SafeletMethChan, FrameworkChan

process SchedulableMissionSequencerFW = sequencer : SchedulableID ® begin

i currentMission : MissionID

‘ continueAbove : B

‘ continueBelow : B

‘ controllingMission : MissionID
‘ application Terminating : B

__Init

State’

continueAbove’ = True
continueBelow’ = True

application Terminating’ = False
currentMission’ = nullMissionld
controllingMission’ = nullMissionld

__ GetContinue

=State
continue! : B

continueAbove = True A continueBelow = True = continue! = True

Start =
Register;
(Activate)
a

done_toplevel_sequencer—
application Terminating := True
O
activate_schedulables 7 someMissionID —
Start

Register =
register . sequencer T miD—>
controllingMission := mID

Activate =
activate_schedulables.controllingMission—
Skip

34

Execute =
RunMission;
end_methods . sequencer —
Skip
[{ currentMission} | { end_methods [} | @] ;
Methods
[@ | CCSync | { continueAbove, continueBelow}]
ContinueController
done_schedulable . sequencer — Skip

RunMission =
GetNextMission;
StartMission;
Continue

GetNextMission =
getNextMissionCall . sequencer—>
getNextMissionRet . sequencer 7 next—
currentMission = next

StartMission =
if currentMission # nullMissionld —
start_mission . currentMission . sequencer —»
initializeRet . currentMission—
Signal Termination
[@ | { end_terminations [} | @]
done_mission . currentMission 7 continueReturn—>
set_continueBelow . sequencer ! continue Return—
end_terminations . sequencer —»
Skip
[| currentMission = nullMissionld —
set_continueBelow . sequencer ! False—
(Skip)

fi

Continue =
get_continue . sequencer ? continue : (continue = True)—

(RunMission)
O

(getcontinue . sequencer ? continue : (continue = False)—>)
Skip

SignalTermination =
end_terminations . sequencer —>

(Skip)

O
signalTerminationCall . sequencer—
set_continueAbove . sequencer ! False—
request Termination . currentMission . sequencer— | ;
signalTerminationRet . sequencer—»
Skip

end_terminations . sequencer —»

Skip

35

Methods =

Sequence TerminationPending;
(M ethods)

O

end_methods . sequencer—
(Skip)

Sequence TerminationPending =
sequenceTerminationPendingCall . sequencer—
get_continue . sequencer ? continue—
sequence TerminationPendingRet . sequencer | continue—»
Skip

ContinueController = var continue : B ®
GetContinue ; get_continue . sequencer | continue—s>»
(ContinueController >
O
set_continueBelow . sequencer 7 newContinueBelow—
continueBelow := newContinueBelow;
ContinueController
g
set_continueAbove . sequencer 7 newContinueAbove—s
continueAbove := newContinueAbove;
ContinueController
O
end_methods . sequencer—
(Skip >

Cleanup =
cleanupSchedulableCall . sequencer—
cleanupSchedulableRet . sequencer—»
Finish

Finish =
done_schedulable . sequencer—
Skip

pnX e Init ; Start;
if application Terminating = False—>
(Earecute ; Cleanup ; X)
° [l application Terminating = True—>
end_sequencer—_app . sequencer—>
(Skip)
fi

end

36

13 Event Handlers
13.1 AperiodicEventHandlerFW

section AperiodicEventHandlerFW parents MissionChan, Schedulable Chan, Schedulableld,
Missionld, Missionlds, TopLevelMissionSequencerChan, SafeletMethChan, FrameworkChan,
AperiodicEventHandlerChan, AperiodicParameters

process AperiodicEventHandlerFW =
schedulable : SchedulableID; aperiodic Type : Aperiodic Type;
aperiodicParameters : AperiodicParameters ®
begin

__state State

controllingMission : MissionID
application Terminating : B

pending : B

data : 7

deadline : JTime
deadlineMissHandler : SchedulableID

_ Init

State’

controllingMission’ = nullMissionld
application Terminating’ = False
pending’ = False
deadline’ = deadline OfAperiodic(aperiodicParameters)
deadlineMissHandler'" = missHandler Of Aperiodic(aperiodicParameters)

Start =
Register;
<Activate >
d
activate_schedulables? someMissionlD —
(Start)
a

done_toplevel_sequencer —»
application Terminating := True

Register =
register . schedulable 7 missionlD—>
controllingMission := missionlD

Activate =

activate_schedulables . controllingMission—s
Skip

37

Ezecute =
if deadlineMissHandler! = nullSchedulableld —

if aperiodic Type = aperiodic—

Ready
[laperiodic Type = aperiodicLong—
ReadyLong
fi
[{pending, data} | {| end_releases |} | @]
SignalTermination

[{pending, data} |
DeadlineClockSync U { release . schedulable, releaseLong.schedulable [} |
o]
release . schedulable — Skip
O
releaseLong . schedulable? data — Skip
; DeadlineClock
end_releases.schedulable—
Skip

[deadlineMissHandler == nullSchedulableId —

if aperiodic Type = aperiodic—

Ready
[l aperiodic Type = aperiodicLong—
ReadyLong
fi
[{pending, data} | { end_releases [} | @]
Signal Termination

DeadlineClock =

wait valueOf (deadline);
release . deadlineMissHandler—
DeadlineClock
O
release_complete . schedulable—>
(Deadlme Clock)
end_releases . schedulable—
Skip >

Ready =

a

(

release.schedulable—>
handleAsyncEventCall . schedulable—>
Release

end_releases . schedulable—
Skip

38

ReadyLong =

releaseLong . schedulable ? longData—
data := longData;
handleAsyncLongFventCall . schedulable . data—
ReleaseLong

O
end_releases . schedulable—

(Skip)

SignalTermination =
signal TerminationCall . schedulable—
end_releases . schedulable—
signalTerminationRet . schedulable—
done_schedulable . schedulable—
Skip

Release =
release.schedulable—
pending := True;
Release
O
handle AsyncEventRet.schedulable—
if pending = True—>
pending := False;
release_complete . schedulable—
handleAsyncEventCall.schedulable—
Release
lpending = False—
Ready

fi

d
end_releases.schedulable—>
Skip

39

ReleaseLong =
releaseLong.schedulable ? longData—
data := longData;
pending := True,;
ReleaseLong
O
handleAsyncLongFEventRet.schedulable—
if pending = True—
pending := False;
release_complete . schedulable—
handle AsyncLongEventCall.schedulable.data—
ReleaseLong
|pending = False—
ReadyLong
fi

O
end_releases.schedulable—
Skip

Cleanup =
cleanupSchedulableCall . schedulable—
cleanupSchedulableRet . schedulable—
Skip

Init ; Start;
if application Terminating = False—>
(Execute ; Cleanup ; X)
o | uXe lapplication Terminating = True—>
end_aperiodic_app . schedulable—
(Skip >
fi

end

40

13.2 PeriodicEventHandlerF'W

section PeriodicEventHandlerF'W parents MissionChan, SchedulableChan, Schedulableld,
Missionld, Missionlds, TopLevelMissionSequencerChan, PeriodicEventHandlerChan,
SafeletMeth Chan, FrameworkChan, PeriodicParameters

process PeriodicEventHandlerFW =
schedulable : SchedulableID; periodicParameters : PeriodicParameters ® begin

__ state State

controllingMission : MissionID
applicationTerminating : B

period : JTime

startTime : JTime

deadline : JTime
deadlineMissHandler : SchedulableID
missedReleases : N

periodic Terminating : B

valueOf (deadline) < valueOf (period)

__Init

State’

controllingMission’ = nullMissionld
application Terminating’ = False
periodic Terminating’ = False
period’ = periodOf (periodicParameters)
start TimeOf (periodicParameters) = NULL = startTime’ = time (0,0)
startTimeOf (periodicParameters) # NULL =

startTime' = startTimeOf (periodicParameters)
deadlineOfPeriodic(periodicParameters) = NULL =

deadline’ = period’
deadlineOfPeriodic(periodicParameters) # NULL =

deadline’ = deadlineOfPeriodic(periodicParameters)
missedReleases’ = 0
deadlineMissHandler’ = missHandlerOfPeriodic(periodicParameters)

Start =
Register;
<Activate)
d
activate_schedulables? someMissionlD —
(Start >
a

done_toplevel_sequencer—
application Terminating := True

Register =

register . schedulable 7 missionID—
controllingMission := missionlD

41

Activate =
activate_schedulables . controllingMission—
Skip

Ezxecute =
wait valueOf (startTime);
if deadlineMissHandler # nullSchedulableld —
Running WithDeadlineDetection
[deadlineMissHandler = nullSchedulableld —
Running
fi
O
end_releases . schedulable—
Skip
[{startTime} | { stop_period |} | &
Signal Termination
[{startTime} | PTCSYnc | @]
Periodic TerminatingController

Running =
PeriodicClock
[@ | ReleaseSync | {missedReleases}]
Release(0)

Running WithDeadlineDetection =
Running
[{missedReleases} | ReleaseSync | &
DeadlineClock(0)

PeriodicClock =

release . schedulable—

wait valueOf (period);

release . schedulable—

X
d

end_releases . schedulable—
(Skip)

nXx e

42

Release = valindez : N @

if missedReleases = 0—>

release . schedulable—
handleAsyncEventCall . schedulable—
Skip

[[missedReleases # 0—
handleAsyncEventCall . schedulable—>
missedReleases := missedReleases — 1;
Skip

handle AsyncEventRet . schedulable—
periodic_release_complete . schedulable . indexr—
Skip
[@ | { handleAsyncEventRet [} | @]
release . schedulable—
missedReleases := missedReleases + 1;
X
O
(handleAsyncEventRet . schedulable—>)

nX e

Skip

Release(index + 1)
O

Skip

DeadlineClock = valindex : N @
wait valueOf (deadline);
release . deadlineMissHandler —
periodic_release_complete . schedulable . index —
Skip
]
periodic_release_complete . schedulable . indexr—
<Skip)
end_releases . schedulable—
A | periodic_release_complete . schedulable ? index—
Skip

SignalTermination =
signalTerminationCall . schedulable—
set_periodic Terminating . schedulable ! True—>
end_releases . schedulable—
signal TerminationRet . schedulable—
done_schedulable . schedulable—
Skip

Cleanup =
cleanupSchedulableCall . schedulable—
cleanupSchedulableRet . schedulable—
Skip

43

(getperz'odz'c Terminating . schedulable ? periodic Terminating : (periodic Terminating = False)—

(getperiodic Terminating . schedulable ? periodic Terminating : (periodic Terminating = True)—

wait valueOf (period);
DeadlineClock(index + 1)

)

)

Periodic TerminatingController =
get_periodic Terminating . schedulable ! periodic Terminating—>
(Periodic TerminatingController >
O
set_periodic Terminating . schedulable 7 newPeriodic Terminating—
periodic Terminating := newPeriodic Terminating;
Periodic TerminatingController

Init ; Start;
if application Terminating = False—>
(Eatecute ; Cleanup ; X)
o | uXe lapplication Terminating = True—>
end_periodic_app . schedulable—
(Skip >
fi

end

44

13.3 OneShotEventHandlerFW

section OneShotEventHandlerF'W parents MissionChan, Schedulable Chan, Schedulableld,
Missionld, Missionlds, TopLevelMissionSequencerChan, OneShotEventHandler Chan,
SafeletMethChan, FrameworkChan, AperiodicParameters

process OneShotEventHandlerFW =

schedulable : SchedulableID; startTime : JTime; aperiodicParameters : AperiodicParameters ®
begin

__state State
controllingMission : MisstonID
application Terminating : B
deadline : JTime
deadlineMissHandler : SchedulablelD

__Init
State’

controllingMission’ = nullMissionld
application Terminating’ = False
deadline’ = deadline OfAperiodic(aperiodicParameters)
deadlineMissHandler' = missHandlerOfAperiodic(aperiodicParameters)

Start =
Register;
(Activate)
a
activate_schedulables? someMissionlD —
<Start >
a

done_toplevel_sequencer —>
application Terminating := True

Register =
register . schedulable ? mID —
controllingMission := mID

Activate =
activate_schedulables . controllingMission—>
Skip
Execute =
Run
[@ | MethodsSync | 2]
Methods
[@ | { end_releases [} | &]
SignalTermination
[@ | STCSync | {startTime}]
Start TimeController

45

Run =
if deadlineMissHandler = nullSchedulableld —

ScheduleOrWait

[@ | ReleaseSync |]

Release

(| deadlineMissHandler # nullSchedulableld—
ScheduleOr Wait
[@ | ReleaseSync | @] | [@ | DeadlineSync |]
Release

DeadlineClock

fi

ScheduleOrWait =
get_startTime . schedulable ? startTime—
if startTime! = NULL—

Scheduled
(|startTime = NULL—
NotScheduled
fi
Release =

handleAsyncEventCall . schedulable—>
handleAsyncEventRet . schedulable—
release_complete . schedulable—
Release

reschedule_handler . schedulable 7 newStartTime—
set_startTime . schedulable ! newStart Time—
Release

end_releases . schedulable—
stop_release . schedulable—
Skip

DeadlineClock =
release . schedulable—
wait valueOf (deadline);
release . deadlineMissHandler—
DeadlineClock
O
release_complete . schedulable—
DeadlineClock
deschedule_handler . schedulable—))

DeadlineClock
end_releases . schedulable—
Skip

46

Scheduled =
get_startTime . schedulable ? startTime—
wait valueOf (start Time)
release . schedulable—>
handleAsyncEventCall . schedulable—>
NotScheduled
A
deschedule_handler . schedulable—
<N otScheduled >
O
reschedule_handler . schedulable ? newStartTime—>
set_startTime . schedulable ! newStartTime—
Scheduled

NotScheduled =
deschedule_handler . schedulable—
NotScheduled

]
reschedule_handler . schedulable ? newStart Time—
set_startTime . schedulable ! newStart Time—
Scheduled

O

end_releases . schedulable—>

(Skip)

Methods =
Deschedule;
Methods

GetNextReleaseTime;
Methods

ScheduleNextRelease;
Methods

O ——0o0 —20od

end_releases . schedulable—>
Skip

Deschedule = var wasScheduled : B @
descheduleCall . schedulable—
deschedule_handler.schedulable—>
get_startTime . schedulable ? startTime—

if startTime = NULL—>
wasScheduled := False

[|startTime # NULL—
wasScheduled := True

fi

set_startTime . schedulable! NULL—>

descheduleRet . schedulable ! wasScheduled—

Skip

47

GetNextRelease Time =
getNextRelease TimeCall . schedulable—
get_startTime . schedulable ? startTime—
getNextRelease TimeRet . schedulable ! start Time—
Skip

ScheduleNextRelease =
scheduleNextRelease . schedulable ? newStart Time—
set_startTime . schedulable ! newStart Time—
if newStartTime = NULL—
deschedule_handler.schedulable—
(Skip)
|newStartTime # NULL—
reschedule_handler ! schedulable ! newStart Time—>
(Skip)
fi

SignalTermination =
signalTerminationCall . schedulable—
end_releases . schedulable—
stgnal TerminationRet . schedulable—
done_schedulable . schedulable—
Skip

StartTimeController =
get_startTime . schedulable ! startTime—
StartTimeController
O
set_startTime . schedulable ? newStartTime—
StartTimeController

Cleanup =
cleanupSchedulableCall . schedulable—
cleanupSchedulableRet . schedulable—
Skip

Init ; Start;
if application Terminating = False—>
(Execute ; Cleanup ; X)
o | uXe lapplication Terminating = True—>
end_oneShot_app . schedulable—>
(Skip)
fi

end

48

14 ManagedThreadFW

section ManagedThread parents Managed ThreadChan, Schedulableld, Missionld, Missionlds,
TopLevelMissionSequencerChan, SchedulableChan, SafeletMethChan, FrameworkChan

process ManagedThreadFW = schedulable : SchedulableID ® begin

__State

controllingMission : MissionID
applicationTerminating : B

__Init

State’

controllingMission’ = nullMissionld
application Terminating’ = False

Start =
Register;
<Activate)
d
(activate_schedulables? someMissionID —>>
O

done_toplevel_sequencer—
application Terminating := True

Register =
register . schedulable ? mID —
controllingMission := mID

Activate =
activate_schedulables . controllingMission—
Skip

Ezecute =
Run [@ | { runRet [} | @] Methods

Run =
runCall . schedulable—
runRet . schedulable—
done_schedulable . schedulable—>
Skip

49

Methods =
(SignalTermmationMeth; Methods)
O
runRet . schedulable—
Skip

SignalTerminationMeth =
signalTerminationCall . schedulable—
signalTerminationRet . schedulable — Skip

Cleanup =
cleanupSchedulableCall . schedulable—
cleanupSchedulableRet . schedulable — Skip

pnX e Init; Start;
if application Terminating = False—>
(Execute ; Cleanup ; X)
o lapplication Terminating = True—>
end_managed Thread_app . schedulable—
(Skip)
fi

end

50

References

[1] The Open Group. Safety-Critical Java Technology Specification. Technical report, The Open
Group, 27 December 2014.

[2] Jim Woodcock and Ana Cavalcanti. The Semantics of Circus. In Didier Bert, Jonathan P. Bowen,
Martin C. Henson, and Ken Robinson, editors, ZB 2002:Formal Specification and Development
in Z and B, volume 2272 of Lecture Notes in Computer Science, pages 184-203. Springer Berlin
Heidelberg, 2002.

51

	Introduction
	GlobalTypes
	Priority
	Priority Queue
	Ids
	MissionId
	SchedulableId
	SchedulableIds

	Channels
	FrameworkChan
	SafeletChan
	SafeletFWChan
	SafeletMethChan
	MissionSequencerMethChan
	TopLevelMissionSequencerChan
	TopLevelMissionSequencerFWChan
	MissionChan
	MissionFWChan
	MissionMethChan
	SchedulableChan
	SchedulableMissionSequencerChan
	SchedulableMissionSequencerFWChan
	ManagedThreadChan
	ManagedThreadFWChan
	ManagedThreadMethChan

	ObjectFW
	ThreadFW
	SafeletFW
	TopLevelMissionSequencerFW
	MissionFW
	SchedulableMissionSequencerFW
	Event Handlers
	AperiodicEventHandlerFW
	PeriodicEventHandlerFW
	OneShotEventHandlerFW

	ManagedThreadFW

