
Automatically Reformulating
SAT-Encoded CSPs

Lyndon Drake, Alan Frisch, Ian Gent, and Toby Walsh

lyndon@cs.york.ac.uk

AI Group, Computer Science Department,

University of York, United Kingdom

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.1/18



Introduction

• It is possible to solve a number of problems
efficiently by mapping them to SAT

• Mapping to SAT flattens some structural
information

• The choice of encoding can greatly affect
SAT solver performance

• Sometimes it is possible to infer extra
clauses that enhance an encoding

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.2/18



Outline

• Encoding CSPs as SAT instances
• Variables
• Domains
• Constraints

• Hyper binary resolution
• Automatically inferring support clauses
• Results and future work

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.3/18



CSPs

• Binary constraints
• Example CSP:

• Three variables: a, b, and c
• All three variables have the same domain,

d = {1, 2, 3}
• Three constraints: a < b, b < c, and c < a

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.4/18



Propositional satisfiability

• Conjunctive normal form:

a ∨ ¬b

b ∨ c

¬c ∨ d

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.5/18



Encoding into SAT

Three steps:
• CSP variables and values to SAT variables
• CSP domains to SAT clauses
• CSP constraints to SAT clauses

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.6/18



Step 1: variables to variables

• SAT variable av is true when CSP variable a
takes the value v

• n × d SAT variables, where n is the number of
variables and d is the domain size

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.7/18



Step 2: domains to clauses

• at-least-one clauses

(a1 ∨ a2 ∨ a3)

• at-most-one clauses

¬a1 ∨ ¬a2

¬a2 ∨ ¬a3

¬a1 ∨ ¬a3

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.8/18



Step 3: constraints to clauses – direct

• a < b
¬a1 ∨ ¬b1

¬a2 ∨ ¬b2

¬a2 ∨ ¬b1

¬a3 ∨ ¬b3

¬a3 ∨ ¬b2

¬a3 ∨ ¬b1

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.9/18



Step 3: constraints to clauses – support (Gent 2002)

• a < b
¬a3

¬a2 ∨ b3

¬a1 ∨ b2 ∨ b3

¬b1

¬b2 ∨ a1

¬b3 ∨ a2 ∨ a1

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.10/18



Comparing the two encodings

• Neither is particularly complicated
• Both require polynomial space
• SAT solvers generally perform better on

instances encoded using support

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.11/18



Resolution

• Given the clauses:

x1 ∨ x2

x1 ∨ ¬x2 ∨ ¬x3

• we can infer the clause:

x1 ∨ ¬x3

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.12/18



HypBinRes (Bacchus 2002)

• Given the clauses:
x1 ∨ x2 ∨ . . . ∨ xn

¬x1 ∨ h
¬x2 ∨ h
. . .

¬xn−1 ∨ h

• we can infer the clause:
xn ∨ h

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.13/18



Inferring some support clauses

• Take the at-least-one clause for a:
a1 ∨ a2 ∨ a3

• add the conflict clauses b = 2:
¬b2 ∨ ¬a2

¬b2 ∨ ¬a3

• and infer the support clause for b = 2:
¬b2 ∨ a1

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.14/18



Inferring more support clauses

• Only clauses for functional constraints will be
inferred by HypBinRes

• Applying HypBinRes during search infers the
“useful” support clauses

• Relaxing the conditions on the HypBinRes
rule allows us to infer all the support clauses

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.15/18



Results

• Experiments carried out using 2CLS+EQ
• Solver written by Fahiem Bacchus
• Efficient implementation of HypBinRes

during DPLL search
• HypBinRes during search significantly

outperforms HypBinRes as a preprocessor
• Inferring support clauses for the

non-functional constraints is worthwhile
• 2CLS+EQ on the direct encoding

outperforms 2CLS+EQ on the support
encoding
• Opposite to standard DPLL solver results

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.16/18



Questions in search of answers

• Does the generalised HypBinRes rule infer
useful clauses on other problems?

• Are the conflict clauses useful when all the
support clauses exist?

• Is HypBinRes useful as a preprocessor?
• Can we explain the relationship between

different SAT encodings of other problems in
terms of inference?

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.17/18



Conclusions

CP 02 Reformulation Workshop - Automatically Reformulating SAT-Encoded CSPs – p.18/18


	Introduction
	Outline
	CSPs
	Propositional satisfiability
	Encoding into SAT
	Step 1: variables to variables
	Step 2: domains to clauses
	Step 3: constraints to clauses -- direct
	Step 3: constraints to clauses -- support (Gent 2002)
	Comparing the two encodings
	Resolution
	HypBinRes (Bacchus 2002)
	Inferring some support clauses
	Inferring more support clauses
	Results
	Questions in search of answers
	Conclusions

