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Introduction

• SAT: propositional satisfiability problem
• Archetypal NP-complete problem (Cook,

1971)
• Numerous practical applications, including

planning, quasigroup completion, and model
checking

• My research: evaluating techniques for using
inference to improve search
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Satisfiable SAT instance

a ∨ ¬b

b ∨ c

¬c ∨ d

Alternative form:

Σ = (a ∨ ¬b) ∧ (b ∨ c) ∧ (¬c ∨ d)

Satisfying assignment:

A = {a 7→ T, b 7→ T, c 7→ F}
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Solving SAT problems
• The Davis-Putnam method

• Uses resolution to eliminate variables
• Resolution is intractable and impractical for

many problems
• E.g. best case exponential space

complexity on pigeon-hole problems
• DLL (Davis-Logemann-Loveland)

• Replaces resolution with branching
• Complete backtracking search
• Basis of the fastest available solvers
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Assignment during search

X

X′

A

• X = (a ∨ ¬b ∨ ¬c)

• A = {a 7→ F, b 7→ T }

• X′ = (¬c)
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Example of unit propagation
Given:
• X = (a ∨ ¬b ∨ ¬c)

• A = {a 7→ F, b 7→ T }

We know that:
• X′ = (¬c)

It is obvious that we must assign c false:
• A′ = A ∪ {c 7→ F} = {a 7→ F, b 7→ T, c 7→ F}

• X′′ 7→ T
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Evaluating unit propagation

• Unit propagation is an extremely worthwhile
inference technique to add to a search
procedure
• Substantial pruning
• Simple reasoning

• Implementation details have a massive
impact on performance, even for a simple
and effective technique such as unit
propagation
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Evaluating inference techniques

• When examining the potential worth of an
inference technique, we need to compare:
• How much of the search space will be

pruned (the benefit)
• How much time and space executing the

technique will require (the cost)
• Some of this comparison can be done

theoretically
• Implementation details cannot be avoided
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Example of resolution

a ∨ c ∨ d

¬b ∨ c ∨ ¬d

a ∨ ¬b ∨ c
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Example of neighbour resolution

• X = (¬a ∨ ¬b ∨ ¬c)

• Y = (a ∨ ¬b ∨ ¬c)

¬a ∨ ¬b ∨ ¬c

a ∨ ¬b ∨ ¬c

¬b ∨ ¬c
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Neighbour resolution

X Y

X′ Y ′

Z′

A A

res res
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Evaluating neighbour resolution

• Neighbour resolution during search
significantly prunes the search space on
many problems

• Identifying neighbouring clauses during
search takes a great deal of time

• The time cost outweighs the benefit,
meaning that this implementation of
neighbour resolution during search is not
practically beneficial
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Preprocessing neighbour resolution

X Y

Z

X′ Y ′

Z′

A A

A

res

res res
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Evaluating preprocessing NR

• Not a completely correct simulation
• Works fairly well for some problem classes,

but needs more work
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Future work

• More theoretical evaluation
• How much pruning?
• How much work compared to unit prop?
• Which instances respond to a technique?
• Is it possible to identify an equivalent

preprocessing technique?
• Efficiently combining nogood recording with

other inference techniques
• Hyper binary resolution

• Relationship between CSP encodings
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Conclusions

• SAT is both theoretically interesting and
practically important

• Inference can successfully augment search
on SAT problems

• The challenge is to find inference techniques
that are cost-effective
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Related work

Combining resolution and search:
• Rish and Dechter. Resolution versus search:

two strategies for SAT. In SAT2000, IOS
Press, 2000.

• van Gelder. Satisfiability testing with more
reasoning and less guessing. In Second
DIMACS implementation challenge, 1995.

• Cha and Iwama. Adding new clauses for
faster local search. In Proc AAAI-96, 1996.
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Other worthwhile inference techniques

• Nogood recording
• Conflict-directed backjumping
• Equivalency reasoning
• Restrictions of resolution
• Hyper-resolution
• Variable probing
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Future work: improved simulation
In our current implementation of simulated
neighbour resolution:
• Subsumption during search is ignored

• We can mark resolvent clauses and
cheaply apply subsumption to just those
clauses during search

• Extra resolvents (not corresponding to actual
neighbour resolvents) are added
• We can use knowledge of the branching

heuristic to determine which resolvents
correspond to actual neighbour resolvents
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Future work: improved implementation
• Neighbour resolution during search is slow

because identifying neighbouring clauses is
expensive
• We have an improved algorithm for

neighbour identification which we plan to
implement

• It is not worth applying resolution to some
problem classes (e.g. the JNH SATLIB
instances)
• We are developing syntactic methods for

identifying some such problem classes
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Future work: investigation

• If implied clauses are visible to the branching
heuristic, the search tree may actually be
grow instead of being pruned
• We plan to investigate the effect of

including the implied clauses, but making
the branching heuristic ignore them
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My other work

Investigating preprocessing techniques:
• Systematic comparison of existing

techniques
• Selecting and evaluating novel techniques

• E.g. taking first-order techniques and
applying them to SAT problems
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